首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Rat hepatoma cells (Fu5AH) were studied as a model for the net delivery of apoE-free high-density lipoprotein (HDL) cholesterol to a cell. Incubating cells with HDL results in 1) a decrease in both media-free cholesterol and cholesteryl ester concentration; 2) decreased cell sterol synthesis; and 3) increased cell cholesteryl ester synthesis. HDL cholesteryl ester uptake is increased when cells are incubated for 18 hr in cholesterol poor media. Coincubation of 3H-cholesteryl ester-labeled low-density lipoprotein (LDL) with 50 microM chloroquine or 25 microM monensin results in a decrease in the cellular free cholesterol/cholesteryl ester (FC/CE) isotope ratio, indicating an inhibition in the conversion of cholesteryl ester to free cholesterol. In contrast, chloroquine and monensin do not alter the cellular FC/CE isotope ratio for 3H-CE HDL. This evidence indicates that acidic lysosomal cholesteryl ester hydrolase does not account for the hydrolysis of HDL-CE. Free cholesterol generated from 3H-cholesteryl ester of both LDL and HDL is reesterified intracellularly. At higher HDL concentrations (above 50 micrograms/ml) HDL cholesteryl ester hydrolysis is sensitive to chloroquine. We propose that an extralysosomal pathway is operating in the metabolism of HDL cholesterol and that at higher HDL concentrations a lysosomal pathway may be functioning in addition to an extralysosomal pathway.  相似文献   

2.
We recently reported the presence of a neutral, bile salt-independent retinyl ester hydrolase (REH) activity in rat liver microsomes and showed that it was distinct from the previously studied bile salt-dependent REH and from nonspecific carboxylesterases (Harrison, E. H., and M. Z. Gad. 1989. J. Biol. Chem. 264: 17142-17147). We have now further characterized the hydrolysis of retinyl esters by liver microsomes and have compared the observed activities with those catalyzing the hydrolysis of cholesteryl esters. Microsomes and microsomal subfractions enriched in plasma membranes and endosomes catalyze the hydrolysis of retinyl esters at both neutral and acid pH. The acid and neutral REH enzyme activities can be distinguished from one another on the basis of selective inhibition by metal ions and by irreversible, active site-directed serine esterase inhibitors. The same preparations also catalyze the hydrolysis of cholesteryl esters at both acid and neutral pH. However, the enzyme(s) responsible for the neutral REH activity can be clearly responsible for the neutral REH activity can be clearly differentiated from the neutral cholesteryl ester hydrolase(s) on the basis of differential stability, sensitivity to proteolysis, and sensitivity to active site-directed reagents. These results suggest that the neutral, bile salt-independent REH is relatively specific for the hydrolysis of retinyl esters and thus may play an important physiological role in hepatic vitamin A metabolism. In contrast to the neutral hydrolases, the activities responsible for hydrolysis of retinyl esters and cholesterol esters at acid pH are similar in their responses to the treatments mentioned above. Thus, a single microsomal acid hydrolase may catalyze the hydrolysis of both types of ester.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Eicosanoids have been implicated in the regulation of arterial smooth muscle cell (SMC) cholesteryl ester (CE) metabolism. These eicosanoids, which include prostacyclin (PGI2), stimulate CE hydrolytic activities. High-density lipoproteins (HDL), which promote cholesterol efflux, also stimulate PGI2 production, suggesting that HDL-induced cholesterol efflux is modulated by eicosanoid biosynthesis. To ascertain the role of endogenously synthesized eicosanoids produced by arterial smooth muscle cells in the regulation of CE metabolism, we examined the effects of cyclooxygenase inhibition on CE hydrolytic enzyme activities, cholesterol efflux, and cholesterol content in normal SMC and SMC-derived foam cells following exposure to HDL and another cholesterol acceptor protein, serum albumin. Alterations of these activities were correlated with cholesterol efflux in response to HDL or bovine serum albumin (BSA) in the presence or absence of aspirin. HDL stimulated PGI2 synthesis and CE hydrolases in a dose-dependent manner. Eicosanoid dependency was established by demonstrating that HDL-induced acid cholesteryl ester hydrolase (ACEH) activity was blocked by aspirin. CE enrichment essentially abrogated HDL-induced PGI2 production in cells which also exhibited decreased lysosomal and cytoplasmic CE hydrolase activities. In CE-enriched cells whose cytoplasmic CE pool was metabolically labeled with [3H]oleate or cLDL containing [3H]cholesteryl linoleate, aspirin did not alter HDL- or BSA-induced net CE hydrolysis or efflux, respectively. Finally, aspirin treatment did not alter the mass of either free or esterified cholesterol content of untreated or CE-enriched SMC following exposure to acceptor proteins. These data demonstrated that CE enrichment significantly reduced HDL-induced activation of CE hydrolytic activity via inhibition of endogenous PGI2 production.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Differential scanning calorimetry and polarizing light microscopy have been used to investigate kinetic and thermodynamic properties of the phase behavior of cholesteryl ester contained in Fu5AH rat hepatoma cells and J774 murine macrophages. These cultured cells store cholesteryl esters as cytoplasmic inclusions of approximately 1-micron diameter and thus are models of the foam cells characteristic of atherosclerotic plaque. Simple binary mixtures of cholesteryl palmitate and cholesteryl oleate, the predominant cholesteryl esters in cellular inclusions in both cell types serve as models to explain important aspects of the phase behavior of these inclusions. Although inclusions should exist as stable crystals at 37 degrees C under conditions of thermodynamic equilibrium, microscopic examination of cells indicates that inclusions exist as metastable liquid crystals at 37 degrees C for extended periods of time. Using an analytical model based on nucleation theory, we predict that the cholesteryl ester inclusions should be liquid-crystalline in the cytoplasm of living cells. This may not be true either for lysosomal cholesteryl ester or for extracellular cholesteryl ester present in advanced atherosclerotic plaque where fusion of droplets can enhance the possibility of crystallization. The enhanced metastability of the relatively fluid liquid-crystalline state in cellular inclusions should result in increased activity of the neutral cholesteryl ester hydrolase in living cells.  相似文献   

