首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and accumulation of nitrite has been suggested as a causative factor in the inhibition of legume nodules supplied with nitrate. Plants were grown in sand culture with a moderate level of nitrate (2.1 to 6.4 millimolar) supplied continuously from seed germination to 30 to 50 days after planting. In a comparison of nitrate treatments, a highly significant negative correlation between nitrite concentration in soybean (Glycine max [L.] Merr.) nodules and nodule fresh weight per shoot dry weight was found even when bacteroids lacked nitrate reductase (NR). However, in a comparison of two Rhizobium japonicum strains, there was only 12% as much nitrite in nodules formed by NRR. japonicum as in nodules formed by NR+R. japonicum, and growth and acetylene reduction activity of both types of nodules was about equally inhibited. In a comparison of eight other NR+ and NRR. japonicum strains, and a comparison of G. max, Phaseolus vulgaris, and Pisum sativum, the concentration of nitrite in nodules was unrelated to nodule weight per plant or to specific acetylene reduction activity. The very small concentration of nitrite found in P. vulgaris nodules (0.05 micrograms NO2-N per gram fresh weight) was probably below that required for the inhibition of nitrogenase based on published in vitro experiments, and yet the specific acetylene reduction activity was inhibited 83% by nitrate. The overall results do not support the idea that nitrite plays a role in the inhibition of nodule growth and nitrogenase activity by nitrate.  相似文献   

2.
Soybean (Glycine max L. cv Williams) seeds were sown in pots containing a 1:1 perlite-vermiculite mixture and grown under greenhouse conditions. Nodules were initiated with a nitrate reductase expressing strain of Rhizobium japonicum, USDA 110, or with nitrate reductase nonexpressing mutants (NR 108, NR 303) derived from USDA 110. Nodules initiated with either type of strain were normal in appearance and demonstrated nitrogenase activity (acetylene reduction). The in vivo nitrate reductase activity of N2-grown nodules initiated with nitrate reductase-negative mutant strains was less than 10% of the activity shown by nodules initiated with the wild-type strain. Regardless of the bacterial strain used for inoculation, the nodule cytosol and the cell-free extracts of the leaves contained both nitrate reductase and nitrite reductase activities. The wild-type bacteroids contained nitrate reductase but not nitrite reductase activity while the bacteroids of strains NR 108 and NR 303 contained neither nitrate reductase nor nitrite reductase activities.

Addition of 20 millimolar KNO3 to bacteroids of the wild-type strain caused a decrease in nitrogenase activity by more than 50%, but the nitrate reductase-negative strains were insensitive to nitrate. The nitrogenase activity of detached nodules initiated with the nitrate reductase-negative mutant strains was less affected by the KNO3 treatment as compared to the wild-type strain; however, the results were less conclusive than those obtained with the isolated bacteroids.

The addition of either KNO3 or KNO2 to detached nodules (wild type) suspended in a semisolid agar nutrient medium caused an inhibition of nitrogenase activity of 50% and 65% as compared to the minus N controls, and provided direct evidence for a localized effect of nitrate and nitrite at the nodule level. Addition of 0.1 millimolar sucrose stimulated nitrogenase activity in the presence or absence of nitrate or nitrite. The sucrose treatment also helped to decrease the level of nitrite accumulated within the nodules.

  相似文献   

3.
Nitrogenase activity in mangrove forests at two locations in the North Island, New Zealand, was measured by acetylene reduction and 15N2 uptake. Nitrogenase activity (C2H2 reduction) in surface sediments 0 to 10 mm deep was highly correlated (r = 0.91, n = 17) with the dry weight of decomposing particulate organic matter in the sediment and was independent of light. The activity was not correlated with the dry weight of roots in the top 10 mm of sediment (r = −0.01, n = 13). Seasonal and sample variation in acetylene reduction rates ranged from 0.4 to 50.0 μmol of C2H4 m−2 h−1 under air, and acetylene reduction was depressed in anaerobic atmospheres. Nitrogen fixation rates of decomposing leaves from the surface measured by 15N2 uptake ranged from 5.1 to 7.8 nmol of N2 g (dry weight)−1 h−1, and the mean molar ratio of acetylene reduced to nitrogen fixed was 4.5:1. Anaerobic conditions depressed the nitrogenase activity in decomposing leaves, which was independent of light. Nitrogenase activity was also found to be associated with pneumatophores. This activity was light dependent and was probably attributable to one or more species of Calothrix present as an epiphyte. Rates of activity were generally between 100 and 500 nmol of C2H4 pneumatophore−1 h−1 in summer, but values up to 1,500 nmol of C2H4 pneumatophore−1 h−1 were obtained.  相似文献   

