首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An 11-residue oligopeptide, P-195, was synthesized to match human thyrotropin (TSH) receptor structure from No. 333 to 343 of amino acid sequence. Preincubation of 5 Graves' IgGs with P-195 up to 10 micrograms resulted in dose-dependent reductions of thyroid stimulating antibody (TSAb) activity. [125I] labeled P-195 was found to bind Graves' IgG. The bound radioactivity correlated significantly with their TSAb activity (N = 25, r = 0.587, p less than 0.01). A peptide having a completely reverse sequence as P-195 did not show such biological activity. The peptide did not affect TSH and thyrotropin binding inhibitor immunoglobulin (TBII) on their receptor binding nor biological activities. P-195 was concluded to have a part of TSAb binding sites.  相似文献   

2.
Four monoclonal antibodies to the thyrotropin (TSH) receptor were established by fusing human peripheral lymphocytes of patients from Graves' disease with a human myeloma cell line. Of two antibodies with TSH-binding inhibitory immunoglobulin activity (TBII), one inhibited TSH stimulation of adenylate cyclase and another stimulated adenylate cyclase. These antibodies showed competitive and noncompetitive modes of binding inhibition, respectively. Of the other two antibodies without TBII activity, one stimulated adenylate cyclase and the other inhibited TSH stimulation of adenylate cyclase. Of the two antibodies, which inhibited TSH stimulation of adenylate cyclase, one with TBII activity inhibited stimulation of adenylate cyclase by stimulating antibody with TBII activity, but another without TBII activity inhibited stimulation by both stimulating antibodies with or without TBII activity. These inhibitory antibodies did not influence the stimulation of adenylate cyclase by Forskolin and guanosine 5'-(beta,gamma-imido)triphosphate compounds which are known to affect other parts of the receptor-adenylate cyclase system than the receptor unit. Four antibodies with heterogeneous potencies to the TSH receptor reacted with glycoproteins extracted from thyroid membranes. One stimulating antibody without TBII activity also interacted with the glycolipid fraction of the membrane preparation, and the binding decreased after desialylation or deglycosylation of the membrane components. In order to identify the binding sites of these monoclonal antibodies, receptor proteins interacting with antibodies were visualized by Western blot analysis and by the label transfer cross-linking method. All of these antibodies with different characteristics reacted with a 56-kDa molecule.  相似文献   

3.
To investigate the relationship between TSH and abnormal thyroid stimulator(s) in patients with hyperthyroid Graves' disease in whom normal thyroid hormone levels in the serum were maintained by antithyroid drug therapy and in patients with euthyroid Graves' disease, determinations were made of the TSH concentration, action of thyroid stimulating immunoglobulins (TSAb and TBII), and T3 suppression. Out of thirty-three patients with hyperthyroid Graves' disease, twelve patients with subnormal TSH levels were all non-suppressible according to the T3 suppression test results and the detectability of TSAb and/or TBII was as high as 75%. In three out of five patients with euthyroid Graves' disease, the serum TSH level was subnormal. All three showed non-suppressibility in the T3 suppression test and positive action of either TSAb or TBII. One of them became clinically thyrotoxic when the TSAb activity was further increased and TBII became positive, and was therefore diagnosed as having hyperthyroid Graves' disease. The present findings suggest that there are still abnormal thyroid stimulator(s) in patients with hyperthyroid Graves' disease who have low TSH, even if their thyroid hormone concentrations remain normal. Moreover, it is likely that some of the patients with euthyroid Graves' disease are actually in a state of subclinical hyperthyroidism because of the presence of abnormal thyroid stimulator(s).  相似文献   