5.
Cholesterol ester hydrolase (EC 3.1.1.13) activity from the 104,000 X g supernatant of rat testis was fractionated into 28-kDa, 72-kDa, and 420-kDa molecular mass forms by high performance size exclusion chromatography. The 72-kDa and 420-kDa forms (temperature-labile) were completely inactivated by elevation of temperature from 32 to 37 degrees C. Apparent disaggregation of the 420-kDa form suggested that the 72-kDa and 420-kDa enzymes are monomeric and multimeric forms of the same enzyme. The 28-kDa form was shown to be a different enzyme (temperature-stable) which retained activity at 37 degrees C. In contrast, cholesteryl ester hydrolase activities from 104,000 X g supernatants of liver or adrenal gland were unaffected and increased 4-fold, respectively, by elevation of temperature from 32 to 37 degrees C. Both testicular enzymes exhibited pH optima at about 7.3, and were activated by sodium cholate at concentrations near the critical micellar concentration (0.03-0.07%), but inhibited by higher concentrations. The temperature-labile cholesteryl ester hydrolase exhibited a high specificity for cholesteryl esters of monoenoic fatty acids of 18-24 carbons, especially nervonate (24:1), whereas the temperature-stable cholesteryl ester hydrolase exhibited highest specificity for cholesteryl oleate and arachidonate. Neither enzyme hydrolyzed cholesteryl acetate, myristate, palmitate, linoleate, or docosahexaenoate . Both enzymes reached maximum rates of hydrolysis at 150 microM substrates, with each substrate and at both reaction temperatures. Substrate inhibition was observed at higher concentrations (200 microM). The temperature-labile cholesteryl ester hydrolase was induced 20-fold in hypophysectomized rats by injection of follicle-stimulating hormone (FSH) and was localized in Sertoli cells, the target cells for FSH, but was not induced by luteinizing hormone. The temperature-stable cholesteryl ester hydrolase was induced by both FSH and LH and was found in both Sertoli cells and Leydig cells, the respective target cells for FSH and luteinizing hormone. Neither form of the enzyme was present at detectable levels in the germinal cells. The unique properties, localization, and hormonal regulation of both temperature-labile and temperature-stable cholesterol ester hydrolases suggest important roles for these enzymes in the testis.  相似文献   

6.
Cholesteryl ester laden foam cells in atherosclerotic lesions derive, in part, from macrophages. Mobilization of stored cholesteryl esters involves hydrolysis by a neutral cholesteryl ester hydrolase. Incubation of intact P388D1 macrophages with dibutyryl cAMP in the presence of 1-methyl-3-isobutylxanthine resulted in a dose-dependent increase in neutral cholesteryl ester hydrolase activity of up to 50% (ED50 = 0.1 mM). Incubation with prostaglandin E1 in the presence of 1-methyl-3-isobutylxanthine also increased neutral cholesterol ester hydrolase activity by about 50%. In cell-free preparation, cAMP-dependent protein kinase caused about a 2-fold activation of the neutral cholesteryl ester hydrolase. Activation was blocked by protein kinase inhibitor. These data suggest that the P388D1 macrophage may be a useful model for studying the hormonal regulation of cholesteryl ester mobilization in macrophage-derived foam cells.  相似文献   

