首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AS52 cells are Chinese hamster ovary (CHO) cells that carry a single functional copy of the bacterial gpt gene and allow the isolation of 6-thioguanine-resistant (6TGr)mutants arising from mutation at the chromosally integrated gpt locus. The gpt locus in AS52 cells is extremely stable, giving rise to 6TGr mutants at frequencies comparable to the endogenous CHO hprt locus. In this study, we describe the spectrum of spontaneous mutations observed in AS52 cells by Southern blot and DNA sequence analyses. Using the polymerase chain reaction (PCR) and the Thermus aquaticus (Taq) polymerase, we have enzymatically amplified 6TGr mutant gpt sequences in vitro. The PCR product was then sequenced without further cloning manipulations to directly identify gpt structural gene mutations. Deletions predominant among the 62 spontaneous 6TGr-AS52 mutant clones analyzed in this study. Of these, 79% (49/62) of the mutations were identified as deletions either by Southern blotting, PCR amplification or DNA sequence analysis. Among these deletions is a predominant 3-base deletion that was observed in 31% (19/62) of the mutants. These data provide a basis for future comparisons of induced point mutational spectra derived in the AS52 cell line, and demonstrate the utility of PCR in the generation of DNA sequence spectra derived from chromosomally integrated mammalian loci.  相似文献   

2.
Analyses of mutation in pSV2gpt-transformed CHO cells   总被引:3,自引:0,他引:3  
We have developed a system to study mutations which affect expression of the E. coli xanthine-guanine phosphoribosyl transferase (XPRT) gene (gpt) in hypoxanthine-guanine phosphoribosyl transferase-deficient (HPRT-) Chinese hamster ovary (CHO) cells that have been transformed by the plasmid pSV2gpt. Several gpt-transformed cell lines have been isolated and characterized with respect to integrated pSV2gpt sequences, expression of the gpt gene, and cytotoxic and mutagenic responses to UV light. While the gpt-transformed CHO and wild-type CHO-K1-BH4 cell lines have similar cytotoxic responses to UV light, the gpt-transformed cell lines respond differently from the parental CHO-K1-BH4 cell line in terms of mutation induction. As with CHO-K1-BH4 HPRT mutants, spontaneous or induced XPRT mutants derived from the gpt+ cell lines can be selected for 6-thioguanine resistance (TGr). Analysis of cell-free extracts from a number of these TGr clones indicates that the mutant phenotype is due to the absence of XPRT activity. One transformant, designated AS52, has previously been described in limited detail. Here we describe additional characteristics of this cell line, as well as several related transformants.  相似文献   

3.
Eleven independent lines of Syrian hamster cells were selected by using very low levels of N-(phosphonacetyl)-L-aspartate (PALA), an inhibitor of aspartate transcarbamylase. The protocol employed insured that each resistant cell arose during one of the last divisions before selection was applied. Cells of each mutant line contained an amplification of the structural gene for CAD, a trifunctional protein which includes aspartate transcarbamylase and two other enzymes of UMP biosynthesis. Strikingly, despite the minimal selection employed, the degree of amplification of the CAD gene was 6 to 10 times the normal diploid number in all 11 cases. In situ hybridization indicated that the amplified CAD genes were almost always present at a single chromosomal site in each line. Therefore, one of the two alleles was amplified 11- to 19-fold. The rates at which cells became resistant to PALA, determined by fluctuation analysis, were 100 times less dependent on drug concentration than were the frequencies of resistant cells in steady-state populations. The relatively shallow dependence of this rate upon PALA concentration is consistent with our independent observation that most events gave rise to a similar degree of amplification. In six of six cell lines examined, the levels of CAD mRNA and aspartate transcarbamylase activity were elevated two- to fourfold. These lines were resistant to PALA concentrations 20- to 80-fold higher than the ones used for selection. The organization of amplified DNA was examined by hybridizing Southern blots with cloned DNA fragments containing amplified sequences, previously isolated from two cell lines resistant to high levels of PALA. A contiguous region of DNA approximately 44 kilobases long which included the CAD gene was amplified in five of five single-step mutants examined. Outside this region, these mutants shared amplified sequences with only one of the two highly resistant lines.  相似文献   

