首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The extracellular calcium-sensing receptor (CaSR) in fishes, like the CaSRs of tetrapod vertebrates, is a dimeric seven transmembrane, G protein-coupled receptor. The receptor is expressed on the plasma membranes of a variety of tissues and cells where it functions as a sensor of extracellular calcium concentration ([Ca(2+)](o)) in the physiological range. In the context of systemic calcium homeostasis, CaSR expressed in endocrine tissues that secrete calciotropic and other hormones (pituitary gland and corpuscles of Stannius) may play a central role in global integrative signaling, whereas receptor expressed in ion-transporting tissues (kidney, intestine, gills, and elasmobranch rectal gland) may have local direct effects on monovalent and divalent ion transport that are independent of endocrine signaling. In fishes, specifically, CaSR expression at the body surface (at the gills and olfactory tissues, for example) may permit direct sensing of environmental Ca(2+) and Mg(2+) concentrations, especially in the marine environment. Additionally, CaSRs may have other widespread and diverse roles in extracellular Ca(2+) sensing related both to organismal calcium homeostasis and to intercellular Ca(2+) signaling. As a consequence of the broad spectrum of recognized ligands, including polyvalent cations and amino acids, and of binding site shielding by monovalent cations, additional receptor functionalities related to salinity and nutrient detection are proposed for CaSRs. CaSR expression in the gastrointestinal tract may be multifunctional as a sensor for polyvalent cations and amino acids. Structural and phylogenetic analyses reveal strongly conserved features among CaSRs, and suggest that calcium sensing by mammalian parathyroid gland-type CaSR proteins may be restricted to chordates. Comparative functional and genomic studies that include piscine CaSRs can be useful model systems for testing existing hypotheses regarding receptor function, and will shed light on the evolutionary developmental history of calcium homeostasis in the vertebrates.  相似文献   

2.
3.
4.
The calcium sensing receptor (CaSR) has emerged as an important mediator of a wide range of Ca(2+)-dependent physiological responses (Ca(2+) signaling) in various tissues. To explore the role of CaSR in the epidermis, we utilised the keratin 14 promoter to express CaSR cDNA constitutively in the basal cells of the stratified squamous epithelium of transgenic mice. Analysis of the transgenic mice revealed that a sensitized response to CaSR signaling accelerates the epidermal differentiation program with the precocious formation of the epidermal permeability barrier (EPB) during development and an accelerated hair growth at birth. Our observations indicate that overexpression of CaSR in the undifferentiated basal cells leads to changes in the differentiation program of the transgenic epidermis, including the stimulation of keratins 1 and 6 as well as the overexpression of several markers of terminal differentiation such as filaggrin, loricrin and involucrin. Our data suggest that the observed modifications in the differentiation pathway are a consequence of a CaSR-induced enhancement of Ca(2+) signaling involving cross-talk with other signaling pathways (e.g. EGF and Wnt/Ca(2+)). These studies provide new insights into the role of CaSR in epidermal differentiation including EPB development and hair follicle morphogenesis.  相似文献   

5.
Ionic calcium (Ca2 +) supports essential functions within physiological systems, and consequently its concentration is homeostatically regulated within narrow bounds in the body fluids of animals through endocrine effects at ion-transporting osmoregulatory tissues. In vertebrates, extracellular Ca2 + is detected at the cell surface by the extracellular calcium-sensing receptor (CaSR), a member of the G protein-coupled receptor (GPCR) superfamily. Interestingly, the taxonomic distribution of CaSRs is restricted to vertebrates, with some CaSR-like receptors apparently present in non-vertebrate chordates. Since bone is a known Ca2 + storage site and is characteristically restricted to the vertebrate lineage, we hypothesized a functional association of CaSR with vertebrate skeleton that may have an ancient origin. Protein sequence alignment and phylogenetic analysis of vertebrate CaSRs and related GPCRs of the glutamate receptor-like family expose similarities and indel differences among these receptors, and reveal the evolutionary history of CaSRs. Evolutionary selection was tested statistically by evaluating the relationship between non-synonymous (replacement, dN) versus synonymous (silent, dS) amino acid substitution rates (as dN/dS) of protein-coding DNA sequences among branches of the estimated protein phylogeny. On a background of strong purifying selection (dN/dS < 1) in the CaSR phylogeny, statistical evidence for adaptive evolution (dN/dS > 1) was detected on some branches to major clades in the CaSR phylogeny, especially to the tetrapod vertebrate CaSRs and chordate CaSR-like branches. Testing also revealed overall purifying selection at the codon level. At some sites relaxation from strong purifying selection was seen, but evidence for adaptive evolution was not detected for individual sites. The results suggest purifying selection of CaSRs, and of adaptive evolution among some major vertebrate clades, reflecting clade specific differences in natural history and organismal biology, including skeletal involvement in calcium homeostasis.  相似文献   