7.
M T Subbiah 《Steroids》1977,30(2):259-265
This study is the first to report the effect of conjugated equine estrogens on the acitivity of cholesteryl ester synthetase and cholesteryl ester hydrolases in the aorta. In spontaneously atherosclerosis-susceptible White Carneau pigeons, estrogens significantly decreased (P less 0.01) the activity of cholesteryl ester synthetase and increased (P less than 0.01) the cholesteryl ester hydrolase activity in the microsomal fraction of the aorta. There was no effect on the cholesteryl ester hydrolase activity in the supernatant fraction. The inhibition of cholesteryl ester synthesis and the stimulation of cholesteryl ester hydrolase might be responsible for the decreased content of cholesteryl esters noted in pigeon aorta after estrogen treatment.  相似文献   

8.
Chlamydia, like other intracellular bacteria, are auxotrophic for a variety of essential metabolites and obtain cholesterol and fatty acids from their eukaryotic host cell, however not many Chlamydia-specific enzymes have been identified that are involved in lipid metabolism. In silico analysis of one candidate Chlamydia trachomatis enzyme, annotated as a conserved putative hydrolase (CT149), identified two lipase/esterase GXSXG motifs, and a potential cholesterol recognition/interaction amino acid consensus (CRAC) sequence. His-tag purified recombinant CT149 exhibited ester hydrolysis activity in a nitrophenyl acetate-based cell-free assay system. When cholesteryl linoleate was used as substrate, ester hydrolysis occurred and production of cholesterol was detected by high performance liquid chromatography. Exogenous expression of transfected CT149 in HeLa cells resulted in a significant decrease of cytoplasmic cholesteryl esters within 48 h. These results demonstrate that CT149 has cholesterol esterase activity and is likely to contribute to the hydrolysis of eukaryotic cholesteryl esters during intracellular chlamydial growth.  相似文献   

9.
SR-BI-directed HDL-cholesteryl ester hydrolysis   总被引:5,自引:0,他引:5  
We have examined the metabolic fate of HDL cholesteryl ester (CE) delivered to cells expressing scavenger receptor class B type I (SR-BI). Comparison of SR-BI with a related class B scavenger receptor, CD36, showed a greater uptake and a more rapid and extensive hydrolysis of HDL-CE when delivered by SR-BI. In addition, hydrolysis of HDL-CE delivered by both receptors was via a neutral CE hydrolase. These data indicate that SR-BI, but not CD36, can efficiently direct HDL-CE to a neutral CE hydrolytic pathway. In contrast, LDL-CE was delivered and hydrolyzed equally well by SR-BI and CD36. Hydrolysis of LDL-CE delivered by SR-BI was via a neutral CE hydrolase but that delivered by CD36 occurred via an acidic CE hydrolase, indicating that SR-BI and CD36 deliver LDL-CE to different metabolic pathways. Comparison of inhibitor sensitivities in Y1-BS1 adrenal, Fu5AH hepatoma, and transfected cells suggests that hydrolysis of HDL-CE delivered by SR-BI occurs via cell type-specific neutral CE hydrolases. Furthermore, HDL-CE hydrolytic activity was recovered in a membrane fraction of Y1-BS1 cells. These findings suggest that SR-BI efficiently delivers HDL-CE to a metabolically active membrane compartment where CE is hydrolyzed by a neutral CE hydrolase.  相似文献   

