首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Cold shock proteins (CSPs) are ancient nucleic acid-binding proteins and well conserved from bacteria to animals as well as plants. In prokaryotes, CSPs possess a single cold shock domain (CSD) while animal CSPs, flanked by N- and C-terminal domains, are commonly named Y-box proteins. Interestingly, the plants CSPs contain auxiliary C-terminal domains in addition to their N-terminal CSD. The CSPs have been shown to play important role in development and stress adaptation in various plant species. The objective of this study was to find out the possible nucleic acid-binding affinities of whole CSP as well as independent domains, so that role of each individual domain may be revealed in Arabidopsis thaliana, the model plant species. The structure of CSP 3 protein from A. thaliana was modeled by homology-based approach and docking was done with different nucleic acid types.  相似文献   

3.
The cold-induced wheat WCSP1 protein belongs to the cold shock domain (CSD) protein family. In prokaryotes and eukaryotes, the CSD functions as a nucleic acid-binding domain. Here, we demonstrated that purified recombinant WCSP1 is boiling soluble and binds ss/dsDNA and mRNA. Furthermore, boiled-WCSP1 retained its characteristic nucleic acid-binding activity. A WCSP1 deletion mutant, containing only a CSD, lost ssDNA/RNA-binding activity; while a mutant containing the CSD and the first glycine-rich region (GR) displayed the activity. These data indicated that the first GR of WCSP1 is necessary for the binding activity but is not for the heat stability of the protein.  相似文献   

4.
The psychrotrophic bacterium Pseudomonas fragi was subjected to cold shocks from 30 or 20 to 5 degrees C. The downshifts were followed by a lag phase before growth resumed at a characteristic 5 degrees C growth rate. The analysis of protein patterns by two-dimentional gel electrophoresis revealed overexpression of 25 or 17 proteins and underexpression of 12 proteins following the 30- or 20-to-5 degrees C shift, respectively. The two downshifts shared similar variations of synthesis of 20 proteins. The kinetic analysis distinguished the induced proteins into cold shock proteins (Csps), which were rapidly but transiently overexpressed, and cold acclimation proteins (Caps), which were more or less rapidly induced but still overexpressed several hours after the downshifts. Among the cold-induced proteins, four low-molecular-mass proteins, two of them previously characterized as Caps (CapA and CapB), and heat acclimation proteins (Haps) as well as heat shock proteins (Hsps) for the two others (TapA and TapB) displayed higher levels of induction. Partial amino acid sequences, obtained by microsequencing, were used to design primers to amplify by PCR the four genes and then determine their nucleotide sequences. A BamHI-EcoRI restriction fragment of 1.9 kb, containing the complete coding sequence for capB, was cloned and sequenced. The four peptides belong to the family of small nucleic acid-binding proteins as CspA, the major Escherichia coli Csp. They are likely to play a major role in the adaptative response of P. fragi to environmental temperature changes.  相似文献   

5.
TheplanthormoneABAisinvolvedintheregulationofplantdevelopmentandphysiologicalprocesses,suchasembryomaturationandtheresponseofvegetativetissuestostresses.Duringrecentyears,muchisknownaboutthemoleculareventsinABAbiosynthesisandtheregulationofgeneexpress…  相似文献   

6.
Cloning of the nucleic acid-binding domain of the rat HnRNP C-type protein   总被引:4,自引:0,他引:4  
A cDNA encoding the nucleic acid-binding domain of the hnRNP C-type protein has been cloned by DNA-affinity screening of pituitary-derived expression libraries. An analysis revealed sequence identity with the human C-type cDNA and demonstrated the presence of a peptide sequence contained within the single-stranded DNA-binding protein, UP2, which was absent from the human cDNA. Structural analysis of the protein encoded by the rat cDNA demonstrated a net charge of +15 with 14.56% and 6.33% lysines and arginines, respectively, and an amino acid sequence that is consistent with an extensive helix-loop-helix-turn-helix structure.  相似文献   