4.
TSH receptor antibody (TRAb) activity using chicken thyroid receptor (c-TRAb) and porcine thyroid receptor (p-TRAb) was determined by the incubation of 125I-bovine TSH with each receptor. Both c-TRAb and p-TRAb activity in LATS positive and negative Graves' sera were compared. 15 out of 39 LATS positive sera and 4 out of 46 LATS negative sera had positive c-TRAb activity. On the other hand, all LATS positive sera and 33 out of 46 LATS negative sera had positive p-TRAb activity. No relationship between c-TRAb and p-TRAb activity was observed, and there was also no correlation between c-TRAb and LATS activity. Changes in c-TRAb, p-TRAb and LATS activity in the clinical course of patients with Graves' disease were examined. These activities were parallel in some cases, but in others they were not. A weak c-TRAb activity was observed in 4 out of 29 Hashimoto's disease, but all cases with thyroid cancer and subacute thyroiditis showed no activity. Sera with positive c-TRAb activity did not stimulate chicken thyroid in chick bioassay. These results suggest that some cases of TRAb in Graves' disease (mainly LATS) inhibit TSH binding to chicken thyroid receptor (non-mammalian species) in the same way as mammalian thyroid, but may not have any stimulatory action on thyroid hormone synthesis. It is interesting to note that TRAb including LATS have the similar effect on TSH receptor even in nonmammalian species.  相似文献   

5.
Transient neonatal hypothyroidism due to transplacental transfer of maternal blocking type TSH receptor antibodies (TRAb) was found in a baby born to a 27-yr-old mother, who had been receiving thyroxine medication for primary myxedema. Maternal IgG inhibited radiolabelled TSH binding to its receptor (TBII), TSH-stimulated thyroid adenylate cyclase (AC) activation (TSII) and TSH-stimulated 3H-thymidine uptake (TGII) in cultured rat thyroid cells (FRTL-5). At birth, the baby's IgG showed similar activities to maternal IgG but all these activities decreased gradually, and disappeared from her serum within 12 weeks of age. In the baby, initially nonvisualized thyroid was clearly visualized on 99 m-Tc thyroid scintigraphy when all these blocking activities disappeared, TSII and TGII being decreased more slowly than TBII, and the baby remained euthyroid after discontinuation of thyroxine. This study suggests that such IgGs induced hypothyroidism and thyroid atrophy in the mother and were responsible for transient neonatal hypothyroidism in the baby.  相似文献   

6.
Fat cell TSH receptor-related antibodies were detected by immunoprecipitation of 125I-TSH-receptor complexes and the nature of the antibodies was analyzed. To 125I-TSH prebound to Triton-solubilized receptors from guinea pig fat tissues, 50 micrograms of immunoglobulin G (IgG) was added and precipitation was effected by the addition of antihuman IgG. Immunoprecipitation values in 13 patients with Graves' disease were significantly (p less than 0.05) higher than those in 11 normal subjects. No significant increase in the values was seen in 8 patients with Hashimoto's disease. No correlation was observed between immunoprecipitation values and titers of antimicrosomal and antithyroglobulin antibodies. Neither was there any correlation between the values and TSH-binding inhibitor immunoglobulins (TBII) detected by the radioreceptor assay. The IgG fractions positive for the immunoprecipitation antibody were found to be poor human thyroid stimulators (HTS) relative to their TBII activities. And a highly significant correlation was observed between TBII and HTS activities among IgGs without detectable antibody by immunoprecipitation (r=0.907; p less than 0.005; n=7). These findings 1) demonstrate that immunoprecipitation assay using fat cell TSH receptor may detect TSH receptor-related antibodies different from TBII in patients with Graves' disease and 2) suggest the antibodies may recognize determinants on the receptor or its vicinity that do not participate in the binding of TSH or thyroid stimulating antibody, and may interfere with thyroidal response to these stimulators.  相似文献   

7.
There exists a consensus that hyperthyroid Graves' disease is caused by thyrotropin receptor (TSH-R) autoantibodies. To test the possibility that the TSH-R is the sole antigen for thyroid stimulating antibodies (TSAb), we compared bioactivities of Graves' IgGs between non-thyroid mammalian cells transfected with human TSH-R cDNA and the reference thyroid bioassay. A Graves' IgG with TSH-binding inhibitor immunoglobulin (TBII) activity (89%) markedly stimulated cAMP formation in both CHO-K1 cells transfected with TSH-R cDNA (340 microU/ml of TSH equivalent) and rat thyroid cells, FRTL-5, (410 microU/ml of TSH equivalent). In contrast, a TBII negative (-1.5%) IgG from another patient with Graves' disease showed a strong thyroid stimulating activity (87 microU/ml of TSH equivalent) when FRTL-5 cells were used for the assay. But no stimulating activity was observed in this IgG when CHO-K1 cells transfected with TSH-R cDNA were used, suggesting a possible existence of TSH-R non-mediated thyroid stimulating immunoglobulin in some cases of Graves' disease.  相似文献   

