首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nuclear transport factor 2 (NTF2) is a small homodimeric protein that interacts simultaneously with both RanGDP and FxFG nucleoporins. The interaction between NTF2 and Ran is essential for the import of Ran into the nucleus. Here we use mutational analysis to dissect the in vivo role of the interaction between NTF2 and nucleoporins. We identify a series of surface residues that form a hydrophobic patch on NTF2, which when mutated disrupt the NTF2-nucleoporin interaction. Analysis of these mutants in vivo demonstrates that the strength of this interaction can be significantly reduced without affecting cell viability. However, cells cease to be viable if the interaction between NTF2 and nucleoporins is abolished completely, indicating that this interaction is essential for the function of NTF2 in vivo. In addition, we have isolated a dominant negative mutant of NTF2, N77Y, which has increased affinity for nucleoporins. Overexpression of the N77Y protein blocks nuclear protein import and concentrates Ran at the nuclear rim. These data support a mechanism in which NTF2 interacts transiently with FxFG nucleoporins to translocate through the pore and import RanGDP into the nucleus.  相似文献   

2.
3.
Bidirectional movement of proteins and RNAs across the nuclear envelope requires Ran, a Ras-like GTPase. A genetic screen of the yeast Saccharomyces cerevisiae was performed to isolate conditional alleles of GSP1, a gene that encodes a homolog of Ran. Two temperature-sensitive alleles, gsp1-1 and gsp1-2, were isolated. The mutations in these two alleles map to regions that are structurally conserved between different members of the Ras family. Each mutant strain exhibits various nuclear transport defects. Both biochemical and genetic experiments indicate a decreased interaction between Ntf2p, a factor which is required for protein import, and the mutant GSP1 gene products. Overexpression of NTF2 can suppress the temperature sensitive phenotype of gsp1-1 and gsp1-2 and partially rescue nuclear transport defects. However, overexpression of a mutant allele of NTF2 with decreased binding to Gsp1p cannot rescue the temperature sensitivity of gsp1-1 and gsp1-2. Taken together, these data demonstrate that the interaction between Gsp1p and Ntf2p is critical for nuclear transport.  相似文献   

4.
Ran, a Ras-like GTPase, has been implicated in controlling the movement of proteins and RNAs in and out of the nucleus. We have constructed strains of Saccharomyces cerevisiae which produce fusion proteins containing glutathione-S-transferase (GST) fused to Gsp1p, which encodes the essential yeast Ran homolog, and a mutant form of Gsp1p that mimics the GTP-bound state. A major protein with the apparent size of 34 kDa co-purifies with the GTP-bound form of Gsp1p. This protein was identified as Yrb1p (Yeast Ran Binding Protein) and stimulates GTP hydrolysis by Gsp1p in the presence of Rna1p, the Gsp1 GTPase activating protein. Yrb1p is located in the cytoplasm with some concentration at the nuclear periphery. Temperature-sensitive yrb1 mutants are defective in nuclear protein import and RNA export. A mutation in the highly conserved Ran binding region of Yrb1p reduces its ability to interact with Gsp1p. These data indicate that Yrb1p functions with Gsp1p and suggest that together they can control transport of macromolecules across the nuclear envelope.  相似文献   

5.
A new role for nuclear transport factor 2 and Ran: nuclear import of CapG   总被引:1,自引:0,他引:1  
The small GTPase Ran plays a central role in nucleocytoplasmic transport. Nuclear transport of Ran itself depends on nuclear transport factor 2 (NTF2). Here, we report that NTF2 and Ran control nuclear import of the filamentous actin capping protein CapG. In digitonin-permeabilized cells, neither GTPγS nor the GTP hydrolysis-deficient Ran mutant RanQ69L affect transit of CapG to the nucleus in the presence of cytosol. Obstruction of nucleoporins prevents nuclear transport of CapG, and we show that CapG binds to nucleoporin62. In addition, CapG interacts with NTF2, associates with Ran and is furthermore able to bind the NTF2–Ran complex. NTF2–Ran interaction is required for CapG nuclear import. This is corroborated by a NTF2 mutant with reduced affinity for Ran and a Ran mutant that does not bind NTF2, both of which prevent CapG import. Thus, a ubiquitously expressed protein shuttles to the nucleus through direct association with NTF2 and Ran. The role of NTF2 may therefore not be solely confined to sustaining the Ran gradient in cells.  相似文献   