6.
Extracellular Ca(2+)/polyvalent cation-sensing receptor (CaSR) is capable of monitoring changes in extracellular polyvalent cation concentrations. In the present study, we investigated whether CaSR agonists reinforce the decrease of intracellular free Mg(2+) concentration ([Mg(2+)](i)) induced by extracellular Mg(2+) plus Na(+) removal. Interestingly, exposure of NRK-52E renal epithelial cells to increasing extracellular Mg(2+) concentrations from 0.8 to 15 mM for 1-2 days resulted in a twofold increase in the levels of CaSR mRNA and protein. By fluorophotometer (with mag-fura 2 fluorescent dye) and atomic absorption spectrophotometer, we confirmed that activation of CaSR by neomycin (0.5 mM) or gadolinium (1 mM) reinforced the decrease of [Mg(2+)](i) induced by Mg(2+) removal in the cells cultured in 10 mM Mg(2+)-containing medium. The neomycin-induced [Mg(2+)](i) decrease was inhibited by nicardipine (50 microM), but not by verapamil (50 microM) or amiloride (0.1 mM). These results indicate that CaSR monitors extracellular Mg(2+) concentration, and probably cause activation of Na(+)-independent Mg(2+)-transport system.  相似文献   

7.
The extracellular calcium-sensing receptor (CaSR) is activated by divalent cations and might mediate some of the effects of strontium ranelate, a new drug for the prevention and treatment of post-menopausal osteoporosis. Here, we showed that the maximal effect of Sr(2+) was comparable to that observed for Ca(2+) for both the cloned rat CaSR expressed in Chinese hamster ovary [CHO(CaSR)] cells and the mouse CaSR constitutively expressed in AtT-20 cells as measured by the accumulation of [(3)H]inositol phosphates (IP) resulting from CaSR activation. Strontium ranelate also displayed comparable agonist activity for the CaSR in both cell lines. Sodium ranelate did not stimulate the IP response in CHO(CaSR) cells. The IP response resulting from activation of other G-protein-coupled receptors was potentiated by Sr(2+), suggesting that entry of Sr(2+) into the cells might influence phospholipase C activity. Modulation of the CaSR activity in bone cells by strontium ranelate may contribute to its reported antiosteoporotic effects.  相似文献   

8.
Calcium is an essential nutrient that induces a distinctive taste quality, but the sensing mechanism of calcium in the tongue is poorly understood. A recent study linked calcium to T1R3 receptor. Here, we propose another system for calcium taste involving the extracellular calcium-sensing receptor (CaSR). This G protein-coupled receptor that responds to calcium and magnesium cations is involved in calcium homeostasis regulating parathyroid and kidney functions. In this study, CaSR was found in isolated taste buds from rats and mice. It was expressed in a subset of cells in circumvallate and foliate papillae, with fewer cells in the fungiform papillae. This is the first evidence in mammals that locates CaSR in gustatory tissue and provides the basis for better understanding not only calcium taste but also the taste of multiple CaSR agonists.  相似文献   