4.
5.
6.
The levels of trypanothione, a glutathione-spermidine conjugate, are increased in the protozoan parasite Leishmania selected for resistance to the heavy metal arsenite. The levels of putrescine and spermidine were increased in resistant mutants. This increase is mediated by overexpression of ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis. Gene overexpression is generally mediated by gene amplification in Leishmania but, here, the mRNA and the enzymatic activity of ODC are increased without gene amplification. This RNA overexpression is stable when cells are grown in the absence of the drug and does not result from gene rearrangements or from an increased rate of RNA synthesis. Transient transfections suggest that mutations in the revertant cells contribute to these elevated levels of RNA. Stable transfection of the ODC gene increases the level of trypanothione, which can contribute to arsenite resistance. In addition to ODC overexpression, the gene for the ABC transporter PGPA is amplified in the mutants. The co-transfection of the ODC and PGPA genes confers resistance in a synergistic fashion in partial revertants, also suggesting that PGPA recognizes metals conjugated to trypanothione.  相似文献   

7.
Two independently selected series of rat hepatoma cell lines resistant to the drug deoxycoformycin (dCF) were analyzed karyotypically. Several forms of homogeneously staining regions (HSRs) were present on metaphase chromosomes of these cells. In some instances HSRs comprised nearly an entire chromosome, which are among the largest chromosomes in the karyotype. Stable resistance to dCF is acquired in rat cells by overproduction of the enzyme adenosine deaminase (ADA) as a result of amplification of ADA gene sequences. We have localized the amplified ADA gene sequences to HSRs on metaphase chromosomes from both series of dCF-resistant cell lines by in situ hybridization. Based upon the number of ADA gene sequences present and the lengths of the HSRs, we have estimated the size of the amplified unit to range from 450 to 1,000 kb.  相似文献   

8.
9.
10.
The levels of UMP synthase protein and mRNA are increased in rat hepatoma cells that have acquired resistance to pyrazofurin, a potent inhibitor of pyrimidine biosynthesis. A cDNA plasmid library was prepared from partially purified poly(A)+ mRNA isolated from the resistant cell line. Recombinant plasmids with inserts complementary to UMP synthase mRNA were selected by differential hybridization with cDNA prepared from wild type and resistant cell mRNA and analysis of hybrid-selected mRNA by in vitro translation reactions. One plasmid, pUMPS-2, contains a 850-base pair insert and was used to analyze UMP synthase gene sequences in the wild type and resistant cell lines. Blot hybridization of restricted genomic DNA demonstrated amplification of the UMP synthase gene in the resistant cells. The number of UMP synthase genes is increased 15-fold as determined by a modified dot hybridization procedure. Previous studies have shown that the resistant cells have a 16-fold increase in UMP synthase mRNA but a 40-fold increase in synthase activity (Suttle, D.P. (1983) J. Biol. Chem. 258, 7707-7713). To further investigate this discrepancy between the amount of increase in DNA and mRNA versus the increase in enzyme activity, we have determined the relative rate of synthesis and degradation of UMP synthase. The rate of synthesis was 13-fold faster in the resistant cells. The degradation rate was not significantly different between the two cell lines. These data indicate that gene amplification is the major factor contributing to the enzyme overproduction in the pyrazofurin-resistant cells.  相似文献   

11.
A chloroquine resistant cloned isolate of Plasmodium falciparum, FAC8, which carries an amplification in the pfmdr1 gene was selected for high-level chloroquine resistance, resulting in a cell line resistant to a 10-fold higher concentration of chloroquine. These cells were found to have lost the amplification in pfmdr1 and to no longer over-produce the protein product termed P-glycoprotein homologue 1 (Pgh1). The pfmdr1 gene from this highly resistant cell line was not found to encode any amino acid changes that would account for increased resistance. Verapamil, which reverses chloroquine resistance in FAC8, also reversed high-level chloroquine resistance. Furthermore, verapamil caused a biphasic reversal of chloroquine resistance as the high-level resistance was very sensitive to low amounts of verapamil. These data suggest that over-expression of the P-glycoprotein homologue is incompatible with high levels of chloroquine resistance. In order to show that these results were applicable to other chloroquine selected lines, two additional mutants were selected for resistance to high levels of chloroquine. In both cases they were found to deamplify pfmdr1. Interestingly, while the level of chloroquine resistance of these mutants increased, they became more sensitive to mefloquine. This suggests a linkage between the copy number of the pfmdr1 gene and the level of chloroquine and mefloquine resistance.  相似文献   