10.
The relationship of cholesteryl ester hydrolysis to the physical state of the cholesteryl ester in J774 murine macrophages was explored in cells induced to store cholesteryl esters either in anisotropic (ordered) inclusions or isotropic (liquid) inclusions. In contrast to other cell systems, the rate of cholesteryl ester hydrolysis was faster in cells containing anisotropic inclusions than in cells containing isotropic inclusions. Two contributing factors were identified. Kinetic analyses of the rates of hydrolysis are consistent with a substrate competition by co-deposited triglyceride in cells with isotropic inclusions. In addition, hydrolysis of cholesteryl esters in cells with anisotropic droplets is mediated by both cytoplasmic and lysosomal lipolytic enzymes, as shown by using the lysosomotropic agent, chloroquine, and an inhibitor of neutral cholesteryl ester hydrolase, umbelliferyl diethylphosphate. In cells containing anisotropic inclusions, hydrolysis was partially inhibited by incubation in media containing either chloroquine or umbelliferyl diethylphosphate. Together, chloroquine and umbelliferyl diethylphosphate completely inhibited hydrolysis. However, when cells containing isotropic inclusions were incubated with umbelliferyl diethylphosphate, cholesteryl ester hydrolysis was completely inhibited, but chloroquine had no effect. Transmission electron microscopy demonstrated a primarily lysosomal location for lipid droplets in cells with anisotropic droplets and both non-lysosomal and lysosomal populations of lipid droplets in cells with isotropic droplets.These results support the conclusion that there is a lysosomal component to the hydrolysis of stored cholesteryl esters in foam cells.  相似文献   

11.
(1) Parenchymal and non-parenchymal cells were isolated from rat liver. The characteristics of acid lipase activity with 4-methylumbelliferyl oleate as substrate and acid cholesteryl esterase activity with cholesteryl[1-14C]oleate as substrate were investigated. The substrates were incorporated in egg yolk lecithin vesicles and assays for total cell homogenates were developed, which were linear with the amount of protein and time. With 4-methylumbelliferyl oleate as substrate, both parenchymal and non-parechymal cells show maximal activities at acid pH and the maximal activity for non-parenchymal cells is 2.5 times higher than for parenchymal cells. It is concluded that 4-methylumbelliferyl oleate hydrolysis is catalyzed by similar enzyme(s) in both cell types. (2) With cholesteryl[1-14C]oleate as substrate both parenchymal and non-parenchymal cells show maximal activities at acid pH and the maximal activity for non-parenchymal cells is 11.4 times higher than for parenchymal cells. It is further shown that the cholesteryl ester hydrolysis in both cell types show different properties. (3) The high activity and high affinity of acid cholesteryl esterase from non-parenchymal cells for cholesterol oleate hydrolysis as compared to parenchymal cells indicate a relative specialization of non-parenchymal cells in cholesterol ester hydrolysis. It is concluded that non-parenchymal liver cells in cholesterol ester hydrolysis. It is concluded that non-parenchymal liver cells possess the enzymic equipment to hydrolyze very efficiently internalized cholesterol esters, which supports the suggestion that these cell types are an important site for lipoprotein catabolism in liver.  相似文献   

12.
Cholesterol ester hydrolase activity of pig aorta has been examined under optimum experimental conditions for hydrolysis of different cholesterol esters. The enzyme specific activity values were in the numerical order of substrates hydrolyzed: cholesteryl linoleate larger than or equal to linolenate greater than palmitate larger than or equal to stearate greater than oleate. The results are discussed in relation to the arterial accumulation of cholesterol esters.  相似文献   

13.
The effect of 4,4'-(isopropylidenedithio)bis(2,6-di-t-butylphenol) (probucol) on cholesteryl ester physical state was examined in dry mixtures, phospholipid-containing dispersions, and cells. Probucol has little effect on the solid to isotropic transition of cholesteryl oleate, but broadens and decreases the enthalpy of the liquid-crystalline transitions at concentrations as low as 1-2 mol %. A probucol transition is only observed at concentrations greater than 20 mol %. The mesomorphic phases of the cholesteryl oleate/probucol mixtures were identified by visual inspection and polarized light microscopy. Mixtures are liquid at probucol concentrations in excess of 5 mol % at 37 degrees C. Probucol also dramatically reduces the enthalpy of the liquid-crystalline transitions of the cholesteryl oleate core of dispersions of the ester with phospholipids at a concentration of 10 mol %, reducing the enthalpy by greater than 80% and the transition temperatures by approximately 2 degrees C. The phase state of cholesteryl esters in Fu5AH rat hepatoma cells was examined after incubation with cholesterol/phospholipid dispersions that caused the accumulation of anisotropic cholesteryl ester droplets. Differential scanning calorimetry scans of cells incubated with cholesterol-rich phospholipid dispersions indicated a phase transition near 48 degrees C, which was abolished when the cells were co-incubated with 50-100 micrograms/ml of probucol in the loading medium. Subsequent to the formation of isotropic cholesteryl ester droplets in the presence of probucol, the rate of efflux of cholesterol from the cells to phosphatidylcholine-containing acceptors in the medium was increased. These data show that probucol is relatively soluble in cholesteryl esters and that probucol changes the phase state of cholesteryl ester droplets in cells to a more fluid phase in which the cholesteryl esters are more readily mobilized.  相似文献   