4.
In vivo CO2 fixation and in vitro phosphoenolpyruvate (PEP) carboxylase levels have been measured in lupin (Lupinus angustifolius L.) root nodules of various ages. Both activities were greater in nodule tissue than in either primary or secondary root tissue, and increased about 3-fold with the onset of N2 fixation. PEP carboxylase activity was predominantly located in the bacteroid-containing zone of mature nodules, but purified bacteroids contained no activity. Partially purified PEP carboxylases from nodules, roots, and leaves were identical in a number of kinetic parameters. Both in vivo CO2 fixation activity and in vitro PEP carboxylase activity were significantly correlated with nodule acetylene reduction activity during nodule development. The maximum rate of in vivo CO2 fixation in mature nodules was 7.9 nmol hour−1 mg fresh weight−1, similar to rates of N2 fixation and reported values for amino acid translocation.  相似文献   

5.
Frankia sp., the actinomycetous endophyte in nitrogen-fixing actinorhizal nodules, may differentiate two forms from its hyphae: vesicles and sporangia. In root nodules of Comptonia peregrina (L.) Coult. and Myrica gale L., sporangia may be either absent or present. Nitrogenase activity and symbiotic efficiency were contrasted in spore(+) and spore(−) nodules of these two host genera. Seedlings of C. peregrina nodulated with the spore(+) inoculum showed only 60% of the nitrogenase activity and 50% of the net size of their spore(−) counterparts after 12 weeks of culture. Measurements of acetylene reduction (i.e., nitrogenase activity) were coordinated with samplings of nodules for structural studies. Significant differences in acetylene reduction rates were discernible between spore(+) and spore(−) nodules commencing 4 weeks after nodulation, concomitant with the maturation of sporangia in the nodule. Spore(+) nodules ultimately reached less than half of the rate of nitrogenase activity of spore(−) nodules. Both types of nodules evolved only small amounts of molecular hydrogen, suggesting that both were equally efficient in recycling electrons lost to the reduction of hydrogen ions by nitrogenase. Respiratory cost of nitrogen fixation, expressed as the quotient of micromole CO2 to micromole ethylene evolved by excised nodules, was significantly greater in spore(+) than in spore(−) nodules. M. gale spore(−) nodules showed variable effectivity, though all had low CO2 to ethylene evolution ratios. M. gale spore(+) nodules resembled C. peregrina spore(+), with low effectivity and high respiratory cost for nitrogen fixation.  相似文献   

6.
Summary The nitrogen fixation rate in a 4-year-old stand of the woody legumeLeucaena leucocephala (Lam.) de Wit. was estimated in the field at a rather dry site in Tanzania by use of an acetylene reduction technique. The diurnal mean value during April–May was 35 nmol C2H4 mg–1 (dry weight) nodules h–1, with a variation between 22±8 and 48±12 nmol C2H4 mg–1 (dry weight) nodules h–1 in early morning and at midday, respectively. The nodule biomass was determined by auger sampling to be 51±16 kg (dry weight) ha–1. Most of the nodules were found at the 10–30 cm soil depth level. A rough calculation of the amount of nitrogen fixed annually arrived at 110±30 kg ha–1. The results give strong support for the use ofL. leucocephala for soil enrichment in less humid areas of tropical Africa.  相似文献   

