首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study we have utilized the structural framework of the analog GS14K4 (cyclo(VKLd-KVd-YPL KVKLd-YP, where d denotes a d-amino acid)), to examine the role of hydrophobicity in microbial activity and specificity. The hydrophobicity of GS14K4 was systematically altered by residue replacements in the hydrophobic sites of the molecule to produce a series of analogs that were either less or more hydrophobic than the parent compound. Circular dichroism spectroscopy and reversed-phase high performance liquid chromatography analysis showed that the molecules were structurally similar and only differed in overall hydrophobicity. The hydrophobicity of GS14K4 was found to be the midpoint for hemolytic activity, with more hydrophobic analogs exhibiting increased hemolytic activity and less hydrophobic analogs showing decreased hemolytic activity. For antimicrobial activity there were differences between the hydrophobicity requirements against Gram-positive and Gram-negative microorganisms. The hydrophobicity of GS14K4 was sufficient for maximum activity against Gram-negative microorganisms and yeast, with no further increases in activity occurring with increasing hydrophobicity. With Gram-positive microorganisms significant increases in activity with increasing hydrophobicity were seen in three of the six microorganisms tested. A therapeutic index (calculated as a measure of specificity of the peptides for the microorganisms over human erythrocytes) served to define the boundaries of a therapeutic window within which lay the optimum peptide hydrophobicity for each microorganism. The therapeutic window was found to be at a lower hydrophobicity level for Gram-negative microorganisms than for Gram-positive microorganisms, although the limits were more variable for the latter. Our results show that the balance between activity and specificity in the present cyclic peptides can be optimized for each microorganism by systematic modulation of hydrophobicity.  相似文献   

2.
Hydrophobicity of Bacillus and Clostridium spores.   总被引:3,自引:1,他引:2       下载免费PDF全文
The hydrophobicities of spores and vegetative cells of several species of the genera Bacillus and Clostridium were measured by using the bacterial adherence to hexadecane assay and hydrophobic interaction chromatography. Although spore hydrophobicity varied among species and strains, the spores of each organism were more hydrophobic than the vegetative cells. The relative hydrophobicities determined by the two methods generally agreed. Sporulation media and conditions appeared to have little effect on spore hydrophobicity. However, exposure of spore suspensions to heat treatment caused a considerable increase in spore hydrophobicity. The hydrophobic nature of Bacillus and Clostridium spores suggests that hydrophobic interactions may play a role in the adhesion of these spores to surfaces.  相似文献   

3.
Adhesion of bacillus spores in relation to hydrophobicity   总被引:4,自引:0,他引:4  
The adhesion of spores of five different Bacillus species to solid surfaces of different hydrophobicity was evaluated. The spore surface hydrophobicity was measured using hydrophobic interaction chromatography (HIC). A large variation in hydrophobicity was found among the spores of the different species tested. The degree of adhesion of spores to the solid surfaces was consistent with the results obtained using the HIC method. The most hydrophobic spores, according to the HIC method, adhered in a much larger extent to the hydrophobic surfaces. Furthermore, spores generally adhered to a greater extent to hydrophobic and hydrophilic surfaces than did the vegetative cells.  相似文献   

4.
Adhesion of bacillus spores in relation to hydrophobicity   总被引:3,自引:3,他引:0  
R önner , U., H usmark , U. & H enriksson , A. 1990. Adhesion of bacillus spores in relation to hydrophobicity. Journal of Applied Bacteriology 69 , 550–556.
The adhesion of spores of five different Bacillus species to solid surfaces of different hydrophobicity was evaluated. The spore surface hydrophobicity was measured using hydrophobic interaction chromatography (HIC). A large variation in hydrophobicity was found among the spores of the different species tested. The degree of adhesion of spores to the solid surfaces was consistent with the results obtained using the HIC method. The most hydrophobic spores, according to the HIC method, adhered in a much larger extent to the hydrophobic surfaces. Furthermore, spores generally adhered to a greater extent to hydrophobic and hydrophilic surfaces than did the vegetative cells.  相似文献   