9.
Gastric acid secretion is activated by two distinct pathways: a neuronal pathway via the vagus nerve and release of acetylcholine and an endocrine pathway involving gastrin and histamine. Recently, we demonstrated that activation of H(+)-K(+)-ATPase activity in parietal cells in freshly isolated rat gastric glands is modulated by the calcium-sensing receptor (CaSR). Here, we investigated if the CaSR is functionally expressed in freshly isolated gastric glands from human patients undergoing surgery and if the CaSR is influencing histamine-induced activation of H(+)-K(+)-ATPase activity. In tissue samples obtained from patients, immunohistochemistry demonstrated the expression in parietal cells of both subunits of gastric H(+)-K(+)-ATPase and the CaSR. Functional experiments using the pH-sensitive dye 2',7'-bis-(2-carboxyethyl)-5-(and 6)-carboxyfluorescein and measurement of intracellular pH changes allowed us to estimate the activity of H(+)-K(+)-ATPase in single freshly isolated human gastric glands. Under control conditions, H(+)-K(+)-ATPase activity was stimulated by histamine (100 microM) and inhibited by omeprazole (100 microM). Reduction of the extracellular divalent cation concentration (0 Mg(2+), 100 microM Ca(2+)) inactivated the CaSR and reduced histamine-induced activation of H(+)-K(+)-ATPase activity. In contrast, activation of the CaSR with the trivalent cation Gd(3+) caused activation of omeprazole-sensitive H(+)-K(+)-ATPase activity even in the absence of histamine and under conditions of low extracellular divalent cations. This stimulation was not due to release of histamine from neighbouring enterochromaffin-like cells as the stimulation persisted in the presence of the H(2) receptor antagonist cimetidine (100 microM). Furthermore, intracellular calcium measurements with fura-2 and fluo-4 showed that activation of the CaSR by Gd(3+) led to a sustained increase in intracellular Ca(2+) even under conditions of low extracellular divalent cations. These experiments demonstrate the presence of a functional CaSR in the human stomach and show that this receptor may modulate the activity of acid-secreting H(+)-K(+)-ATPase in parietal cells. Furthermore, our results show the viability of freshly isolated human gastric glands and may allow the use of this preparation for experiments investigating the physiological regulation and properties of human gastric glands in vitro.  相似文献   

10.
11.
The Ca(2+)-sensing receptor (CaSR) belongs to the class III G-protein-coupled receptors (GPCRs), which include receptors for pheromones, amino acids, sweeteners, and the neurotransmitters glutamate and gamma-aminobutyric acid (GABA). These receptors are characterized by a long extracellular amino-terminal domain called a Venus flytrap module (VFTM) containing the ligand binding pocket. To elucidate the molecular determinants implicated in Ca(2+) recognition by the CaSR VFTM, we developed a homology model of the human CaSR VFTM from the x-ray structure of the metabotropic glutamate receptor type 1 (mGluR1), and a phylogenetic analysis of 14 class III GPCR VFTMs. We identified critical amino acids delineating a Ca(2+) binding pocket predicted to be adjacent to, but distinct from, a cavity reminiscent of the binding site described for amino acids in mGluRs, GABA-B receptor, and GPRC6a. Most interestingly, these Ca(2+)-contacting residues are well conserved within class III GPCR VFTMs. Our model was validated by mutational and functional analysis, including the characterization of activating and inactivating mutations affecting a single amino acid, Glu-297, located within the proposed Ca(2+) binding pocket of the CaSR and associated with autosomal dominant hypocalcemia and familial hypocalciuric hypercalcemia, respectively, genetic diseases characterized by perturbations in Ca(2+) homeostasis. Altogether, these data define a Ca(2+) binding pocket within the CaSR VFTM that may be conserved in several other class III GPCRs, thereby providing a molecular basis for extracellular Ca(2+) sensing by these receptors.  相似文献   