7.
Studies on soybean nodule senescence   总被引:2,自引:7,他引:2       下载免费PDF全文
Klucas RV 《Plant physiology》1974,54(4):612-616
Soybean Glycine max. L. Merr. nodule senescence was studied using the loss of acetylene reduction by intact tap root nodules as its indication. Tap root nodules from two varieties (Calland and Beeson) of field-grown soybeans were used. The specific activities of nitrogenase (micromoles/minute gram fresh weight of nodules) as measured by the acetylene reduction assay decreased abruptly between 58 to 65 and 68 to 75 days after planting the Beeson and Calland soybeans, respectively. Major changes were not detected in dry weight, total nitrogen, and leghemoglobin levels during the period when in vivo nitrogenase activity declined. Ammonium levels in the cytosol of nodules and poly-β-hydroxybutyrate increased moderately just prior to or coincidental with the loss of nitrogenase activity. Neither enzymes that have been postulated to be involved in ammonium assimilation nor NADP+-specific isocitrate dehydrogenase exhibited any large changes in specific activities during the initial period when nitrogenase activity declined.  相似文献   

8.
Since NO3 availability in the rooting medium seriously limits symbiotic N2 fixation by soybean (Glycine max [L.] Merr.), studies were initiated to select nodulation mutants which were more tolerant to NO3 and were adapted to the Midwest area of the United States. Three independent mutants were selected in the M2 generation from ethyl methanesulfonate or N-nitroso-N-methylurea mutagenized Williams seed. All three mutants (designated NOD1-3, NOD2-4, and NOD3-7) were more extensively nodulated (427 to 770 nodules plant−1) than the Williams parent (187 nodules plant−1) under zero-N growth conditions. This provided evidence that the mutational event(s) affected autoregulatory control of nodulation. Moreover, all three mutants were partially tolerant to NO3; each retained greater acetylene reduction activity when grown hydroponically with 15 millimolar NO3 than did Williams at 1.5 millimolar NO3. The NO3 tolerance did not appear to be related to an altered ability to take up or metabolize NO3, based on solution NO3 depletion and on in vivo nitrate reductase assays. Enhanced nodulation appeared to be controlled by the host plant, being consistent across four Bradyrhizobium japonicum strains tested. In general, the mutant lines produced less dry weight than the control, with root dry weights being more affected than shoot dry weights. The nodulation trait has been stable through the M5 generation in all three mutants.  相似文献   

9.
Peas (Pisum sativum L.) were inoculated with strains of Rhizobium leguminosarum having different levels of uptake hydrogenase (Hup) activity and were grown in sterile Leonard jars under controlled conditions. Rates of H2 evolution and acetylene reduction were determined for intact nodulated roots at intervals after the onset of darkness or after removal of the shoots. Hup activity was estimated using treatment plants or equivalent plants from the growth chamber, by measuring the uptake of H2 or 3H2 in the presence of acetylene. In all cases, the rate of H2 evolution was a continuous function of the rate of acetylene reduction. In symbioses with no demonstrable Hup activity, H2 evolution increased in direct proportion to acetylene reduction and the slopes were similar with the Hup strains NA502 and 128C79. Hup activity was similar in strains 128C30 and 128C52 but significantly lower in strain 128C54. With these strains, the slopes of the H2 evolution versus acetylene reduction curves initially increased with acetylene reduction, but became constant and similar to those for the Hup strains at high rates of acetylene reduction. On these parallel portions of the curves, the decreases in H2 evolution by Hup+ strains were similar in magnitude to their H2-saturated rates of Hup activity. The curvilinear relationship between H2 evolution and acetylene reduction for a representative Hup+ strain (128C52) was the same, regardless of the experimental conditions used to vary the nitrogenase activity.  相似文献   