5.
Charge-free hydrophobic gels of Hjerten et al. (Hjerten, S., Rosengren, J. and Pahlman, S. (1974) J. Chromatogr. 101, 281--288) were used for hydrophobic affinity chromatography. The effective hydrophobicity of proteins was expressed as their retention volumes from columns of butylepoxy- and hexylepoxy-Sepharose 4B. The effective hydrophobicity was also estimated by a partition method of Shanbhag and Axelsson ((1975) Eur. J. Biochem. 60, 17--22) from the partition coefficients of proteins between two phases, poly (ethylene glycol) and dextran. The former contained a hydrophobic ligand, palmitate. A close correlation was observed between the hydrophobicities determined by the two methods. However, no significant relationship was observed between these effective hydrophobicities and the average hydrophobicity of Bigelow ((1967) J. Theoret. Biol. 16, 187--211) that was calculated from the total amino acid composition of each protein. The interfacial tensions at the 0.2% protein/corn oil interface revealed negative correlations with the effective hydrophobicities determined by both methods indicating lower interfacial tensions with more hydrophobic proteins.  相似文献   

6.
Determination of the cell-surface hydrophobicity of group B streptococci by hydrophobic interaction chromatography on phenyl-Sepharose revealed that human and bovine group B streptococcal isolates with protein surface antigens, either alone or in combination with polysaccharide antigens, were mainly hydrophobic, whereas those with polysaccharide antigens alone were mainly hydrophilic. Removal of capsular neuraminic acid enhanced, and pronase treatment reduced, surface hydrophobicity. The hydrophobic surface proteins, solubilized by mutanolysin treatment of the bacteria and isolated by hydrophobic interaction chromatography, appeared in SDS-PAGE as numerous protein bands. Staphylococcal carrier cells loaded with antibodies produced against hydrophobic surface proteins agglutinated specifically with hydrophobic group B streptococci. No agglutination reaction was observed with hydrophilic cultures. Hydrophobic group B streptococci adhered to buccal epithelial cells in significantly higher numbers than did hydrophilic cultures. The adherence of group B streptococci to epithelial cells was inhibited in the presence of isolated hydrophobic proteins and in the presence of specific antibodies produced against hydrophobic proteins. The results of this study demonstrate a close relation between the occurrence of type-specific antigens, surface hydrophobicity and the adherence of group B streptococci to epithelial cells.  相似文献   

7.
Concanavalin A (Con A) was spontaneously adsorbed on polymyxin B surface. This peptide-lectin interaction was strong, K(D)=1.9 x 10(-10), based predominantly on creation of hydrophobic bonds, and was completely reversible. Concanavalin A on polymyxin B (PmB) retained higher binding capacity for yeast mannan, compared with covalently immobilized lectin. Kinetics of mannan-concanavalin A interaction were significantly different in dependence on type of concanavalin A immobilization.  相似文献   

8.
We present a model for the hydrophobic interaction in globular proteins that is based entirely on an analysis of known X-ray structures. This structure-derived hydrophobic force is identified as the strongest among the non-covalent interactions that stabilize native folds. The functional form of the hydrophobic interaction is found to be linear, corresponding to a constant force along the observable distance range (5 to 70 A). The parameters of the hydrophobic amino acid pair potentials yield a structure-derived hydrophobicity scale that correlates strongly with scales derived by a variety of complementary approaches. We demonstrate that the structure-derived hydrophobic interaction alone is able to distinguish a substantial number of native conformations from a large pool of misfolded structures.  相似文献   

9.
A hydrophobicity density is defined for a protein through its hydrophobicity tensor (similar to the inertia tensor), by using the Eisenberg hydrophobicity scale of the hydrophobic amino acids of a protein. This allows calculation of the radii of the corresponding hydrophobic ellipsoid of a protein and thus subsequently of its hydrophobic density. A hydrophobicity density profile is then obtained by simulating point mutations of each amino acid of a protein either to a high hydrophobicity value or to zero hydrophobicity. It is found that an increase in the hydrophobic density of the protein correlates with an increase of its mid-point transition temperature. From this profile it is possible to determine the amino acids or domain stretches in a protein that are most amenable to mutation in order to increase the thermal stability. The model is tested to predict the thermostabilisation effects of two mutations in a β-glucanase: M29G and M29F. This model is compared with other hydrophobicity-related profiles described by other authors.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