12.
Gastrointestinal reflux disease and eosinophilic esophagitis are characterized by basal cell hyperplasia. The extracellular calcium-sensing receptor (CaSR), a G protein-coupled receptor, which may be activated by divalent agonists, is expressed throughout the gastrointestinal system. The CaSR may regulate proliferation or differentiation, depending on cell type and tissue. The current experiments demonstrate the expression of the CaSR on a human esophageal epithelial cell line (HET-1A) and the location and expression of the CaSR in the human esophagus. CaSR immunoreactivity was seen in the basal layer of normal human esophagus. CaSR expression was confirmed in HET-1A cells by RT-PCR, immunocytochemistry, and Western blot analysis. CaSR stimulation by extracellular calcium or agonists, such as spermine or Mg(2+), caused ERK1 and 2 activation, intracellular calcium concentration ([Ca(2+)](i)) mobilization (as assessed by microspecfluorometry using Fluo-4), and secretion of the multifunctional cytokine IL-8 (CX-CL8). HET-1A cells transiently transfected with small interfering (si)RNA duplex against the CaSR manifested attenuated responses to Ca(2+) stimulation of phospho- (p)ERK1 and 2, [Ca(2+)](i) mobilization, and IL-8 secretion, whereas responses to acetylcholine (ACh) remained sustained. An inhibitor of phosphatidylinositol-specific phospholipase C (PI-PLC) (U73122) blocked CaSR-stimulated [Ca(2+)](i) release. We conclude that the CaSR is present on basal cells of the human esophagus and is present in a functional manner on the esophageal epithelial cell line, HET-1A.  相似文献   

13.
The molecular mechanisms responsible for aberrant calcium signaling in parathyroid disease are poorly understood. The loss of appropriate calcium-responsive modulation of PTH secretion observed in parathyroid disease is commonly attributed to decreased expression of the calcium-sensing receptor (CaSR), a G protein-coupled receptor. However, CaSR expression is highly variable in parathyroid adenomas, and the lack of correlation between CaSR abundance and calcium-responsive PTH kinetics indicates that mechanisms independent of CaSR expression may contribute to aberrant calcium sensing in parathyroid disease. To gain a better understanding of parathyroid tumors and the molecular determinants that drive parathyroid adenoma development, we performed gene expression profiling on a panel of 64 normal and neoplastic parathyroid tissues. The microarray data revealed high-level expression of genes known to be involved in parathyroid biology (PTH, VDR, CGA, CaSR, and GCM2). Moreover, our screen identified regulator of G protein signaling 5 (RGS5) as a candidate inhibitor of CaSR signaling. We confirmed RGS5 to be highly expressed in parathyroid adenomas relative to matched-pair normal glands. Transient expression of RGS5 in cells stably expressing CaSR resulted in dose-dependent abrogation of calcium-stimulated inositol trisphosphate production and ERK1/2 phosphorylation. Furthermore, we found that RGS5-nullizygous mice display reduced plasma PTH levels, an outcome consistent with attenuated opposition to CaSR activity. Collectively, these data suggest that RGS5 can act as a physiological regulator of calcium sensing by CaSR in the parathyroid gland. The abnormally elevated expression of RGS5 observed in parathyroid adenomas could thus represent a novel mechanism of CaSR desensitization in patients with primary hyperparathyroidism.  相似文献   

14.
The Ca(2+) release-activated Ca(2+) (CRAC) channel is the most well documented of the store-operated ion channels that are widely expressed and are involved in many important biological processes. However, the regulation of the CRAC channel by intracellular or extracellular messengers as well as its molecular identity is largely unknown. Specifically, in the absence of extracellular divalent cations it becomes permeable to monovalent cations with a larger conductance, however this monovalent cation current inactivates rapidly by an unknown mechanism. Here we found that Ca(2+) dissociation from a site on the extracellular side of the CRAC channel is responsible for the inactivation of its Na(+) current, and Ca(2+) occupancy of this site otherwise potentiates its Ca(2+) as well as Na(+) currents. This Ca(2+)-dependent potentiation is required for the normal functioning of CRAC channels.  相似文献   