8.
To identify the site(s) on the thyrotropin (TSH) receptor that interacts with TSH or thyroid stimulating antibody (TSAb), we examined the effect of the synthetic TSH receptor peptide (termed N2 peptide, No. 35-50) on the cAMP accumulation induced by TSH or TSAb. Preincubation of bovine TSH with N2 peptide resulted in a significant and dose-dependent decrease in cAMP accumulation. This decrease was not observed when bovine TSH was preincubated with P1 peptide, which was used as a control (No. 398-417). In contrast, the N2 peptide did not affect TSAb activity in immunoglobulin fractions from three TSAb-positive patients with Graves' disease. P1 peptide also had no effect on TSAb activity. These results suggest that the N-terminal region of the TSH receptor is important for TSH action, and also that TSAb activity cannot be suppressed only by the application of the synthetic peptide corresponding to the N-terminal region.  相似文献   

9.
A 55 year-old female had suffered from 3 consecutive diseases for a year. The diseases were ulcerative colitis, primary hypothyroidism and idiopathic thrombocytopenic purpura, and had been treated with L-thyroxine (50 micrograms daily) and betamethasone (0.5 to 1.5 mg daily). On examination, the thyroid gland was not palpable at all, thyroid 99 mTc pertechnetate uptake was 0%, and an echogram revealed the existence of an atrophic gland. Thyrotropin binding inhibitor immunoglobulin (TBII) in the serum was elevated to 58.0% and her IgG almost completely inhibited the in vitro cAMP increase due to bTSH. After 5 months TBII turned out to be negative and the inhibitory IgG activity was reduced significantly. The thyroid gland also became visible scintigraphically. Thyroid medication was then stopped. Four months after the cessation of thyroxine, she felt quite well and her thyroid functions remained within the normal ranges. Antibody to Yersinia enterocolitica was positive at a low titer (X20) in the early stages, but elevated reciprocally with the fall in TBII and finally reached X320. In conclusion, evidence of the disappearance of blocking type TBII from the serum was demonstrated for the first time. Steroid might have caused some favorable effects, and this clinical report indicates the possibility that remission of hypothyroidism due to blocking type TBII can be expected.  相似文献   

10.
To examine the identity of binding sites for thyrotropin (TSH) and thyroid stimulating antibodies (TSAbs) associated with Graves' disease, we constructed eight human TSH receptor/rat LH-CG receptor chimeras. Substitution of amino acid residues 8-165 of the TSH receptor with the corresponding LH-CG receptor segment (Mc1 + 2) results in a chimera which retains high affinity TSH binding and the cAMP response to TSH but loses both the cAMP response to Graves' IgG and Graves' IgG inhibition of TSH binding. Two of three IgGs from idiopathic myxedema patients which contain thyroid stimulation blocking antibodies (TSBAbs) still, however, react with this chimera. Chimeras which substitute residues 90-165 (Mc2) and 261-370 (Mc4) retain the ability to interact with TSH, Graves' IgG, and idiopathic myxedema IgG. The data thus suggest that residues 8-165 contain an epitope specific for TSAbs and that TSH receptor determinants important for the activities of TSAbs and TSH are not identical. Further, binding sites for TSBAbs in idiopathic myxedema may be different from receptor binding sites for both Graves' IgG TSAb as well as TSH and may be different in individual patients.  相似文献   