10.
To assess the surface properties of Staphylococcus aureus affecting the response of human phagocytes, the effects of the organisms with different surface properties on the chemiluminescence (CL) response of human phagocytes were examined. The magnitude of the phagocytic CL response to hydrophobic strains was significantly greater than that to hydrophilic strains, while no significant difference in the CL response was seen between protein A-deficient strains and their parent strains. The CL response to the hydrophilic organisms prepared from a hydrophobic strain by trypsin treatment decreased significantly. These results suggest that the phagocytic CL response to staphylococci depends on the hydrophobicity of the surface, but not on the presence of protein A. Two protein A-deficient strains which were isolated from protein A-positive strains showed identical hydrophobicity with their parent strains. All of the hydrophilic strains isolated from hydrophobic strains possessed protein A identical to that of their parent strains. Moreover, a hydrophilic strain could be isolated from a protein A-deficient, hydrophobic strain. These results strongly suggest that protein A is not solely responsible for the surface hydrophobicity of S. aureus.  相似文献   

11.
In this paper we propose a classification of the amphipathic helical repeats occurring in the plasma apolipoprotein sequences. It is based upon the calculation of the molecular hydrophobicity potential around the helical segments. The repeats were identified using a new autocorrelation matrix, based upon similarities of hydrophobic and hydrophilic properties of the amino acid residues within the apolipoprotein sequences. The helices were constructed by molecular modeling, the molecular hydrophobicity potential was calculated, and isopotential contour lines drawn around the helices yielded a three-dimensional visualization of the hydrophobicity potential. Two classes of apolipoproteins could be differentiated by comparing the hydrophobic angles obtained by projection of the isopotential contour lines on a plane perpendicular to the long axis of the helix. The isopotential contour lines around apo AI, AIV, and E are more hydrophilic than hydrophobic, whereas they are of similar intensity for apo AII, CI, and CIII. In both cases discoidal lipid-protein complexes are generated, with the amphipathic helices around the edge of the lipid core. The long axis of the helices is oriented parallel to the phospholipid acyl chains and the hydrophilic side of the helix toward the aqueous phase. As a result of the differences in hydrophobicity potential, the contact between the hydrophobic side of the helices and the phospholipid acyl chains is larger for apo AII, CI, and CIII than for the other apolipoproteins. This might account for the greater stability of the discoidal complexes generated between phospholipids and these apoproteins.  相似文献   

12.
The cell surface hydrophobicity of Serratia marcescens appears to be an important factor in its adhesion to and colonization of various interfaces. The cell surface components responsible for mediating the hydrophobicity of S. marcescens have not been completely elucidated, but may include prodigiosin and other factors. In the present report we have investigated the potential role of serratamolide, an amphipathic aminolipid present on the surfaces of certain S. marcescens strains, in modulating cell surface hydrophobicity. The hydrophobic properties of a serratamolide-producing strain (NS 38) were compared with those of a serratamolide-deficient mutant (NS 38-9) by monitoring the kinetics of adhesion to hexadecane. Serratamolide production was monitored by thin-layer chromatography and the wetting activity of washed-cell suspensions on polystyrene. Wild-type NS 38 cells were far less hydrophobic than the serratamolide-deficient mutant cells were; the removal coefficients were 48 min-1 for the mutant, as compared with only 18 min-1 for the wild type. The data suggest that the presence of serratamolide on S. marcescens cells results in a reduction in hydrophobicity, presumably by blocking hydrophobic sites on the cell surface.  相似文献   