14.
Abstract— Three enzymes of cholesterol ester metabolism, a cholesterol-esterifying enzyme which incorporates free fatty acids into cholesterol esters without participation of CoA, and two cholesterol ester hydrolases with differing pH optima, all showed distinct changes in developing rat brains. The specific activity of the esterifying enzyme was approx. 20 percent of the adult level at birth, increased gradually to the adult level by 20 days of age and remained constant thereafter. The pH 4.2 hydrolase at birth also had a specific activity of about 20 per cent of the adult level but it increased rapidly to reach a peak at 13 days, by which time the activity had increased eight-fold. The activity declined somewhat thereafter to reach the adult level by 23–30 days. In contrast, there already was 60 per cent of the adult specific activity of the pH 6.6 cholesterol ester hydrolase at birth. The activity remained constant until 12 days and then doubled during the next two weeks, reaching a broad peak, then declining slightly to reach the adult activity by 50 days. Therefore, the developmental changes of both of the hydrolases appeared to be related to the process of myelination. The period of active myelination (10–30 days) was characterized by the sharp rise in the activity of pH 6.6 cholesterol ester hydrolase and by the rapid decrease of pH 4.2 cholesterol ester hydrolase.  相似文献   

15.
Cholesterol exists within the hepatocyte as free cholesterol and cholesteryl ester. The proportion of intrahepatic cholesterol in the free or ester forms is governed in part by the rate of cholesteryl ester formation by acyl-coenzyme A:cholesterol acyltransferase (ACAT) and cholesteryl ester hydrolysis by neutral cholesterol ester (CE) hydrolase. In other cell types both ACAT and CE hydrolase activities are regulated in response to changes in the need for cellular free cholesterol. In rats, we performed a variety of experimental manipulations in order to vary the need for hepatic free cholesterol and to examine what effect, if any, this had on the enzymes that govern cholesteryl ester metabolism. Administration of a 20-mg bolus of lipoprotein cholesterol or a diet supplemented with 2% cholesterol resulted in an increase in microsomal cholesteryl ester content with little change in microsomal free cholesterol. This was accomplished by an increase in cholesteryl esterification as measured by ACAT but no change in CE hydrolase activity. An increased need for hepatic free cholesterol was experimentally induced by intravenous bile salt infusion or cholestyramine (3%) added to the diet. ACAT activity was decreased with both experimental manipulations compared to controls, while CE hydrolase activity did not change. Microsomal cholesteryl ester content decreased significantly with little change in microsomal free cholesterol content. Addition of exogenous liposomal cholesterol to liver microsomes from cholestyramine-fed and control rats resulted in a 784 +/- 38% increase in ACAT activity. Nevertheless, the decrease in ACAT activity with cholestyramine feeding was maintained. These studies allowed us to conclude that changes in hepatic free cholesterol needs are met in part by regulation of the rate of cholesterol esterification by ACAT without a change in the rate of cholesteryl ester hydrolysis by CE hydrolase.  相似文献   

16.
The regulation of the hydrolysis of cholesteryl oleate by female sex hormones was studied in the lysosomal fraction of rat liver. Cholesterol ester hydrolase activity was determined at pH 5.0 with an acetone-dissolved cholesteryl [1-14C]oleate substrate preparation. The administration of a single dose of progesterone decreased the enzyme activity during a 3- to 24-hr period following hormone injection. This effect was not correlated to changes in the lysosomal protein synthesis rate. The lysosomal hydrolysis of cholesteryl esters was also inhibited in a noncompetitive manner by the addition of progesterone at concentrations higher than 100 microM. The esterase failed to respond to the estradiol in vivo as well as in vitro. The findings of the present paper suggest that the lysosomal breakdown of cholesteryl esters in rat liver may be under selective hormonal regulation and that the inhibitory effect of progesterone on the enzyme activity might be, at least in part, responsible for the liver cholesterol ester accumulus produced by the administration of the hormone.  相似文献   