6.
Interactions with nucleoporins containing FxFG-repeat cores are crucial for the nuclear import of RanGDP mediated by nuclear transport factor 2 (NTF2). We describe here the 1.9 A resolution crystal structure of yeast NTF2-N77Y bound to a FxFG-nucleoporin core, which provides a basis for understanding this interaction and its role in nuclear trafficking. The two identical FxFG binding sites on the dimeric molecule are formed by residues from each chain of NTF2. Engineered mutants at the interaction interface reduce the binding of NTF2 to nuclear pores and cause reduced growth rates and Ran mislocalization when substituted for the wild-type protein in yeast. Comparison with the crystal structure of FG-nucleoporin cores bound to importin-beta and TAP/p15 identified a number of common features of their binding sites. The structure of the binding interfaces on these transport factors provides a rationale for the specificity of their interactions with nucleoporins that, combined with their weak binding constants, facilitates rapid translocation through NPCs during nuclear trafficking.  相似文献   

7.
Mitochondrial ATP synthase (F(1)F(o)-ATPase) is regulated by an intrinsic ATPase inhibitor protein. In the present study, we investigated the structure-function relationship of the yeast ATPase inhibitor by amino acid replacement. A total of 22 mutants were isolated and characterized. Five mutants (F17S, R20G, R22G, E25A, and F28S) were entirely inactive, indicating that the residues, Phe17, Arg20, Arg22, Glu25, and Phe28, are essential for the ATPase inhibitory activity of the protein. The activity of 7 mutants (A23G, R30G, R32G, Q36G, L37G, L40S, and L44G) decreased, indicating that the residues, Ala23, Arg30, Arg32, Gln36, Leu37, Leu40, and Leu44, are also involved in the activity. Three mutants, V29G, K34Q, and K41Q, retained normal activity at pH 6.5, but were less active at pH 7.2, indicating that the residues, Val29, Lys34, and Lys41, are required for the protein's action at higher pH. The effects of 6 mutants (D26A, E35V, H39N, H39R, K46Q, and K49Q) were slight or undetectable, and the residues Asp26, Glu35, His39, Lys46, and Lys49 thus appear to be dispensable. The mutant E21A retained normal ATPase inhibitory activity but lacked pH-sensitivity. Competition experiments suggested that the 5 inactivated mutants (F17S, R20G, R22G, E25A, and F28S) could still bind to the inhibitory site on F(1)F(o)-ATPase. These results show that the region from the position 17 to 28 of the yeast inhibitor is the most important for its activity and is required for the inhibition of F(1), rather than binding to the enzyme.  相似文献   

8.
U Stochaj  R Rassadi  J Chiu 《FASEB journal》2000,14(14):2130-2132
Stress modifies all aspects of cellular physiology, including the targeting of macromolecules to the nucleus. To determine how distinct types of stress affect classical nuclear protein import, we followed the distribution of NLS-GFP, a reporter protein containing a classical nuclear localization sequence (NLS) fused to green fluorescent protein GFP. Nuclear accumulation of NLS-GFP requires import to be constitutively active; inhibition of import redistributes NLS-GFP throughout the nucleus and cytoplasm. In the yeast Saccharomyces cerevisiae, starvation, heat shock, ethanol and hydrogen peroxide rapidly inhibited classical nuclear import, whereas osmotic stress had no effect. To define the mechanisms underlying the inhibition of classical nuclear import, we located soluble components of the nuclear transport apparatus. Failure to accumulate NLS-GFP in the nucleus always correlated with a redistribution of the small GTPase Gsp1p. Whereas predominantly nuclear under normal conditions, Gsp1p equilibrated between nucleus and cytoplasm in cells exposed to starvation, heat, ethanol or hydrogen peroxide. Furthermore, analysis of yeast strains carrying mutations in different nuclear transport factors demonstrated a role for NTF2, PRP20 and MOG1 in establishing a Gsp1p gradient, as conditional lethal alleles of NTF2 and PRP20 or a deletion of MOG1 prevented Gsp1p nuclear accumulation. On the basis of these results, we now propose that certain types of stress release Gsp1p from its nuclear anchors, thereby promoting a collapse of the nucleocytoplasmic Gsp1p gradient and inhibiting classical nuclear protein import.  相似文献   