13.
Surface-active properties of Candida albicans.   总被引:1,自引:0,他引:1       下载免费PDF全文
Cell surface hydrophobicity may be an important factor contributing to the virulence of Candida yeast cells. Surface hydrophobic and surface polar groups would be required for a yeast cell to act as a surface-active agent. In this report, the surface activities of whole yeast cells were measured. Yeast cells added at 10(8)/ml reduced the surface tension (gamma s) of saline by 20% as determined by the du Nouy method. A 1% suspension of yeast cell wall fragments reduced gamma s of saline by 36%. Whole yeast cells caused a reduction in interfacial tension (gamma I) between hexadecane and saline. The reduction of gamma I was proportional to the surface hydrophobicity of the yeasts. Yeast cells grown in glucose as the sole carbon source (thus possessing a relatively more hydrophilic cell surface) reduced gamma I by 30%, whereas yeast cells grown in hexadecane (thus possessing a more hydrophobic cell surface) reduced gamma I by 41%. The reduction of gamma I was reversed upon the addition of a strong surfactant. It was also demonstrated that yeast cells blended with nonionic surfactants during growth in a glucose broth in order to change their cell surface hydrophobicity adhered to solid surfaces in direct proportion to their cell surface hydrophobicity. Thus, the surface-active properties of Candida yeast cells may significantly contribute to the accumulation of yeast cells at various biological interfaces such as liquid-solid, liquid-liquid, and liquid-air, leading to their eventual adhesion to solid or tissue surfaces.  相似文献   

14.
The relationship between the phenomena alkane oxidation, extreme hydrophobicity of the cell surface, and crude-oil emulsification in Rhodococcus sp. strain 094 was investigated. Compounds that induce the emulsifying ability simultaneously induced the cytochrome P450-containing alkane oxidizing system and the transition from low to high cell-surface hydrophobicity. Exposed to inducers of crude-oil emulsification, the cells developed a strong hydrophobic character during exponential growth, which was rapidly lost when entering stationary phase. The loss in hydrophobicity coincided in time with the crude-oil emulsification, indicating that the components responsible for the formation of cell-surface hydrophobicity act as excellent emulsion stabilisers only after release from the cells. Rhodococcus sp. strain 094 possessed three distinct levels of cell-surface hydrophobicity. One level of low hydrophobicity was characteristic of cells in late stationary phase and was independent of growth substrate. A second and more hydrophobic level was observed for cells in exponential phase grown on water-soluble substrates, while a third level, characterised by extreme cell hydrophobicity, was observed for cells in exponential phase cultivated on hydrophobic substrates such as hexadecane. The production of the oil-emulsifying agents seems to require external sources of nitrogen and phosphate.  相似文献   

15.
If the degree of substitution of Sepharose 4 B with alpha-alkylamines is varied gels of different hydrophobicity are produced. Proteins can be adsorbed when a critical hydrophobicity (ca. 10-12 alkyl residues/Sepharose sphere) is reached. The enzymes phosphorylase kinase, phosphorylase phosphatase, 3',5'-cAMP dependent protein kinase, glycogen synthetase, and phosphorylase b are successively adsorbed as the hydrophobicity of the Sepharose is increased. The capacity of the gels for these enzymes and protein in general increases exponentially reaches plateau values as a function of the degree of substitution. There is no indication of a restriction of the hydrophobic centers for a given protein. The critical hydrophobicity needed to adsorb proteins can either be otained in the above manner or by elongation of the employed alkylamine at a constant degree of substitution. Additonally, as the hydrophobicity of a gel is increased higher binding forces result and desorption of proteins requires an augmentation of the salt concentration in the elution buffer. Elution of proteins from a hydrophobic matrix can be described in terms of salting-in phenomena since desorption is dependent on the type of salt employed and not on the ionic strength alone. This also rules out ionic interactions as a major factor in adsorption per se. By rationally controlling the hydrophobicity of a Sepharose gel the adsorption and elution of a protein may be thus establised that its purification or elimination can be optimally performed.  相似文献   

16.
We consider in this paper the statistical distribution of hydrophobic residues along the length of protein chains. For this purpose we used a binary hydrophobicity scale which assigns hydrophobic residues a value of one and non-hydrophobes a value of zero. The resulting binary sequences are tested for randomness using the standard run test. For the majority of the 5,247 proteins examined, the distribution of hydrophobic residues along a sequence cannot be distinguished from that expected for a random distribution. This suggests that (a) functional proteins may have originated from random sequences, (b) the folding of proteins into compact structures may be much more permissive with less sequence specificity than previously thought, and (c) the clusters of hydrophobic residues along chains which are revealed by hydrophobicity plots are a natural consequence of a random distribution and can be conveniently described by binomial statistics.  相似文献   