12.
13.
Bacteriophage T4 mutants hyperproducing gene 17 protein (Hp17) have been isolated at high frequency by growing gene 17 amber mutants on ochre suppressor strains of Escherichia coli. Most mutants showed the co-hyperproduction of gene 18 protein, although one anomalous mutant hyperproduced a 60,000 Mr partial polypeptide of gene 18. Hybridization of T4 late RNAs to cloned plasmid DNA containing genes 17, 18 or control T4 genes revealed that approximately five times more gene 17 mRNA and two to three times more gene 18 mRNA were synthesized in the Hp17 mutant infections. DNA-DNA hybridizations showed that Hp17 mutant DNA contained two to three times more copies of genes 17 and 18 than wild-type DNA. Southern blot analysis suggested that Hp17 mutants carry a direct tandem repeat of the gene 17-18 region, with variable copy number from one to at least six copies. Hyperproduction of gene 17 and 18 proteins appears therefore to result from gene amplification specific to the gene 17-18 region. In contrast to gene duplications reported in lambda and T4 phage, and numerous cases of gene amplification in bacteria, a similar or identical novel junctional fragment created by the amplification event was observed among 28 independent T4 Hp17 isolates; therefore, the mechanism giving gise to amplified sequences may involve specific sequences in this region of the T4 genome.  相似文献   

14.
Renewed interest in gene amplification stems from its importance in evolution and a variety of medical problems ranging from drug resistance to cancer. However, amplified DNA segments (amplicons) are not fully characterized in any organism. Here we report a novel Acinetobacter baylyi system for genome‐wide studies. Amplification mutants that consume aromatic compounds were selected under conditions requiring high‐level expression from three promoters in a linked set of chromosomal genes. Tools were developed to relocate these catabolic genes to any non‐essential chromosomal position, and 49 amplification mutants from five genomic contexts were characterized. Amplicon size (18–271 kb) and copy number (2–105) indicated that 30% of mutants carried more than 1 Mb of amplified DNA. Amplification features depended on genomic position. For example, amplicons from one locus were similarly sized but displayed variable copy number, whereas those from another locus were differently sized but had comparable copy number. Additionally, the importance of sequence context was highlighted in one region where amplicons differed depending on the presence of a promoter mutation in the strain from which they were selected. DNA sequences at amplicon boundaries in 19 mutants reflected illegitimate recombination. Furthermore, steady‐state duplication frequencies measured under non‐selective conditions (10?4 to 10?5) confirmed that spontaneous gene duplication is a major source of genetic variation.  相似文献   

15.
Yang Z  Woodahl EL  Wang XY  Bui T  Shen DD  Ho RJ 《BioTechniques》2002,33(1):196, 198, 200 passim
Expression levels of P-glycoprotein (P-gp), the transporter encoded by the human multidrug resistance gene (MDR1), may play an important role in drug disposition. The ability to quantitate full-length MDR1 mRNA levels may be predictive of P-gp expression and function. Therefore, a semi-quantitative RT-PCR assay was developed to assess full-length MDR1 mRNA levels. Levels offull-length 3.8-kb MDR1 mRNA were estimated by comparing PCR amplification of the RNA extract with that of an internal standard, deltaMDR1. The 2.9-kb deltaMDR1 competitor RNA standard was constructed by deleting 965 bpfrom the interior of MDR1 mRNA. The full-length MDR1 and deltaMDR1 share identical 5' and 3'primer binding sequences, allowing for their simultaneous amplification in the same RT-PCR. With this approach, MDR1 mRNA levels can be sensitively and reliably estimated with a detection limit of 2000 copies. Full-length MDR1 mRNA levels in various human cell lines and lymphocytes from leukemia patients varied over 100-fold, ranging from 0.3 to 36.5 x 10(5) copies/microg total RNA. The semi-quantitative full-length RT-PCR assay may be useful in estimating MDR1 mRNA levels to assess P-gp expression, which may be important in studying the role of P-gp in drug disposition and cancer chemotherapy efficacy.  相似文献   

