首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein purification of recombinant proteins constitutes a significant cost of biomanufacturing and various efforts have been directed at developing more efficient purification methods. We describe a protein purification scheme wherein Ralstonia eutropha is used to produce its own "affinity matrix," thereby eliminating the need for external chromatographic purification steps. This approach is based on the specific interaction of phasin proteins with granules of the intracellular polymer polyhydroxybutyrate (PHB). By creating in-frame fusions of phasins and green fluorescent protein (GFP) as a model protein, we demonstrated that GFP can be efficiently sequestered to the surface of PHB granules. In a second step, we generated a phasin-intein-GFP fusion, wherein the self-cleaving intein can be activated by the addition of thiols. This construct allowed for the controlled binding and release of essentially pure GFP in a single separation step. Finally, pure, active beta-galactosidase was obtained in a single step using the above described method.  相似文献   

2.
In the present study, a pure culture of Ralstonia eutropha was used to degrade gaseous ethanethiol. Ethane thiol at various initial concentrations ranging from 115 to 320 mg/m3 was degraded almost completely within 120 ~ 168 h, while at higher concentrations up to 452 mg/m3, removal efficiency declined. It was likely that ethanethiol was used as the source of energy by R. eutropha, since no clear increase in the biomass concentration was observed. Kinetic data of ethanethiol bidegradation could be fitted using the Monod model. The kinetic parameters were q m = 0.23 (mg ethanethiol/g biomass/h), and K s = 1.379 (mg/L). The mineralization pathway of ethanethiol through sulphate, as the detected product, and the energy production were discussed in some detail.  相似文献   

3.
We describe the development of a novel protein expression system based on the industrial fermentation organism Ralstonia eutropha (formerly known as Alcaligenes eutrophus) NCIMB 40124. This new system overcomes some of the shortcomings of traditional Escherichia coli-based protein expression systems, particularly the propensity of such systems to form inclusion bodies during high-level expression. Using a proteomics approach, we identified promoters that can be induced by simple process parameters or medium compositions in high-density cell culture or shake flasks, respectively. By combining newly developed molecular biological tools with a high-cell-density fermentation process, we were able to produce high levels (>1 g/liter) of soluble, active organophosphohydrolase, a model enzyme prone to inclusion body formation in E. coli.  相似文献   

4.
5.
Class I and III polyhydroxyalkanoate (PHA) synthases catalyze the conversion of beta-hydroxybutyryl coenzyme A (HBCoA) to polyhydroxybutyrate. The Class I PHA synthase from Ralstonia eutropha has been purified by numerous labs with reported specific activities that vary between 1 and 160 U/mg. An N-terminal (His)6-PHA synthase was constructed and purified with specific activity of 40 U/mg. The variable activity is shown to be related to the protein's propensity to aggregate and not to incomplete post-translational modification by coenzyme A and a phosphopantetheinyl transferase. The substrate specificities of this enzyme and the Class III PHA synthase from Allochromatium vinosum have been determined with nine analogs of varied chain length and branching, OH group position within the chain, and thioesters. The results suggest that in vitro, both PHA synthases are very specific and provide further support for their active site structural similarities. In vitro results differ from studies in vivo.  相似文献   