17.
The objective of this study was to examine and characterize the cholesteryl ester synthesizing [S] and hydrolyzing [H] properties of the acid cholesteryl ester hydrolase (acid cholesteryl ester hydrolase), both in isolated rat liver lysosomes and in cell-free extracts from cultured fibroblasts. For both liver lysosomes and fibroblasts extracts, the major synthesizing activity was found around pH 4 and did not require exogenous ATP. The rate of hydrolysis was measured at pH 4.5. Several different inhibitors were used in order to characterize the reactions. Ammonium chloride did not markedly affect the activity of acid cholesteryl ester hydrolase at pH 4 [S] or 4.5 [H], whereas chloroquine was a potent inhibitor of acid CEase in both liver lysosomes and fibroblast extracts. The [S] activity of the acid cholesteryl ester hydrolase in either material was not affected by the acylCoA:cholesterol acyltransferase inhibitor Compound 58-035 from Sandoz. Progesterone, on the other hand, which is an often used acylCoA:cholesterol acyltransferase inhibitor, markedly blocked both activities of the acid CEase. Our results indicate that the lysosomal compartment of both studied tissues, in addition to hydrolysis activity, also have a significant esterification activity. It appears that both activities are carried out by the same enzyme.  相似文献   

18.
The hydrolysis of cholesteryl esters contained in plasma low density lipoprotein was reduced in cultured fibroblasts derived from a patient with cholesteryl ester storage disease, an inborn error of metabolism in which lysosomal acid lipase activity is deficient. While these mutant cells showed a normal ability to bind low density lipoprotein at its high affinity cell surface receptor site, to take up the bound lipoprotein through endocytosis, and to hydrolyze the protein component of the lipoprotein in lysosomes, their defective lysosomal hydrolysis of the cholesteryl ester component of the lipoprotein led to the accumulation within the cell of unhydrolyzed cholesteryl esters, the fatty acid distribution of which resembled that of plasma lipoprotein. When the cholesteryl ester storage disease cells were incubated with low density lipoprotein, the reduced rate of liberation of free cholesterol by these mutant cells was associated with a delay in the occurrence of two lipoprotein-mediated regulatory events, suppression of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity, and activation of endogenous cholesteryl ester formation. In contrast to their defective hydrolysis of exogenously derived lipoprotein-bound cholesteryl esters, the choleseryl ester storage disease cells showed a normal rate of hydrolysis of cholesteryl esters that had been synthesized within the cell. These data lend support to the concept that in cultured human fibroblasts cholesteryl esters entering the cell bound to low density lipoprotein are hydrolyzed within the lysosome and that one of the functions of this intracellular organelle is to supply the cell with free cholesterol.  相似文献   

19.
Lipid microemulsions with various core and surface lipid compositions were prepared by co-sonication of cholesteryl esters, triolein (TO), egg phosphatidylcholine (egg PC), and cholesterol. The heterogeneous emulsion particle mixture was purified by gel filtration and particles with the size and general organization of low density lipoproteins were obtained. These lipid microemulsion particles were used for studies of the cellular metabolism of lipoprotein-derived cholesterol and cholesteryl esters as catalyzed by the enzyme acid sterol ester hydrolase (EC 3.1.1.13). The hydrolysis of cholesteryl oleate (CO) was more than twice and that of cholesteryl linoleate (CL) more than three times faster than the hydrolysis of cholesteryl stearate (CS) over the temperature range 25-39.6 degrees C. Both the synthesis and hydrolysis of cholesteryl esters were insensitive to the physical state of the microemulsion cores. The synthesis of cholesteryl esters by this enzyme was also insensitive to the ratios of cholesterol and egg PC in the microemulsion surface layers. Incorporation of triolein into the microemulsion cholesteryl ester core slightly increased the rate of cholesteryl ester synthesis. A decreasing fatty acyl chain length (C18:0 to C14:0) and an increasing degree of unsaturation (C18:0 to C18:2) enhanced the synthesis rate. It is suggested that the hydrolysis and synthesis of cholesteryl esters in microemulsions (and lipoproteins) take place only in the particle surface layer and that the rate of catalysis is directly dependent on the amount of substrate in this surface layer.  相似文献   

20.
Trinitrophenylaminolauric acid (TNPAL) was linked to glycerol or cholesterol and the resulting yellow compounds were used as substrates for several lipases and cholesteryl esterase in cells from normal individuals and patients with Wolman's or cholesteryl ester storage diseases. Normal cells (lymphoid cell lines or skin fibroblasts) showed two peaks of lipase or cholesteryl esterase activity at about pH 4.0 and 6.0 each. The activity of the most acidic enzyme, which hydrolyzed natural or synthetic triacylglycerols as well as cholesteryl esters, was considerably reduced in cells derived from patients with Wolman's or cholesteryl ester storage diseases. Simple spectrophotometric procedures were developed for using tri-TNPAL glycerol or TNPAL cholesterol to identify homozygotes of these two respective diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号