15.
Transient changes in the intracellular concentration of Ca2+ provide a major signal for the regulation of many ion channels and enzymes in central neurones. In contrast, changes in extracellular Ca2+ are thought to play little or no signaling role. However, concentrations of extracellular calcium in the central nervous system do change dramatically during intense physiological and pathological stimulation, and recent studies have identified a number of membrane proteins that can sense and respond to changes in extracellular Ca2+. These include the recently cloned Ca(2+)-sensing receptor, hemi-gap-junction channels, and a potential Ca(2+)-sensing cation channel. Lowering extracellular Ca2+ strongly depolarizes and excites cultured hippocampal neurones. The excitation can be detected with decreases from physiological concentrations of as little as 100 microM. The depolarization results from activation of a nonselective cation current, which is sensitive to block by divalent and polyvalent cations. In outside-out patches, lowering Ca2+ induces a single-channel current with a conductance of 36 pS. Activation of this cation channel, in response to decreases in extracellular Ca2+, likely plays a key role in a positive feedback system of excessive neuronal depolarization, which accompanies intense excitatory activity in the hippocampus.  相似文献   

16.
The calcium-sensing receptors (CaSRs) exist in a variety of tissues and cells. In 2001, Canaff et al. first identified its expression in liver tissue and primary cultured hepatocytes, and demonstrated that GdCl3 (a specific agonist of CaSR) can cause an increase in intracellular calcium and bile flow. However, authors did not elucidate its mechanisms. Therefore, this study sought to detect CaSR expression in BRL cell line, which is derived from buffalo rat liver, and to reveal the cellular signal transduction pathway by which the CaSR activation results in increased intracellular calcium by BRL cells. In this study, the expression and distribution of CaSR were detected by RT-PCR, Western blotting, and immunofluorescence, and the intracellular calcium concentration [Ca2+]i was measured using LCSM. The results showed that CaSR mRNA and protein were expressed in BRL cells and mainly distributed in cell membrane and cytoplasm. Increased extracellular calcium or GdCl3 could increase intracellular calcium concentration and CaSR expression. Moreover, this increase of [Ca2+]i could be inhibited or even abolished by U73122 (a specific inhibitor of PLC), 2-APB (an inhibitor of IP3 receptor), and thapsigargin (an inhibitor of endoplasmic reticulum calcium pump). In conclusion, CaSR is functionally expressed in BRL cells, and activation of CaSR involves in increased intracellular calcium through Gq–PLC–IP3 pathway.  相似文献   

17.
The extracellular, G protein-linked Ca(2+)-sensing receptor (CaSR), first identified in the parathyroid gland, is expressed in several tissues and cells and can be activated by Ca(2+) and some other inorganic cations and organic polycations. Calcimimetics such as NPS (R)-N-(3-phenylpropyl)-alpha-methyl-3-methoxybenzylamine hydrochloride (R-467), a phenylalkylamine, are thought to activate CaSR by allosterically increasing the affinity of the receptor for Ca(2+). When tested for its effect on insulin release in C57BL/6 mice, R-467 had no effect under basal conditions but enhanced both phases of glucose-stimulated release. The betaHC9 cell also responded to R-467 and to the enantiomer S-467 with a stimulation of insulin release. In subsequent studies with the betaHC9 cell, it was found that the stimulatory effect was due to activation of a nonspecific cation channel, depolarization of the beta-cell, and increased Ca(2+) entry. No other stimulatory mechanism was uncovered. The depolarization of the cell induced by the calcimimetic could be due to a direct action on the channel or via the CaSR. However, it appeared not to be mediated by G(i), G(o), G(q/11), or G(s). The novel mode of action of the calcimimetic, combined with the glucose-dependence of the stimulation on islets, raises the possibility of a totally new class of drugs that will stimulate insulin secretion during hyperglycemia but which will not cause hypoglycemia.  相似文献   