6.
Class I polyhydroxyalkanoate (PHA) synthase from Ralstonia eutropha (PhaCRe) was engineered so as to acquire an unusual lactate (LA)-polymerizing activity. To achieve this, the site-directed saturation mutagenesis of PhaCRe was conducted at position 510, which corresponds to position 481 in the initially discovered class II LA-polymerizing PHA synthase (PhaC1PsSTQK), a mutation in which (Gln481Lys) was shown to be essential to its LA-polymerizing activity (Taguchi et al., Proc Natl Acad Sci USA 105(45):17323–17327, 2008). The LA-polymerizing activity of the PhaCReA510X mutants was evaluated based on the incorporation of LA units into the P[3-hydroxybutyrate(3HB)] backbone in vivo using recombinant Escherichia coli LS5218. Among 19 PhaCRe(A510X) mutants, 15 synthesized P (LA-co-3HB), indicating that the 510 residue plays a critical role in LA polymerization. The polymer synthesized by PhaCReA510S was fractionated using gel permeation chromatography in order to remove the low molecular weight fractions. The 13C and 1H NMR analyses of the high molecular weight fraction revealed that the polymer was a P(7 mol% LA-co-3HB) copolymer with a weight-averaged molecular weight of 3.2?×?105 Da. Interestingly, the polymer contained an unexpectedly high ratio of an LA-LA*-LA triad sequence, suggesting that the polymer synthesized by PhaCRe mutant may not be a random copolymer, but presumably had a block sequence.  相似文献   

7.
The bacterium Ralstonia eutropha forms cytoplasmic granules of polyhydroxybutyrate that are a source of biodegradable thermoplastic. While much is known about the biochemistry of polyhydroxybutyrate production, the cell biology of granule formation and growth remains unclear. Previous studies have suggested that granules form either in the inner membrane, on a central scaffold, or in the cytoplasm. Here we used electron cryotomography to monitor granule genesis and development in 3 dimensions (3-D) in a near-native, "frozen-hydrated" state in intact Ralstonia eutropha cells. Neither nascent granules within the cell membrane nor scaffolds were seen. Instead, granules of all sizes resided toward the center of the cytoplasm along the length of the cell and exhibited a discontinuous surface layer more consistent with a partial protein coating than either a lipid mono- or bilayer. Putatively fusing granules were also seen, suggesting that small granules are continually generated and then grow and merge. Together, these observations support a model of biogenesis wherein granules form in the cytoplasm coated not by phospholipid but by protein. Previous thin-section electron microscopy (EM), fluorescence microscopy, and atomic force microscopy (AFM) results to the contrary may reflect both differences in nucleoid condensation and specimen preparation-induced artifacts.  相似文献   

8.
Self-assembling peptides have emerged as an attractive scaffold material for tissue engineering, yet the expense associated with solid phase chemical synthesis has limited their broad use. In addition, the fidelity of chemical synthesis constrains the length of polypeptides that can be produced homogeneously by this method. Template-derived biosynthesis by recombinant DNA technology may overcome both of these problems. However, recovery of polypeptides from recombinant protein expression systems typically involves multi-step purification schemes. In this study, we report an integrated approach to recombinantly produce and purify self-assembling peptides from the recently developed expression host Ralstonia eutropha. The purification is based on the specific affinity of carbohydrate binding modules (CBMs) to cellulose. In a first step, we identified CBMs that express well in R. eutropha by assembling a fusion library of green fluorescent protein (GFP) and CBMs and determining the fluorescence of cell-free extracts. Three GFP::CBM fusions were found to express at levels similar to GFP alone, of which two CBMs were able to mediate cellulose binding of the GFP::CBM fusion. These two CBMs were then fused to multiple repeats of the self-assembling peptide RAD16-I::E (N-RADARADARADARADAE-C). The fusion protein CBM::E::(RAD16-I::E)4 was expressed in R. eutropha and purified using the CBM's affinity for cellulose. Subsequent proteolytic cleavage with endoproteinase GluC liberated RAD16-I::E peptide monomers with similar properties to the chemically synthesized counterpart RAD16-I.  相似文献   

9.
On complex medium Escherichia coli strains carrying hybrid plasmid pBEC/EE:11.0, pSKBEC/BE:9.0, pSKBEC/PP:3.3, or pSKBEC/PP:2.4 harboring genomic DNA of Ralstonia eutropha HF39 produced a blue pigment characterized as indigo by several chemical and spectroscopic methods. A 1,251-bp open reading frame (bec) was cloned and sequenced. The deduced amino acid sequence of bec showed only weak similarities to short-chain acyl-coenzyme A dehydrogenases, and the gene product catalyzed formation of indoxyl, a reactive preliminary stage for production of indigo.  相似文献   

