首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Spores of the true slime mold Physarum polycephalum were examined at several stages of their development by means of scanning and transmission electron microscopy. The spores were globose, spine-covered structures produced within a sporangium enclosed in a tough, noncellular peridium. Cytologically, the spore represented a typical eukaryotic cell, having discrete organelles similar to spores of other myxomycetes. The presence of dictyosomes, helical filaments, and microbodies in these cells, as well as the further elucidation of the cell wall and the “polysaccharide-containing” areas, represent new contributions to the ultrastructure of the myxomycete spore. Of special interest were observations of metaphase nuclei just prior to spore cleavage, interphase nuclei in young spores, and nuclei in mature spores containing synaptonemal complexes. These observations indicate that in Physarum polycephalum mitosis occurs just prior to spore cleavage, and meiosis takes place after spore cleavage.  相似文献   

6.
动蛋白(kinesin)是一种微管系统的运动蛋白(motor protein),它能通过水解ATP将化学能转化为机械能,推动微管产生运动.微管系统作为一种主要的细胞骨架存在于所有真核细胞中,它们对于维持细胞形态,细胞的分裂,染色体的运动及细胞内的物质运输起着重要作用.细胞质力蛋白(dynein)和动蛋白是公认的推动这类运动的运动蛋白.自从1985年Vole首次在鱿鱼大轴突(squidgiant axon)中发现动蛋白以来,人们先后在许多种动物细胞中发现有动蛋白存在,甚至在低等真核生物棘状变形虫,盘基网柄茵和高等植物烟草花粉管中发现有动蛋白的存在.研究结果表明,动蛋白参与了真核细胞中的许多重要生命活动,如细胞中的细胞器及囊泡的运动,染色体排裂和分离等运动.动蛋白很可能是普通存在于所有真核细胞中的一种运动蛋白.多头绒泡菌(Physarum poly-cephalum)属于粘菌纲(Myxomycetes)的一种低等真核生物,它表现出许多显著的细胞运动特征如原生质团迁移,细胞质的穿梭运动(shuttle streaming)等,是研究非肌细胞运动和收缩蛋白的经典材料.在多头绒泡菌胞质中也具有微管系统,它们构成其纺锤丝等,参与染色体的运动及其它胞质运动,但至今国内外尚无人证明其中有与微管作用的运动蛋白——动蛋白的存在,作者利用抗牛脑动蛋白的单克隆抗体,  相似文献   

7.
8.
To help elucidate the role of protein in the maturation of ribosomal RNA in cultured L cells, we have studied the effects of cycloheximide upon the maturation process and upon the intranucleolar ribonucleoprotein particles containing the "preribosomal RNA's." Five parameters of these particles were analyzed: (a) extractability, (b) sedimentation characteristics in sucrose gradients, (c) RNA composition, (d) buoyant density in CsCl gradients, and (e) effects of increased ionic strength on the buoyant density. When protein synthesis is inhibited, the rate of conversion of the precursor 45S ribosomal RNA is rapidly diminished, falling to less than 30% of the control rate within 1 hr. Nevertheless, in terms of the first three parameters there is no difference between control and cycloheximide nucleolar particles. However, the cycloheximide particles have a lower and more heterogeneous buoyant density and a more variable response to increased ionic strength. The results imply that the protein composition of the cycloheximide particles is different from that of particles from control cells, and that the entire protein complement is not necessary for the first cleavages in the maturation process, although it is necessary for the normal rate of processing and for the eventual appearance of both 18S and 28S rRNA in mature ribosomes.  相似文献   

9.
The motility of Physarum polycephalum microplasmodia depends upon the conditions under which they are cultured. To investigate the relation between protoplasmic streaming and filamentous structures observed in the cytoplasm, microplasmodia were collected from shaken cultures, agar plates and shaken cultures of the organism which had previously been plate-cultured.
No sign of streaming could be found in materials in shaken culture, even in those which were shaken after they had once been motile on an agar plate. The immotile microplasmodia in both cases failed to contain any filamentous structures.
Microplasmodia on agar plates were motile, showing vigorous peripheral movements (projection of pseudopods) and inner protoplasmic streaming. In the motile organisms two types of filamentous structures were observed: loose networks just inside the plasma membrane of rounded pseudopods with smooth surfaces; and compact, straight bundles beneath the pseudopods or in much deeper locations.  相似文献   

10.
THE EFFECT OF ACTIDIONE ON MITOSIS IN THE SLIME MOLD PHYSARUM POLYCEPHALUM   总被引:6,自引:4,他引:2  
Actidione, reportedly a specific inhibitor of protein synthesis, was found to reduce the incorporation of labeled amino acids into proteins of the slime mold Physarum polycephalum without drastically inhibiting the incorporation of nucleic acid precursors into RNA. This inhibitor was found to completely block the ensuing mitosis if it was added at any time between telophase and late prophase. Plasmodia given Actidione in late prophase (about the time of nucleolar dissolution) went on through telophase to reconstruction even though nuclear amino acid incorporation was drastically reduced during that period.  相似文献   