11.
Antimicrosomal antibodies are present in the sera of most patients with autoimmune thyroiditis, and Graves' disease. It has, in general, been difficult to separate antimicrosomal activity from that directed against the thyrotropin (TSH) receptor in Graves' IgG preparations. The "microsomal" antigen has been localized to the endoplasmic reticulum and microfollicular aspect of thyrocytes; its structure is however unknown. In an attempt to identify the thyroid microsomal antigen, we studied the interaction of Hashimoto's IgG with high microsomal antibody titre and negative for thyroglobulin with purified thyroid plasma and light microsomal membranes. We allowed Hashimoto's, Graves', and control IgGs to bind to protein blots of thyroid plasma membranes resolved on SDS-PAGE under non-reducing conditions. All seven Hashimoto's IgG at a concentration of 2 mg/ml interacted with an M approximately 197,000 polypeptide corresponding to the TSH holoreceptor. By contrast to Graves' IgG (which were positive at 1 mg/ml), however, this binding was not blocked by pretreatment of the protein blots with TSH. Normal IgGs showed no binding at concentrations of up to 2 mg/ml. Both Hashimoto's and Graves' IgG interacted with TSH-affinity column-purified receptor preparations. Two of the Hashimoto's IgGs induced adenylate cyclase activation in thyroid plasma membranes, three inhibited TSH-stimulated enzyme activation, and two were without effect. Two classes of autoantibodies, other than TSH receptor directed, were encountered; one class raised to antigens common to all seven patients and another class unique to individual patients, eg, Mr 210,000 and Mr 20,000 polypeptides. We propose that the TSH receptor has multiple epitopes (functional domains), and the one to which antimicrosomal antibody bind is likely to be spatially separated from that with which Graves' IgG and TSH interact. Differences in affinity or number of sites allows for the demonstration of Graves' IgG against a background of antimicrosomal antibody.  相似文献   

12.
INTRODUCTION: The II generation method using human recombination thyrotropin receptors for measurement of thyrotropin binding inhibitory immunoglobulins (TBII) is characterized by increased sensitivity and specificity in comparison with I generation method. AIM OF STUDY was to determine, whether TBII levels measured with II generation assay reflect thyroid stimulation and whether measurement of thyroid stimulating antibodies (TSI) could be replaced by TBII determinations. Specific aim was to evaluate, whether correlation between TSI and TBII levels is stable during antithyroid therapy. MATERIAL AND METHODS: 41 patients with the newly diagnosed Graves' disease were included in the study. TSI (cAMP levels in CHO cell line) and TBII (II generation assay) levels were determined before treatment and after 1, 3, 6, 9 and 12 months of thiamazol therapy. Moreover, thyroid blocking antibodies were determined after 12 months of treatment. RESULTS: 32 patients (82.05%) had positive basic TSI level and 35 patients (89.74%) had positive basic TBII level. After 12 months of therapy negative level of TSI was observed in 67.57% of patients and negative level of TBII was founded in 45.85% of patients. Correlation between TSI and TBII levels was positive during treatment course except time after 9 months of therapy. CONCLUSIONS: TBII level is adequate parameter to assess thyroid stimulation intensity. Positive correlation between TSI and TBII levels is present during almost whole treatment course. TBII seems to be reliable parameter in disease activity monitoring and response to therapy.  相似文献   

13.
The aim of this study was to investigate thyroid states, significance of anti-TSH receptor antibodies and the clinical courses of patients with euthyroid Graves' ophthalmopathy. The clinical and laboratory finding of 30 patients with euthyroid Graves' ophthalmopathy were briefly as follows: 1) normal sized thyroid or small goiter; 2) negative or weakly positive thyrotropin binding inhibitor immunoglobulin (TBII); 3) normal thyroid [99 m-Tc] pertechnetate uptake; and 4) frequent observations of low serum TSH values. Besides TBII, thyroid stimulating antibody (TSAb) was measured under low salt and isotonic conditions using FRTL-5 rat thyroid cells. Both TBII and TSAb titers were lower in euthyroid Graves' ophthalmopathy than in hyperthyroid Graves' disease. Serum TSH levels frequently became low in patients considered as euthyroid upon the first examination as well as in Graves' patients in remission, reflecting preceding or mild hyperthyroidism. In follow-up studies, these patients with mildly elevated thyroid hormone levels and low TSH levels seldom reached a state of persistent hyperthyroidism, when TBII was negative or only weakly positive.  相似文献   