16.
Thymidylate synthase (TS) is essential for DNA replication and is a target for cancer chemotherapy. However, toxicity to normal cells and tumor cell drug resistance necessitate development of new therapeutic strategies. One such strategy is to use antisense (AS) technology to reduce TS mRNA and protein levels in treated cells. We have developed oligodeoxynucleotides (ODNs) that target different regions of TS mRNA, inhibit human tumor cell proliferation as single agents, and enhance cytotoxicity of clinically useful TS protein-targeting drugs. Here we describe ODN 491, a novel 20mer AS ODN complementary to a previously untargeted portion of the TS mRNA coding region. AS ODN 491 decreased TS mRNA levels to different degrees in a panel of human tumor-derived cell lines, and induced different physiological effects in a tumor cell line-dependent manner. ODN 491 (like AS TS ODN 83, previously shown to be effective) decreased TS protein levels in HeLa cells with a concomitant increase in sensitivity to TS-targeting chemotherapeutics. However (and contrary to HeLa cell response to an AS ODN 83), it did not, as a single agent, inhibit HeLa cell proliferation. In MCF-7 cells, ODN 491 treatment was less effective at reducing TS mRNA and did not reduce TS protein, nor did it enhance sensitivity to TS-targeting or other chemotherapeutics. Moreover, specifically in MCF-7 cells but not HeLa cells, ODN 491 as a single agent induced apoptosis. These data indicate that AS TS ODN 491 is an effective AS reagent targeting a novel TS mRNA region. However, treatment of tumor cell lines with AS TS ODNs targeting different TS mRNA regions results in a pattern of physiological effects that varies in a tumor cell line-specific fashion. In addition, the capacity of different AS TS ODNs to induce physiological effects does not correlate well with their capacity to reduce TS mRNA and/or protein and, further, depends on the region of TS mRNA selected for targeting. Recognition of tumor cell-specific and mRNA region-specific variability in response to AS TS ODNs will be important in designing AS TS ODNs for potential clinical use.  相似文献   

17.
A key rate-limiting reaction in the synthesis of DNA is catalyzed by ribonucleotide reductase, the enzyme which reduces ribonucleotides to provide the deoxyribonucleotide precursors of DNA. The antitumor agent, hydroxyurea, is a specific inhibitor of this enzyme and has been used in the selection of drug resistant mammalian cell lines altered in ribonucleotide reductase activity. An unstable hydroxyurea resistant population of mammalian cells with elevated ribonucleotide reductase activity has been used to isolate three stable subclones with varying sensitivities to hydroxyurea cytotoxicity and levels of ribonucleotide reductase activities. These subclones have been analyzed at the molecular level with cDNA probes encoding the two nonidentical subunits of ribonucleotide reductase (M1 and M2). Although no significant differences in M1 mRNA levels or gene copy numbers were detected between the three cell lines, a strong correlation between cellular resistance, enzyme activity, M2 mRNA and M2 gene copies was observed. This is the first demonstration that reversion of hydroxyurea resistance is directly linked to a decrease in M2 mRNA levels and M2 gene copy number, and strongly supports the concept that M2 gene amplification is an important mechanism for achieving resistance to this antitumor agent through elevations in ribonucleotide reductase.  相似文献   

18.
Sun Y  Zhou Q  Zhang W  Fu Y  Huang H 《Planta》2002,214(5):694-702
During leaf development, the formation of dorsal-ventral and proximal-distal axes is central to leaf morphogenesis. To investigate the genetic basis of dorsoventrality and proximodistality in the leaf, we screened for mutants of Arabidopsis thaliana (L.) Heynh. with defects in leaf morphogenesis. We describe here the phenotypic analysis of three mutant alleles that we have isolated. These mutants show varying degrees of abnormality including dwarfism, broad leaf lamina, and aberrant floral organs and fruits. Genetic analysis revealed that these mutations are alleles of the previously isolated mutant asymmetric leaves1 ( as1). In addition to the leaf phenotypes described previously, these alleles display other phenotypes that were not observed. These include: (i) some rosette leaves with petiole growth underneath the leaf lamina; (ii) leaf vein branching in the petiole; and (iii) a leaf lamina with an epidermis similar to that on the petiole. The mutant phenotypes suggest that the ASYMMETRIC LEAVES1 ( AS1) gene is involved in the control of cell differentiation in leaves. As the first step in determining a molecular function for AS1, we have identified the AS1 gene using map-based cloning. The AS1 gene encodes a MYB-domain protein that is homologous to the Antirrhinum PHANTASTICA ( PHAN) and maize ROUGH SHEATH2 ( RS2) genes. AS1 is expressed nearly ubiquitously, consistent with the pleiotropic mutant phenotypes. High levels of AS1 expression were found in tissues with highly proliferative cells, which further suggests a role in cell division and early cell differentiation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号