7.
A human gene coding for a membrane-associated nucleic acid-binding protein   总被引:2,自引:0,他引:2  
Studies to clone a cell-surface DNA-binding protein involved in the binding and internalization of extracellular DNA have led to the isolation of a gene for a membrane-associated nucleic acid-binding protein (MNAB). The full-length cDNA is 4.3 kilobases with an open reading frame of 3576 base pairs encoding a protein of approximately 130 kDa (GenBank accession numbers and ). The MNAB gene is on human chromosome 9 with wide expression in normal tissues and tumor cells. A C3HC4 RING finger and a CCCH zinc finger have been identified in the amino-terminal half of the protein. MNAB bound DNA (K(D) approximately 4 nm) and mutagenesis of a single conserved amino acid in the zinc finger reduced DNA binding by 50%. A potential transmembrane domain exists near the carboxyl terminus. Antibodies against the amino-terminal half of the protein immunoprecipitated a protein of molecular mass approximately 150 kDa and reacted with cell surfaces. The MNAB protein is membrane-associated and primarily localized to the perinuclear space, probably to the endoplasmic reticulum or trans-Golgi network. Characterization of the MNAB protein as a cell-surface DNA-binding protein, critical in binding and internalization of extracellular DNA, awaits confirmation of its localization to cell surfaces.  相似文献   

8.
9.
Deng H  Liu H  Li X  Xiao J  Wang S 《Plant physiology》2012,158(2):876-889
Bacterial blight is a devastating disease of rice (Oryza sativa) caused by Xanthomonas oryzae pv oryzae (Xoo). Zinc finger proteins harboring the motif with three conserved cysteine residues and one histidine residue (CCCH) belong to a large family. Although at least 67 CCCH-type zinc finger protein genes have been identified in the rice genome, their functions are poorly understood. Here, we report that one of the rice CCCH-type zinc finger proteins, C3H12, containing five typical CX(8)-CX(5)-CX(3)-H zinc finger motifs, is involved in the rice-Xoo interaction. Activation of C3H12 partially enhanced resistance to Xoo, accompanied by the accumulation of jasmonic acid (JA) and induced expression of JA signaling genes in rice. In contrast, knockout or suppression of C3H12 resulted in partially increased susceptibility to Xoo, accompanied by decreased levels of JA and expression of JA signaling genes in rice. C3H12 colocalized with a minor disease resistance quantitative trait locus to Xoo, and the enhanced resistance of randomly chosen plants in the quantitative trait locus mapping population correlated with an increased expression level of C3H12. The C3H12 protein localized in the nucleus and possessed nucleic acid-binding activity in vitro. These results suggest that C3H12, as a nucleic acid-binding protein, positively and quantitatively regulates rice resistance to Xoo and that its function is likely associated with the JA-dependent pathway.  相似文献   

10.
RNA-binding proteins (RBPs) have been described for cancer cell progression and differentiation, although there is still much to learn about their mechanisms. Here, using in vivo decidualization as a model, we describe the role of RBP cold shock domain containing C2 (CSDC2) in the endometrium. Csdc2 messenger RNA expression was differentially regulated depending on time and areas of decidua development, with the most variation in antimesometrium (AM) and, to a lesser degree, in the junctional zone (JZ). Immunohistochemistry of CSDC2 showed a preferentially cytoplasmic localization at AM and JZ, and nuclear localization in underneath myometrium and mesometrium (M). Cytoplasmic localization coincided with differentiated, DESMIN-marked areas, while nuclear localization coincides with proliferative zones. Uterine suppression of CSDC2 through intrauterine-injected-specific small interfering RNA (siRNA) led to abnormal decidualization in early pregnancy, with more extended antimesometrial area and with poor M development if compared with control siRNA-injected animals. These results suggest that CSDC2 could be a regulator during decidua development.  相似文献   

11.
A helix-destabilizing protein, HD40 (Mr 40,000), isolated from the cytoplasm of Artemia salina (Marvil, D.K., Nowak, L., and Szer, W. (1980) J. Biol. Chem. 255, 6466-6472) stoichiometrically disrupts the secondary structures of synthetic single-stranded and helical polynucleotides (e.g. poly(rA), poly(dA), poly(rC), poly(dC), and poly(rU)) as well as those of natural polynucleotides (e.g. MS2 RNA and phi X174 viral DNA). The conformations of double-stranded DNA and double- or triple-stranded synthetic polynucleotides are not affected by the protein. Formation of duplexes, e.g. poly(rA . rU), is prevented by HD40 at 25 to 50 mM but not at 100 to 140 mM NaCl. The unwinding of the residual secondary structure of RNA and DNA by HD40 is not highly cooperative and has a stoichiometry of one HD40 per 12 to 15 nucleotides. The addition of HD40 in excess of 1 molecule per 12 to 15 nucleotides results in the cooperative formation of distinct bead-like structures along the nucleic acid strand. The beads are about 20 nm in diameter with a center to center distance of about 40 nm. The appearance of the beads is not accompanied by any spectral changes (CD and UV) beyond those obtained at a stoichiometry of one HD40 molecule per 12 to 15 nucleotides.  相似文献   