10.
The microbial surface and flocculability were qualitatively characterized through the combination of the surface thermodynamic and the extended DLVO approaches, with Ralstonia eutropha, a polyhydroxybutyrate-producing bacterium, as an example. The negativity of the ζ potential of R. eutropha decreased from the initial −19.5 to −11 mV in its cultivation with the consumption of glucose. The total interfacial free energy (ΔG adh) was changed from −80 to 28.5 mJ m−2 in its entire growth process. This suggests that the bacterial surface changed from hydrophobic into hydrophilic, resulting in an alteration of its surface characteristics and flocculability in its different growth phases. As a result, the stability ratio of suspensions increased with the increasing cultivation time, indicating that the cell particles became more repulsive with each other and led to a more stable suspension of R. eutropha in its cultivation. The obtained information in this work might be useful for better understanding the surface characteristics and the flocculability and even manipulating its flocculability in the microbial growth process.  相似文献   

11.
This study describes metabolite profiles of Ralstonia eutropha H16 focusing on biosynthesis of polyhydroxyalkanoates (PHAs), bacterial polyesters attracted as biodegradable bio-based plastics. As CoA-thioesters are important intermediates in PHA biosynthesis, four kinds of acyl-CoAs with medium chain length were prepared and used to establish analytical conditions for capillary electrophoresis-electron spray ionization-tandem mass spectrometry (CE–ESI-MS/MS). Metabolites were extracted from R. eutropha cells in growth, PHA production, and stationary phases on fructose and PHA production phase on octanoate, and subjected to stable isotope dilution-based comparative quantification by multiple reaction monitoring using CE–ESI-MS/MS and 13C-labeled metabolites prepared by extraction from R. eutropha mutant grown on U-13C6-glucose. This procedure allowed to quantify relative changes of 94 ionic metabolites including CoA-thioesters. Hexose-phosphates except for glucose 1-phosphate were decreased in the PHA production phase than in the growth phase, suggesting reduced flux of sugar degradation after the cell growth. Several intermediates in TCA cycle and gluconeogenesis were increased in the PHA production phase on octanoate. Interestingly, ribulose 1,5-bisphosphate were detected in all the samples examined, raising possibilities of CO2 fixation by Calvin–Benson–Bassham cycle in this bacterium even under heterotrophic growth conditions. Turnover of acyl moieties through β-oxidation was suggested to be active on fructose, as CoA-thioesters of C6 and C8 were detected in the fructose-grown cells. In addition, major metabolic pools in R. eutropha cells were estimated from the signal intensities. The results of the present study provided new insights into global metabolisms in PHA-producing R. eutropha.  相似文献   

12.
13.
The ability of the Ralstonia eutropha cells to utilize formaldehyde (FA) as the only source of carbon and energy was studied in the kissiris-immobilized cell bioreactor (KICB) in batch-recirculation and continuous modes of operation. In batch-recirculation experiments, the test bacterium could tolerate concentrations of FA up to 1,400 mg/L at 30°C and aeration rate equal to 0.75 vvm (r S = 7.25 mg/L/h, q S = 0.019 gFA/gcell/h). However, further increase of initial FA concentration resulted in degradation reaction of FA to stop at 1,600 mg/L. Results of continuous mode experiments showed that the biodegradation performance of the KICB was dependent on both feed flow rate and inlet FA concentration parameters. The optimum feed flow rate which corresponded to the highest biodegradation rate (r S = 240.3 mg/L/h) was observed at Q = 18 mL/min when KICB did not operate under the external mass transfer limiting regime. Substrate inhibition kinetics (Edwards and Luong equations) were used to describe the experimental specific degradation rates data. According to the Luong model, the values of the maximum specific degradation rate (q max), half-saturation coefficient (K S), the maximum allowable FA concentration (S m), and the shape factor (n) were 0.178 gFA/gcell/h, 250.9 mg/L, 1,600 mg/L, and 1.86, respectively.  相似文献   