11.
DNA metabolism in the slime mold Physarum polycephalum was studied by centrifugation in CsCl of lysates of cultures labeled with radioactive thymidine at various times in the cell cycle. During the G2 (premitotic) phase of the cell cycle, two components of the DNA are labeled. One component is lighter (buoyant density 1.686 g/cc) than the mean of the principal DNA (1.700 g/cc), and one is heavier (approximately 1.706 g/cc). The labeled light DNA was identified chemically by its denaturability, its susceptibility to DNase, and the recovery of its radioactivity in thymine. Cell fractionation studies showed that the heavy and the principal DNA components are located in the nucleus and that the light DNA is in the cytoplasm. The light DNA comprises approximately 10% of the DNA. About ⅓–½ of the light DNA is synthesized during the S period, and the remainder is synthesized throughout G2 (there is no G1 in Physarum). The light DNA is metabolically stable. A low, variable level of incorporation of radioactive thymidine into the principal, nuclear DNA component was observed during G2.  相似文献   

12.
多头绒泡菌染色体构建过程的形态学研究   总被引:4,自引:0,他引:4  
以同步核内有丝分裂的多头绒泡菌(Physarum polycephalum)原质团为材料,在有丝分裂周期中连续取材,按常规方法制备超薄切片,在电镜下研究了染色体形态构建的整个过程。有丝分裂前期,首先是G_2期凝集的染色质块逐渐解集缩成为松散状,染色质在松散的同时逐渐改组成直径为80~150nm的松散染色线结构。接着是在松散的染色线上形成一些电子密度高的集缩区,随着集缩区的增多和扩展,染色线缩短变粗,最后形成直径300~350nm的染色体。上述两个过程各需30min左右。与上述过程同时发生的是,核仁由中央位置逐渐移向边缘,前期50min左右时在近核膜处呈团块状解体。染色体形态构建的整个过程约需1h,可分为染色质的松散改组和集缩两个连续的步骤,25~30nm染色质纤维是这一过程中能分辨的最细的形态单位。  相似文献   

13.
The rat liver nucleolus, after fragmentation induced by ethionine treatment, has been found to undergo complete reformation by adenine in the presence of a dose of cycloheximide sufficient to cause inhibition of protein synthesis by 90–95%. In contrast, actinomycin D given along with adenine was followed by the appearance of a small compact mass containing only the fibrillar component with no evident granules. This structure resembled pseudonucleoli seen in the anucleolate mutant of Xenopus laevis or in certain early stages of amphibian oocytes. Actinomycin D administered 2 hr after adenine induced a segregation of the fibrillar and granular components of nucleoli similar to that induced in the normal nucleolus. The implications of these findings in relation to nucleolar organization are briefly discussed.  相似文献   

14.
15.
Plasmodia of the acellular slime mold, Physarum polycephalum, reveal a complex and changing pattern of birefringence when examined with a sensitive polarizing microscope. Positively birefringent fibrils are found throughout the ectoplasmic region of the plasmodium. In the larger strands they may be oriented parallel to the strand axis, or arranged circularly or spirally along the periphery of endoplasmic channels. Some fibrils exist for only a few minutes, others for a longer period. Some, particularly the circular fibrils, undergo changes in birefringence as they undergo cyclic deformations. In the ramifying strand region and the advancing margin there is a tendency for fibrils of various sizes to become organized into mutually orthogonal arrays. In some plasmodia the channel wall material immediately adjacent to the endoplasm has been found to be birefringent. The sign of endoplasmic birefringence is negative, and its magnitude is apparently constant over the streaming cycle. The pattern of plasmodial birefringence and its changes during the shuttle streaming cycle of Physarum are considered in the light of several models designed to explain either cytoplasmic streaming alone or the entire gamut of plasmodial motions. The results of this and other recent physical studies suggest that both streaming and the various other motions of the plasmodium may very likely be explained in terms of coordinated contractions taking place in the fibrils which are rendered visible in polarized light.  相似文献   

16.
17.
18.
以进行自然同步核内有丝分裂的多头绒泡菌(Physarum polycephalum)原生质团为材料,应用常规制片和整体银染后制片的电镜技术研究了有丝分裂后细胞核的形态构建过程。形成新核仁的前体物质在有丝分裂中期时散在染色体区域的周围,末期时与染色体组一起到达两极。子细胞核刚形成时核仁物质与染色质混合,以后核仁物质相互汇合并同染色质逐渐分开,最后形成一个大核仁。染色质在有丝分裂后期开始解集缩,到两极后在新形成的子核中进一步松解。染色质在充分松解后又开始集缩活动,形成一些集缩比较紧密的染色质小块。随着细胞核的进一步发育在核膜和核仁之间形成许多大小不等,形状不规则的染色质团块。  相似文献   

19.
多头绒泡菌PhysarumpolycophalumSchw的营养生长阶段为没有细胞壁的原生质团(合胞体),内部众多的细胞核进行着同步的核内有丝分裂,本文电镜下研究了细胞核在有丝分裂周期中的结构变化。有丝分裂前期,染色质经松散改组和集缩形成染色体,核仁由中央移向边缘,并在近核膜处解体;中期核膜不消失,在核内形成纺锤体,核仁解体后的物质是不规则状散在于核内;有丝分裂后核膜的破裂处重新愈合,染色体解集缩成染色质,分散的核仁物质逐渐合并形成新的核仁。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号