9.
The small GTPase Ran is essential for virtually all nucleocytoplasmic transport events. It is hypothesized that Ran drives vectorial transport of macromolecules into and out of the nucleus via the establishment of a Ran gradient between the cytoplasm and nucleoplasm. Although Ran shuttles between the nucleus and cytoplasm, it is concentrated in the nucleus at steady state. We show that nuclear transport factor 2 (NTF2) is required to concentrate Ran in the nucleus in the budding yeast, Saccharomyces cerevisiae. To analyze the mechanism of Ran import into the nucleus by NTF2, we use mutants in a variety of nuclear transport factors along with biochemical analyses of NTF2 complexes. We find that Ran remains concentrated in the nucleus when importin-mediated protein import is disrupted and demonstrate that NTF2 does not form a stable complex with the transport receptor, importin-beta. Consistent with a critical role for NTF2 in establishing and maintaining the Ran gradient, we show that NTF2 is required for early embryogenesis in Caenorhabditis elegans. Our data distinguish between two possible mechanisms for Ran import by NTF2 and demonstrate that Ran import is independent from importin-beta-mediated protein import.  相似文献   

10.
Jao SC  Huang LF  Hwang SM  Li WS 《Biochemistry》2006,45(6):1547-1553
Analysis of the pH-rate profile for catalysis of bradykinin cleavage by aminopeptidase P (AMPP), a manganese-containing hydrolase from Escherichia coli, was carried out to show that optimal catalytic function is obtained at neutral pH. On the basis of information derived from the crystal structure, peptidase sequence alignments, and the hydrolysis of organophosphate triesters, active site residues Arg153, Arg370, Trp88, Tyr387, and Arg404 were identified as potential catalytic residues. Site-directed mutagenesis was used to substitute these residues with Leu, Ala, Trp, Lys, or Phe. The kcat values for the Arg153, Arg370, and Trp88 mutants were nearly the same as that for the wild-type enzyme. The kcat values of the R404K, R404A, and Y387A mutants were lower by factors of 285, 400, and 16, respectively. Inductively coupled plasma mass spectrometry and circular dichroism spectroscopy showed that Arg404 is not required for metal chelation or stabilization of protein secondary structure. The hydrogen bond network observed between the side chains of conserved residues Asp260, Arg404, and Tyr387 indicated that Arg404 participates in proton relay. This was further evidenced by the return of activity in the R404A mutant by the addition of guanidine. Also, reduced catalytic efficiency in the R404K mutant, which conserves the positive charge at the bridge site, shows that only the arginine group of Arg404 (not the ammonium group of Lys404) can participate in the hydrogen bond network. The hydrogen bond interaction between the Arg404 and the Tyr387 ring hydroxyl group is suggested by the reduced catalytic efficiency of the Y387F mutant.  相似文献   

11.
RNase P is involved in processing the 5⿲ end of pre-tRNA molecules. Bacterial RNase P contains a catalytic RNA subunit and a protein subunit. In this study, we have analyzed the residues in RNase P protein of M. tuberculosis that differ from the residues generally conserved in other bacterial RNase Ps. The residues investigated in the current study include the unique residues, Val27, Ala70, Arg72, Ala77, and Asp124, and also Phe23 and Arg93 which have been found to be important in the function of RNase P protein components of other bacteria. The selected residues were individually mutated either to those present in other bacterial RNase P protein components at respective positions or in some cases to alanine. The wild type and mutant M. tuberculosis RNase P proteins were expressed in E. coli, purified, used to reconstitute holoenzymes with wild type RNA component in vitro, and functionally characterized. The Phe23Ala and Arg93Ala mutants showed very poor catalytic activity when reconstituted with the RNA component. The catalytic activity of holoenzyme with Val27Phe, Ala70Lys, Arg72Leu and Arg72Ala was also significantly reduced, whereas with Ala77Phe and Asp124Ser the activity of holoenzyme was similar to that with the wild type protein. Although the mutants did not suffer from any binding defects, Val27Phe, Ala70Lys, Arg72Ala and Asp124Ser were less tolerant towards higher temperatures as compared to the wild type protein. The Km of Val27Phe, Ala70Lys, Arg72Ala and Ala77Phe were >2-fold higher than that of the wild type, indicating the substituted residues to be involved in substrate interaction. The study demonstrates that residues Phe23, Val27 and Ala70 are involved in substrate interaction, while Arg72 and Arg93 interact with other residues within the protein to provide it a functional conformation.  相似文献   