14.
Ralstonia eutropha is a strictly respiratory facultative lithoautotrophic beta-proteobacterium. In the absence of organic substrates, H2 and CO2 are used as sole sources of energy and carbon. In the absence of oxygen, the organism can respire by denitrification. The recent determination of the complete genome sequence of strain H16 provides the opportunity to reconcile the results of previous physiological and biochemical studies in light of the coding capacity. These analyses revealed genes for several isoenzymes, permit assignment of well-known physiological functions to previously unidentified genes, and suggest the presence of unknown components of energy metabolism. The respiratory chain is fueled by two NADH dehydrogenases, two uptake hydrogenases and at least three formate dehydrogenases. The presence of genes for five quinol oxidases and three cytochrome oxidases indicates that the aerobic respiration chain adapts to varying concentrations of dioxygen. Several additional components may act in balancing or dissipation of redox energy. Paralogous sets of nitrate reductase and nitric oxide reductase genes result in enzymatic redundancy for denitrification.  相似文献   

15.
Mobilization of poly(3-hydroxybutyrate) in Ralstonia eutropha   总被引:1,自引:0,他引:1       下载免费PDF全文
Ralstonia eutropha H16 degraded (mobilized) previously accumulated poly(3-hydroxybutyrate) (PHB) in the absence of an exogenous carbon source and used the degradation products for growth and survival. Isolated native PHB granules of mobilized R. eutropha cells released 3-hydroxybutyrate (3HB) at a threefold higher rate than did control granules of nonmobilized bacteria. No 3HB was released by native PHB granules of recombinant Escherichia coli expressing the PHB biosynthetic genes. Native PHB granules isolated from chromosomal knockout mutants of an intracellular PHB (i-PHB) depolymerase gene of R. eutropha H16 and HF210 showed a reduced but not completely eliminated activity of 3HB release and indicated the presence of i-PHB depolymerase isoenzymes.  相似文献   

16.
Polyhydroxybutyrate (PHB) is the most studied among a wide variety of polyhydroxyalkanoates, bacterial biodegradable polymers known as potential substitutes for conventional plastics. This work aimed at evaluating the use of enzymes to recover and purify the PHB produced by Ralstonia eutropha DSM545. Screening experiments allowed the selection of trypsin, bromelain and lysozyme among six enzymes, based on their efficiency in lysing cells of a non-PHB producing R. eutropha strain. Then, process conditions for high efficiency in PHB purification from the DSM545 cells were searched for the enzymes previously selected. The best result was achieved with 2.0% of bromelain (enzyme mass per biomass), equivalent to 14.1 U ml(-1), at 50 degrees C and pH 9.0, resulting in 88.8% PHB purity. Aiming at improving the process efficiency and reducing the enzyme cost, experiments were carried out with pancreatin, leading to 90.0% polymer purity and an enzyme cost three times lower than the one obtained with bromelain. The molecular mass analysis of PHB showed no polymer degradation. Therefore, this work demonstrates the potential of using enzymes in order to recover and purify PHB and bacterial biopolymers in general.  相似文献   