14.
Osteoporosis-related fractures are one of the complications of Graves’ disease. This study hypothesized that the different actions of thyroid-stimulating hormone receptor (TSHR) antibodies, both stimulating and blocking activities in Graves’ disease patients might oppositely impact bone turnover. Newly diagnosed premenopausal Graves’ disease patients were enrolled (n = 93) and divided into two groups: patients with TSHR antibodies with thyroid-stimulating activity (stimulating activity group, n = 83) and patients with TSHR antibodies with thyroid-stimulating activity combined with blocking activity (blocking activity group, n = 10). From the stimulating activity group, patients who had matched values for free T4 and TSH binding inhibitor immunoglobulin (TBII) to the blocking activity group were further classified as stimulating activity-matched control (n = 11). Bone turnover markers BS-ALP, Osteocalcin, and C-telopeptide were significantly lower in the blocking activity group than in the stimulating activity or stimulating activity-matched control groups. The TBII level showed positive correlations with BS-ALP and osteocalcin levels in the stimulating activity group, while it had a negative correlation with the osteocalcin level in the blocking activity group. In conclusion, the activation of TSHR antibody-activated TSH signaling contributes to high bone turnover, independent of the actions of thyroid hormone, and thyroid-stimulation blocking antibody has protective effects against bone metabolism in Graves’ disease.  相似文献   

15.
We have synthesized four peptides (P2, P4, E3 and P1) corresponding to different segments of human thyrotropin (TSH) receptor. We have obtained antibodies by immunizing them to chickens, and antibodies are evaluated for their thyroid stimulating antibody (TSAb), thyroid stimulation blocking antibody (TSBAb) and TSH-binding inhibitor immunoglobulin (TBII) activities. None of the antibodies had TSAb activity. Antibodies against human TSH receptor specific region such as P2 and P4 (P2: No. 372-397, P4: No. 341-358) had TSBAb and TBII activities. Anti-E3 antibody (E3: the third putative extracellular loop, No. 649-661) had only TSBAb activity. Anti-P1 antibody (P1: high homology with pig LH/CG receptor, No. 398-417), however, had none. These results suggest that anti-TSH receptor antibodies to different antigenic epitopes show heterogeneity in their biological activities.  相似文献   

16.
Recently, we have shown that the thyrotropin (TSH) binding regions of human thyrotropin receptor (TSHR) reside in two areas within residues 12-44 and 308-344. Serial antisera were raised against four overlapping synthetic peptides representing these two regions of TSHR (peptides 12-30, 24-44, 308-328, and 324-344) and were investigated for their ability to stimulate or block the cultured porcine thyroid cells. In addition, serum concentrations of triiodothyronine (T3) and thyroxine (T4) in serial sera obtained from each rabbit were examined. It was shown that residues of 12-30 and 324-344 of TSHR, respectively, are the site (at least a part of the site) where stimulating (TSAb) and blocking type (TSBAb) immunoglobulins are directed.  相似文献   

17.
Three neonates born to three mothers with primary myxedema who have thyrotropin-binding inhibitor immunoglobulin (TBII) were continually examined after birth. One neonate showed a high TSH level in mass-screening for congenital hypothyroidism and developed transient hypothyroidism. Her TBII disappeared at 114 days of age, and she remained euthyroid after discontinuation of thyroxin replacement at 146 days of age. The other two neonates were euthyroid, though they had positive TBII. In three mothers, the doses of IgGs that inhibited 125I-TSH binding to the level of 50% were compared. The potency of IgG from the mother whose neonate developed hypothyroidism was stronger than that of IgG from the other two mothers. And the elevation of cAMP induced by bovine TSH in suspension culture with porcine thyroid follicles was significantly reduced in the presence of IgG from the three mothers when compared with normal IgG. The thyroid-stimulation blocking activity was more potent in the mother whose neonate developed hypothyroidism than in the other two mothers. This study suggests that the thyroid function of neonates born to primary myxedema with blocking type TBII is influenced by the potency of TSH-binding inhibitor and thyroid-stimulation blocking activity of the mother.  相似文献   