12.
NTF2 mediates nuclear import of Ran.   总被引:17,自引:1,他引:16       下载免费PDF全文
Importin beta family transport receptors shuttle between the nucleus and the cytoplasm and mediate transport of macromolecules through nuclear pore complexes (NPCs). The interactions between these receptors and their cargoes are regulated by binding RanGTP; all receptors probably exit the nucleus complexed with RanGTP, and so should deplete RanGTP continuously from the nucleus. We describe here the development of an in vitro system to study how nuclear Ran is replenished. Nuclear import of Ran does not rely on simple diffusion as Ran's small size would permit, but instead is stimulated by soluble transport factors. This facilitated import is specific for cytoplasmic RanGDP and employs nuclear transport factor 2 (NTF2) as the actual carrier. NTF2 binds RanGDP initially to NPCs and probably also mediates translocation of the NTF2-RanGDP complex to the nuclear side of the NPCs. A direct NTF2-RanGDP interaction is crucial for this process, since point mutations that disturb the RanGDP-NTF2 interaction also interfere with Ran import. The subsequent nuclear accumulation of Ran also requires GTP, but not GTP hydrolysis. The release of Ran from NTF2 into the nucleus, and thus the directionality of Ran import, probably involves nucleotide exchange to generate RanGTP, for which NTF2 has no detectable affinity, followed by binding of the RanGTP to an importin beta family transport receptor.  相似文献   

13.
The small GTPase Ran (encoded by GSP1 and GSP2 in yeast) plays a central role in nucleocytoplasmic transport. GSP1 and GSP2 were tagged with protein A and functionally expressed in a gsp1 null mutant. After affinity purification of protein A-tagged Gsp1p or Gsp2p by IgG-Sepharose chromatography, known karyopherin beta transport receptors (e.g. Kap121p and Kap123p) and a novel member of this protein family, Pdr6p, were found to be associated with yeast Ran. Subsequent tagging of Pdr6p with green fluorescent protein revealed association with the nuclear pore complexes in vivo. Thus, functional tagging of yeast Ran allowed the study of its in vivo distribution and interaction with known and novel Ran-binding proteins.  相似文献   

14.
Xpo1p (Crm1p) is the nuclear export receptor for proteins containing a leucine-rich nuclear export signal (NES). Xpo1p, the NES-containing protein, and GTP-bound Ran form a complex in the nucleus that translocates across the nuclear pore. We have identified Yrb1p as the major Xpo1p-binding protein in Saccharomyces cerevisiae extracts in the presence of GTP-bound Gsp1p (yeast Ran). Yrb1p is cytoplasmic at steady-state but shuttles continuously between the cytoplasm and the nucleus. Nuclear import of Yrb1p is mediated by two separate nuclear targeting signals. Export from the nucleus requires Xpo1p, but Yrb1p does not contain a leucine-rich NES. Instead, the interaction of Yrb1p with Xpo1p is mediated by Gsp1p-GTP. This novel type of export complex requires the acidic C-terminus of Gsp1p, which is dispensable for the binding to importin beta-like transport receptors. A similar complex with Xpo1p and Gsp1p-GTP can be formed by Yrb2p, a relative of Yrb1p predominantly located in the nucleus. Yrb1p also functions as a disassembly factor for NES/Xpo1p/Gsp1p-GTP complexes by displacing the NES protein from Xpo1p/Gsp1p. This Yrb1p/Xpo1p/Gsp1p complex is then completely dissociated after GTP hydrolysis catalyzed by the cytoplasmic GTPase activating protein Rna1p.  相似文献   