17.
Adherence of microbial pathogens to host cell surfaces may involve hydrophobic interactions. Here, we describe the development of an assay for detecting cell surface hydrophobicity of populations and individual cells of the opportunistic fungal pathogen Candida albicans. The assay involves mixing polystyrene latex microspheres with cells and subsequent enumeration of cell-attached microspheres. Similar levels of hydrophobicity within a population of yeast cells were obtained with the microsphere assay and with a commonly used aqueous-hydrocarbon biphasic partitioning assay. Various buffers were found to support detection of surface hydrophobicity with the microsphere assay. Complex fungal growth media did not. Serum in test media prevented microsphere attachment. A unique advantage of the assay compared to others is that individual cells can be assessed for surface hydrophobicity. Within a population of C. albicans yeast cells, strongly, moderately and weakly hydrophobic cells were observed. Within some pairs of mother-daughter cells, only one cell was hydrophobic. Germ tbes and hyphae were hydrophobic regardless of the hydrophobic status of the parent cell. These results indicate that the microsphere assay is a useful test evaluating cell surface hydrophobicity of C. albicans.  相似文献   

18.
The partitioning of bacterial cells in a dual aqueous-solvent phase system leads to separation into 'hydrophilic' and hydrophobic functions. Sequential multistep partitioning, accompanied by successive enrichment, gives rise to several cycles of hydrophobic and hydrophilic cell populations which possess different cell-surface hydrophobicity characteristics. Characterization of the cell-surface hydrophobicity by several methods (salting-out aggregation test, bacterial adherence to hydrocarbon, polystyrene binding and hydrophobic interaction chromatography) was carried out. The cell-surface hydrophobicity varied in the order: hydrophilic fraction < parental strain < first cycle hydrophobic variant < second cycle hydrophobic variant < third cycle hydrophobic variant. Electron microscopy showed that the most hydrophobic variant was densely covered by hydrophobic structures - fimbriae - whereas the parental strain was covered by a mixture of surface structures. The hydrophilic variant was covered by an amorphous exopolymeric substance, which is a polysaccharide, shown by its reaction with Alcian blue.  相似文献   

19.
Hydrophobicity profiles of myoglobins in the animal species far remote in the evolutionary series are considerably similar. A complete coincidence as to the arrangement of hydrophobic zones along the polypeptide chain in myoglobins of the compared species (from a man to mollusc) is revealed at the beginning of alpha-helix of B-segment and in the area corresponding to a cluster which embodies a heme- bound water molecule, distal histidine E7 being directed to this cluster. The mollusc myoglobin with two absent (as compared to myoglobins of other species) hydrophobic sites differs in the profile of hydrophobicity most of all. It is supposed that hydrophobic nuclei forming the heme circumference create a globule "skeleton" thus pre-setting general spatial structure of the myoglobin molecule, which is very significant for its functional activity.  相似文献   

20.
We have determined hydrophobicity parameters for the side-chains of the prenyl thioether protein modifications, farnesyl-cysteine and geranylgeranyl-cysteine. Farnesyl-Cys is somewhat more hydrophobic than palmitoyl-Cys, but geranylgeranyl-Cys is more than two log(P) units more non-polar. These post-translational modifications represent the most hydrophobic residues yet described quantitatively. Furthermore, such modifications occur at the COOH-terminus which is generally methyl esterified. Loss of the terminal negative charge and formation of the ester proceeds with the gain of an additional 2.343 log(P) units of hydrophobicity. Clearly, COOH-terminal prenylation and esterification impart sufficient potential to render the terminus membrane bound. Thus, hydrophobicity parameters presented here for the prenylated amino acyl residues extend our understanding of these important physiological derivatives and enable computational analysis of proteins thus modified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号