12.
Numerous biological mechanisms depend on nucleic acid--protein interactions. The first step to the understanding of these mechanisms is to identify interacting molecules. Knowing one partner, the identification of other associated molecular species can be carried out using affinity-based purification procedures. When the nucleic acid-binding protein is known, the nucleic acid can be isolated and identified by sensitive techniques such as polymerase chain reaction followed by DNA sequencing or hybridization on chips. The reverse identification procedure is less straightforward in part because interesting nucleic acid-binding proteins are generally of low abundance and there are no methods to amplify amino acid sequences. In this article, we will review the strategies that have been developed to identify nucleic acid-binding proteins. We will focus on methods permitting the identification of these proteins without a priori knowledge of protein candidates.  相似文献   

13.
CSDBase (http://www.chemie.uni-marburg.de/~csdbase/) is an interactive Internet-embedded research platform providing detailed information on proteins containing the cold shock domain (CSD). It consists of two separated database cores, one dedicated to CSD protein information, and one to provide a powerful resource to relevant literature with emphasis on the bacterial cold shock response. In addition to detailed protein information and useful cross links to other web sites, CSDBase contains computer-generated CSD structure models for most CSD-containing protein sequences available at NCBI non-redundant protein database at the time of CSDBase establishment. These models were calculated on the basis of known crystal and/or NMR structures using SWISS-MODEL and can be downloaded as PDB structure coordinate files for viewing and for manipulation with other software tools. CSDBase will be regularly updated and is organized in a compact form providing user friendly interfaces to both database cores which allow for easy data retrieval.  相似文献   

14.
Cold shock proteins (CSPs) have a widespread occurrence from prokaryotes to eukaryotes including plants. These proteins are known to possess nucleic acid binding properties. CSPs have a single cold shock domain in prokaryotes while N-terminal and C-terminal flanking regions are present in eukaryotic CSPs. The objective of this study was to investigate nucleic acid binding preferential for the chickpea CSP. Full cDNA of chickpea CSP was cloned and sequenced. The sequence was submitted to GenBank (accession no. KM036036) at NCBI. Multiple sequence alignment and phylogenetic analysis further revealed that the inferred amino acid sequence belongs to CSP family. Molecular docking was performed between the CSP and variety of nucleic acids entities. These results suggest that CSPs of chickpea possess preferential binding affinity for single stranded nucleic acids. Docking results suggest that homo-polymer entities of RNA polyU RNA (20mer) form most stable complex.  相似文献   

15.
16.
17.
18.
The inhibition of nucleic acid-binding proteins by aurintricarboxylic acid   总被引:15,自引:0,他引:15  
Qβ replicase, Escherichia coli RNA polymerase, and T7 RNA polymerase are inhibited by low concentrations of the dye aurintricarboxylic acid (ATA). In each case initiation by the enzyme was preferentially inhibited. The elongation of initiated polynucleotide chains by Qβ replicase was insensitive to ATA in the range of concentrations required to inhibit initiation. Treatment of Qβ replicase, RNA polymerase and lac repressor with ATA prevented enzymemediated binding of the templates to nitrocellulose filters. We propose that the inhibitor combines with the template binding site of these proteins to prevent initiation.  相似文献   

19.
Using the yeast two-hybrid system, we isolated a cDNA encoding a novel human protein, named Pir51, that strongly interacts with human Rad51 recombinase. Analysis in vitro confirmed the interaction between Rad51 and Pir51. Pir51 mRNA is expressed in a number of human organs, most notably in testis, thymus, colon and small intestine. The Pir51 gene locus was mapped to chromosome 12p13.1-13. 2 by fluorescence in situ hybridization. The Pir51 protein was expressed in Escherichia coli and purified to near homogeneity. Biochemical analysis shows that the Pir51 protein binds both single- and double-stranded DNA, and is capable of aggregating DNA. The protein also binds RNA. The Pir51 protein may represent a new member of the multiprotein complexes postulated to carry out homologous recombination and DNA repair in mammalian cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号