15.
Nuclear transport factor 2 (NTF2) is a soluble transport protein originally identified by its ability to stimulate nuclear localization signal (NLS)-dependent protein import in digitonin-permeabilized cells. NTF2 has been shown to bind nuclear pore complex proteins and the GDP form of Ran in vitro. Recently, it has been reported that NTF2 can stimulate the accumulation of Ran in digitonin-permeabilized cells. Evidence that NTF2 directly mediates Ran import or that NTF2 is required to maintain the nuclear concentration of Ran in living cells has not been obtained. Here we show that cytoplasmic injection of anti-NTF2 mAbs resulted in a dramatic relocalization of Ran to the cytoplasm. This provides the first evidence that NTF2 regulates the distribution of Ran in vivo. Moreover, anti-NTF2 mAbs inhibited nuclear import of both Ran and NLS-containing protein in vitro, suggesting that NTF2 stimulates NLS-dependent protein import by driving the nuclear accumulation of Ran. We also show that biotinylated NTF2-streptavidin microinjected into the cytoplasm accumulated at the nuclear envelope, indicating that NTF2 can target a binding partner to the nuclear pore complex. Taken together, our data show that NTF2 is an essential regulator of the Ran distribution in living cells and that NTF2-mediated Ran nuclear import is required for NLS-dependent protein import.  相似文献   

16.
Mitochondrial ATP synthase (F(1)F(0)-ATPase) is regulated by an intrinsic ATPase inhibitor protein, IF(1). We previously found that six residues of the yeast IF(1) (Phe17, Arg20, Glu21, Arg22, Glu25, and Phe28) form an ATPase inhibitory site [Ichikawa, N. and Ogura, C. (2003) J. Bioenerg. Biomembr. 35, 399-407]. In the crystal structure of the F(1)/IF(1) complex [Cabezón, E. et al. (2003) Nat. Struct. Biol. 10, 744-750], the core residues of the inhibitory site interact with Arg408, Arg412 and Glu454 of the beta-subunit of F(1). In the present study, we examined the roles of the three beta residues by means of site-directed mutagenesis. A total of six yeast mutants were constructed: R408I, R408T, R412I, R412T, E454Q, and E454V. The betaArg412 and betaGlu454 mutants (R412I, R412T, E454Q, and E454V) could grow on a nonfermentable lactate medium, but the betaArg408 mutants (R408I and R408T) could not. The ATPase activity of isolated mitochondria was decreased in R412I, R412T, E454Q, and E454V mutant cells, and undetectable in R408I and R408T cells. The subunits of F(1) (alpha, beta, and gamma) were detected in mitochondria from each mutant on immunoblotting, and the F(1)F(0) complex was isolated from them. These results indicate that betaArg408 is essential not for assembly of the F(1)F(0) complex but for the catalytic activity of the enzyme. In the crystal structure of F(1), betaArg408 binds to alphaGlu399 in the alpha(DP)/beta(DP) pair and seems to be important for formation of the closed alpha(DP)/beta(DP) conformation. IF(1) seems to disrupt this alpha(DP)Glu399/beta(DP)Arg408 interaction by binding to beta(DP)Arg408, and to interfere with the change from the open alpha(DP)/beta(DP) conformation to the closed conformation that is required for catalysis by F(1)F(0)-ATPase.  相似文献   

17.
The small GTPase Ran is required for the trafficking of macromolecules into and out of the nucleus. Ran also has been implicated in cell cycle control, specifically in mitotic spindle assembly. In interphase cells, Ran is predominately nuclear and thought to be GTP bound, but it is also present in the cytoplasm, probably in the GDP-bound state. Nuclear transport factor 2 (NTF2) has been shown to import RanGDP into the nucleus. Here, we examine the in vivo role of NTF2 in Ran import and the effect that disruption of Ran imported into the nucleus has on the cell cycle. A temperature-sensitive (ts) mutant of Saccharomyces cerevisiae NTF2 that does not bind to Ran is unable to import Ran into the nucleus at the nonpermissive temperature. Moreover, when Ran is inefficiently imported into the nucleus, cells arrest in G(2) in a MAD2 checkpoint-dependent manner. These findings demonstrate that NTF2 is required to transport Ran into the nucleus in vivo. Furthermore, we present data that suggest that depletion of nuclear Ran triggers a spindle-assembly checkpoint-dependent cell cycle arrest.  相似文献   