18.
The relationship between thyroid plasma membrane phosphorylation and thyrotropin (TSH) receptor degradation was investigated by using bovine thyroid tissues. By fractionation of thyroid cytosol (105,000 X g supernatant of thyroid homogenate) in a continuous sucrose density gradient centrifugation, three different TSH binding activities were separated. During the incubation of thyroid plasma membranes, TSH binding activities were spontaneously released in vitro. By fractionation of the fraction containing released TSH binding activities in the same sucrose density gradient centrifugation, three different TSH binding activities were isolated. These peaks of TSH binding activity corresponded to the peaks of TSH binding activity obtained in cytosol fraction. Adenosine 3',5'-monophosphate (cyclic AMP) enhanced the release of TSH binding activities from the plasma membranes in vitro. After fractionation on a sucrose density gradient centrifugation of the supernatant of the plasma membranes which were preincubated with cyclic AMP, three different peaks of TSH binding activity were identified. These peaks corresponded to the peaks obtained in spontaneously released TSH binding activity. In this case, however, the amount of small molecule TSH binding activities was predominant compared to that of large molecule TSH binding activity. During the incubation of the plasma membranes with [r-32P]-ATP and with cyclic AMP, phosphorylated soluble proteins were released. The profile of the phosphorylated soluble proteins in the sucrose density gradient centrifugation showed three different peaks which corresponded to the peaks of binding activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
To ascertain the presence of thyroid growth-promoting activity (TGA) in the sera of pregnant women, we measured TGA in the sera of pregnant women by means of a bioassay based on [3H]-thymidine [( 3H]Tdr) incorporation in cultured rat FRTL-5 thyroid cells. Furthermore, to elucidate the mechanisms of human chorionic gonadotropin (hCG) in promoting the thyroid growth, we evaluated the effects of blocking type TSH receptor antibody (blocking IgGs) from patients with primary hypothyroidism on the activity of hCG. After the PEG-pretreated serum or the serum plus blocking IgGs was incubated for 72 h at 37 degrees C with FRTL-5 cells and [3H] Tdr, [3H] Tdr incorporated in the cells was counted. Although 9 normal pregnant women had normal TGA, two patients with hydatidiform mole, whose hCG levels were 966,500 and 497,100 IU/L, had positive TGA, but the activity showed normal when analyzed with the addition of a blocking IgG. hCG also showed a dose-dependent increase in [3H]Tdr incorporation, and it was inhibited by the addition of blocking IgGs. Furthermore, the inhibition of hCG-induced [3H]Tdr incorporation by 16 blocking IgGs correlated with their TBII and the inhibition activity of hCG-induced cAMP accumulation. Analysis by the Lineweaver-Burk plots of dose response curves of TSH- and hCG-induced [3H]Tdr incorporation showed the same inhibition pattern as with the addition of the same blocking IgGs. In conclusion, 1) hCG-related TGA exists in the sera of some patients with hydatidiform mole; and 2) hCG and the sera of some patients with hydatidiform mole promote thyroid growth, at least in a part, via TSH-receptors in FRTL-5 cells.  相似文献   

20.
Several Graves' sera were simultaneously assessed in a bioassay based on the ability of porcine thyroid cells to organify 125I and in a radioreceptor assay for TSH receptor binding activity. Both assay systems were sensitive to 1 mcU/ml (final concentration) of unlabelled bovine TSH. Six Graves' sera were studied in detail over a wide (0-1.0 mcl sera) dose response range in repeat determinations. Two sera exhibited parallel binding and stimulating. However, two sera revealed significant inhibition of 125I-TSH binding prior to the demonstration of stimulation and the other two sera showed stimulatory capabilities before significant binding was evident. IgG was prepared from one serum by ammonium sulphate precipitation and chromatography on Sepharose 6B and then subjected to preparative isoelectric focusing. The isoelectric distribution of the two activities were found to be identical with major peaks of activity at pl=9.5 and pl=8.5. In summary: 1) each Graves' sera exhibits different dose-response curves with respect to binding and stimulation, 2) at certain concentrations of sera, only binding or stimulation were evident, 3) neither assay was consistently more sensitive for the presence of Graves' immunoglobulins, 4) for one Graves' sera, binding and stimulation could not be separated by isoelectric focusing. These studies would suggest each Graves' immunoglobulin has inherently different characteristics in its interaction with the TSH receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号