17.
In this study, a propionate CoA-transferase (H16_A2718; EC 2.8.3.1) from Ralstonia eutropha H16 (Pct Re ) was characterized in detail. Glu342 was identified as catalytically active amino acid residue via site-directed mutagenesis. Activity of Pct Re was irreversibly lost after the treatment with NaBH4 in the presence of acetyl-CoA as it is shown for all CoA-transferases from class I, thereby confirming the formation of the covalent enzyme-CoA intermediate by Pct Re . In addition to already known CoA acceptors for Pct Re such as 3-hydroxypropionate, 3-hydroxybutyrate, acrylate, succinate, lactate, butyrate, crotonate and 4-hydroxybutyrate, it was found that glycolate, chloropropionate, acetoacetate, valerate, trans-2,3-pentenoate, isovalerate, hexanoate, octanoate and trans-2,3-octenoate formed also corresponding CoA-thioesters after incubation with acetyl-CoA and Pct Re . Isobutyrate was found to be preferentially used as CoA acceptor amongst other carboxylates tested in this study. In contrast, no products were detected with acetyl-CoA and formiate, bromopropionate, glycine, pyruvate, 2-hydroxybutyrate, malonate, fumarate, itaconate, β-alanine, γ-aminobutyrate, levulate, glutarate or adipate as potential CoA acceptor. Amongst CoA donors, butyryl-CoA, crotonyl-CoA, 3-hydroxybutyryl-CoA, isobutyryl-CoA, succinyl-CoA and valeryl-CoA apart from already known propionyl-CoA and acetyl-CoA could also donate CoA to acetate. The highest rate of the reaction was observed with 3-hydroxybutyryl-CoA (2.5 μmol mg?1 min?1). K m values for propionyl-CoA, acetyl-CoA, acetate and 3-hydroxybutyrate were 0.3, 0.6, 4.5 and 4.3 mM, respectively. The rather broad substrate range might be a good starting point for enzyme engineering approaches and for the application of Pct Re in biotechnological polyester production.  相似文献   

18.
Catabolism of 3-Nitrophenol by Ralstonia eutropha JMP 134   总被引:1,自引:0,他引:1       下载免费PDF全文
Ralstonia eutropha JMP 134 utilizes 3-nitrophenol as the sole source of nitrogen, carbon, and energy. The entire catabolic pathway of 3-nitrophenol is chromosomally encoded. An initial NADPH-dependent reduction of 3-nitrophenol was found in cell extracts of strain JMP 134. By use of a partially purified 3-nitrophenol nitroreductase from 3-nitrophenol-grown cells, 3-hydroxylaminophenol was identified as the initial reduction product. Resting cells of R. eutropha JMP 134 metabolized 3-nitrophenol to N-acetylaminohydroquinone under anaerobic conditions. With cell extracts, 3-hydroxylaminophenol was converted into aminohydroquinone. This enzyme-mediated transformation corresponds to the acid-catalyzed Bamberger rearrangement. Enzymatic conversion of the analogous hydroxylaminobenzene yields a mixture of 2- and 4-aminophenol.  相似文献   

19.

The potential of Ralstonia eutropha as a biocatalyst for desulfurization of dibenzothiophene (DBT) was studied in growing and resting cell conditions. The results of both conditions showed that sulfur was removed from DBT which accompanied by the formation of 2-hydroxybiphenyl (2-HBP). In growing cell experiments, glucose was used as an energy supplying substrate in initial concentrations of 55 mM (energy-limited) and 111 mM (energy-sufficient). The growing cell behaviors were quantitatively described using the logistic equation and maintenance concept. The results indicated that 2-HBP production was higher for the energy-sufficient cultures, while the values of the specific growth rate and the maintenance coefficient for these media were lower than those of the energy-limited cultures. Additionally, the kinetic studies showed that the half-saturation constant for the energy-limited cultures was 2 times higher than the energy-sufficient ones where the inhibition constant (0.08 mM) and the maximum specific DBT desulfurization rate (0.002 mmol gcell −1 h−1) were almost constant. By defining desulfurizing capacity (D DBT) including both the biomass concentration and time to reach a particular percentage of DBT conversion, the best condition for desulfurizing cell was determined at 23% gcell L−1 h−1 which corresponded with the resting cells that were harvested at the mid-exponential growth phase.

  相似文献   

20.
Class IV polyhydroxyalkanoate (PHA) synthase from Bacillus cereus YB-4 (PhaRC(YB4)) or B. megaterium NBRC15308(T) (PhaRC(Bm)) was expressed in Ralstonia eutropha PHB(-)4 to compare the ability to produce PHA and the substrate specificity of PhaRCs. PhaRC(YB4) produced significant amounts of PHA and had broader substrate specificity than PhaRC(Bm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号