18.
慈菇蛋白酶抑制A和B(APIA和APIB)是一种双头多功能抑制剂。它们的一级结构和cDNA序列已经被阐明。为了找到它们的活性中心,利用定点诱变的方法将APIB中根据与其他抑制剂家族的序列比较所推断的可能的活性中心残基;Lys^44,Arg^76和Arg87分别用Pro替代,所得到的突变基因分别在酵母分泌体系中得到了表达,与天然的APIB相比,K^44P-APIB对脂蛋白酶的抑制活力没有改变;而R^76P-APIB和R^87P-APIB对胰蛋白酶的抑制活力都分别下降了一半,由原料的抑制两分子变成了一分子,表明Arg^76和Arg^87分别是APIB的两个活性中心残基,而Lys^44则不是,为了证实以上结论,进一步制备了另外3种突变体(K^44P-R^76P-APIB,K^44P-R^87P-APIB,R^76P-R^87P-APIB)。在每个突变体中,3个可能的活性位点中只保留1个,有关的抑制活力测定表明,K^44P-R^76P-APIB(只保留Arg^87)和K^44P-R^87P-APIB(只保留Arg^76)分别只抑制一分子胰蛋白酶,而R^76P-R^87P-APIB(只保留Lys^44)对胰蛋白酶基本不抑制,从而肯定了以上结论,经过测定,两个突变体K^44P-R^87P-APIB对胰蛋白酶的抑制常数Ki分别是0.39nmol/L和0.47nmol/L。突变体R^87L-APIB(APIA中87位是Leu)丧失了接近一半的胰蛋白酶抑制活力,但同时对胰凝乳蛋白酶的抑制活性由原来的基本不抑制变成和APIA相同的可以抑制一分子,证明了Leu^87是APIA的抑制胰凝乳蛋白酶的活性中心位点。  相似文献   

19.
Mog1 is a nuclear protein that interacts with Ran, the Ras family GTPase that confers directionality to nuclear import and export pathways. Deletion of MOG1 in Saccharomyces cerevisiae (Deltamog1) causes temperature-sensitive growth and defects in nuclear protein import. Mog1 has previously been shown to stimulate GTP release from Ran and we demonstrate here that addition of Mog1 to either Ran-GTP or Ran-GDP results in nucleotide release and formation of a stable complex between Mog1 and nucleotide-free Ran. Moreover, MOG1 shows synthetic lethality with PRP20, the Ran guanine nucleotide exchange factor (RanGEF) that also binds nucleotide-free Ran. To probe the functional role of the Mog1-Ran interaction, we engineered mutants of yeast Mog1 and Ran that specifically disrupt their interaction both in vitro and in vivo. These mutants indicate that the interaction interface involves conserved Mog1p residues Asp(62) and Glu(65), and residue Lys(136) in yeast Ran. Mutations at these residues decrease the ability of Mog1 to bind and release nucleotide from Ran. Furthermore, the E65K-Mog1 and K136E-Ran mutations in yeast cause temperature sensitivity and mislocalization of a nuclear import reporter protein, similar to the phenotype observed for the Deltamog1 strain. Our results indicate that a primary function of Mog1 requires binding to Ran and that the Mog1-Ran interaction is necessary for efficient nuclear protein import in vivo.  相似文献   

20.
A concentration gradient of the GTP-bound form of the GTPase Ran across nuclear pores is essential for the transport of many proteins and nucleic acids between the nuclear and cytoplasmic compartments of eukaryotic cells [1], [2], [3] and [4]. The mechanisms responsible for the dynamics and maintenance of this Ran gradient have been unclear. We now show that Ran shuttles between the nucleosol and cytosol, and that cytosolic Ran accumulates rapidly in the nucleus in a saturable manner that is dependent on temperature and on the guanine-nucleotide exchange factor RCC1. Nuclear import in digitonin-permeabilized cells in the absence of added factors was minimal. The addition of energy and nuclear transport factor 2 (NTF2) [5] was sufficient for the accumulation of Ran in the nucleus. An NTF2 mutant that cannot bind Ran [6] was unable to facilitate Ran import. A GTP-bound form of a Ran mutant that cannot bind NTF2 was not a substrate for import. A dominant-negative importin-β mutant inhibited nuclear import of Ran, whereas addition of transportin, which accumulates in the nucleus, enhanced NTF2-dependent Ran import. We conclude that NTF2 functions as a transport receptor for Ran, permitting rapid entry into the nucleus where GTP-GDP exchange mediated by RCC1 [7] converts Ran into its GTP-bound state. The Ran–GTP can associate with nuclear Ran-binding proteins, thereby creating a Ran gradient across nuclear pores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号