18.
To understand the role of the colonic extracellular calcium-sensing receptor (CaSR) in calcium chemoprotection against colon cancer, we activated the CaSR with 5 mM Ca(2+) on HT-29 cells, an adenocarcinoma cell line. High Ca(2+) stimulated the upregulation (as assessed by RT-PCR) and the secretion of Wnt5a (assessed by Western blot), a noncanonical Wnt family member. Inhibiting CaSR activity with a short interfering RNA (siRNA) duplex against the CaSR reduced CaSR protein and prevented the secretion of Wnt5a. Dominant negative CaSR (R185Q) or siRNA blocked the high Ca(2+)-mediated inhibition of the beta-catenin reporter TOPflash. The CaSR/Wnt5a inhibition of beta-catenin reporter was prevented by dominant negative ubiquitin ligase seven in absentia homolog 2 (Siah2). In low-calcium medium, overexpressing Wnt5a increased Siah2 amplicons and protein. Inducing the expression of full-length adenomatous polyposis coli (APC) prevented CaSRmediated increases of Siah2 and Wnt5a. Overexpressing the receptor tyrosine kinase-like orphan receptor 2 (Ror2) increased Wnt5a and CaSR-mediated inhibition of TOPflash. Conditioned medium from Wnt5a-transfected cells added to HT-29 cells in low-Ca(2+) medium inhibited the beta-catenin reporter. This inhibition was blocked dose responsively by Frizzled-8/Fc chimeric antibody. Overexpression of Ror2 in HT-29 cells in low-Ca(2+) medium increased the inhibition of beta-catenin reporter caused by recombinant Wnt5a protein compared with addition of Wnt5a protein alone. Our findings demonstrate that APC status plays a key role as a determinant of Wnt5a secretion and suggest that CaSR-mediated secretion of Wnt5a will inhibit defective Wnt signaling in APC-truncated cells in an autocrine manner.  相似文献   

19.
A full-length cDNA encoding a Ca2+-sensing receptor (CaSR) expressed in rat dorsal root ganglia (DRG) was identified using rapid amplification of 5'-cDNA ends and primer extension and then cloned into the plasmid vector pCR3.1. The DNA sequence of the DRG CaSR was 99.9% homologous with published rat kidney CaSR in the coding region and 247 bp upstream of the start site but showed little homology 5' to this site, which maps to exonic junction I/II, supporting the hypothesis that CaSR message arises as a splice variant and showing tissue-to-tissue heterogeneity. Western blot revealed a doublet of 140 and 160 kDa in a thyroparathyroid preparation and a single 140-kDa band in DRG. Deglycosylation using N-glycanase increased the mobility of CaSR protein from both DRG and thyroparathyroid, whereas endo-H was without effect, indicating that the DGR CaSR is a mature form of the receptor. A DRG CaSR-pEGFP fusion product was constructed, and when transfected into HEK-293 cells, it was distributed at the cell membrane and resulted in extracellular Ca2+ (0.5-3 mM)-evoked increases in intracellular Ca2+, which in some instances exhibited oscillatory behavior. We conclude that DRG CaSR cDNA arises from tissue-specific alternative splicing of a single gene, that the amino acid sequence of DRG CaSR is homologous to other known CaSRs, and that the DRG CaSR undergoes differential posttranslational processing relative to the thyroparathyroid CaSR and is functionally active when transfected into a human-derived cell line.  相似文献   

20.
The calcium-sensing receptor (CaSR) regulates organismal Ca(2+) homeostasis. Dysregulation of CaSR expression or mutations in the CASR gene cause disorders of Ca(2+) homeostasis and contribute to the progression or severity of cancers and cardiovascular disease. This brief review highlights recent findings that define the CaSR life cycle, which controls the cellular abundance of CaSR and CaSR signaling. A novel mechanism, termed agonist-driven insertional signaling (ADIS), contributes to the unique hallmarks of CaSR signaling, including the high degree of cooperativity and the lack of functional desensitization. Agonist-mediated activation of plasma membrane-localized CaSR increases the rate of insertion of CaSR at the plasma membrane without altering the constitutive endocytosis rate, thereby acutely increasing the maximum signaling response. Prolonged CaSR signaling requires a large intracellular ADIS-mobilizable pool of CaSR, which is maintained by signaling-mediated increases in biosynthesis. This model provides a rational framework for characterizing the defects caused by CaSR mutations and the altered functional expression of wild-type CaSR in disease states. Mechanistic dissection of ADIS of CaSR should lead to optimized pharmacological approaches to normalize CaSR signaling in disorders of Ca(2+) homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号