10.
Nitrogen fixation (diazotrophy) has recently been demonstrated in several methanogenic archaebacteria. To compare the process in an archaebacterium with that in eubacteria, we examined the properties of diazotrophic growth and nitrogenase activity in Methanosarcina barkeri 227. Growth yields with methanol or acetate as a growth substrate were significantly lower in N2-grown cultures than in NH4+-grown cultures, and the culture doubling times were increased, indicating that diazotrophy was energetically costly, as it is in eubacteria. Growth of nitrogen-fixing cells was inhibited when molybdenum was omitted from the medium; addition of 10 nM molybdate stimulated growth, while 1 μM molybdate restored maximum diazotrophic growth. Omission of molybdenum did not inhibit growth of ammonia-grown cells. Tungstate (100 μM) strongly inhibited growth of molybdenum-deficient diazotrophic cells, while ammonia-grown cells were unaffected. The addition of 100 nM vanadate or chromate did not stimulate diazotrophic growth of molybdenum-starved cells. These results are consistent with the presence of a molybdenum-containing nitrogenase in M. barkeri. Acetylene, the usual substrate for assaying nitrogenase activity, inhibited methanogenesis by M. barkeri and consequently needed to be used at a low partial pressure (0.3% of the headspace) when acetylene reduction by whole cells was assayed. Whole cells reduced 0.3% acetylene to ethylene at a very low rate (1 to 2 nmol h−1 mg of protein−1), and they “switched off” acetylene reduction in response to added ammonia or glutamine. Crude extracts from diazotrophic cells reduced 10% acetylene at a rate of 4 to 5 nmol of C2H4 formed h−1 mg of protein−1 when supplied with ATP and reducing power, while extracts of Klebsiella pneumoniae prepared by the same procedures had rates 100-fold higher. Acetylene reduction by extracts required ATP and was completely inhibited by 1 mM ADP in the presence of 5 mM ATP. The low rates of C2H2 reduction could be due to improper assay conditions, to switched-off enzyme, or to the nitrogenase's having lower activity towards acetylene than towards dinitrogen.  相似文献   

11.
The effects of N source (6 mm nitrogen as NO3 or urea) and tungstate (0, 100, 200, 300, and 400 μm Na2 WO4) on nitrate metabolism, nodulation, and growth of soybean (Glycine max [L.] Merr.) plants were evaluated. Nitrate reductase activity and, to a lesser extent, NO3 content of leaf tissue decreased with the addition of tungstate to the nutrient growth medium. Concomitantly, nodule mass and acetylene reduction activity of NO3-grown plants increased with addition of tungstate to the nutrient solution. In contrast, nodule mass and acetylene reduction activity of urea-grown plants decreased with increased nutrient tungstate levels. The acetylene reduction activity of nodulated roots of NO3-grown plants was less than 10% of the activity of nodulated roots of urea-grown plants when no tungstate was added. At 300 and 400 μm tungstate levels, acetylene reduction activity of nodulated roots of NO3-grown plants exceeded the activity of comparable urea-grown plants.  相似文献   

12.
The acute effects of aqueous solutions of As, Cd, Cu, Pb, F, and Zn ions at concentrations from 0.01 to 100 micrograms per milliliter and solutions adjusted to pH 2 to 6 with nitric or sulfuric acid were studied with respect to acetylene reduction, net photosynthesis, respiration rate, and chlorophyll content in Vernal alfalfa (Medicago sativa L. cv. Vernal). The effects of the various treatments on acetylene reduction varied from no demonstrable effect by any concentration of F and 42% inhibition by 100 micrograms Pb2+ per milliliter, to 100% inhibition by 10 micrograms Cd2+ per milliliter and 100 micrograms per milliliter As, Cu2+, and Zn2+ ions. Zn2+ showed statistically significant inhibition of activity at 0.1 micrograms per milliliter. Acid treatments were not inhibitory above pH 2, at which pH nitric acid inhibited acetylene reduction activity more than did sulfuric acid. The inhibition of acetylene reduction by these ions was Zn2+ > Cd2+ > Cu2+ > AsO3 > Pb2+ > F. The sensitivity of acetylene reduction to the ions was roughly equal to the sensitivity of photosynthesis, respiration, and chlorophyll content when Pb2+ was applied, but was 1,000 times more sensitive to Zn2+. The relationship of the data to field conditions and industrial pollution is discussed.  相似文献   

13.
The metabolism of phosphatidylinositol-4,5-bisphosphate (PIP2) changed during the culture period of the thermoacidophilic red alga Galdieria sulphuraria. Seven days after inoculation, the amount of PIP2 in the cells was 910 ± 100 pmol g−1 fresh weight; by 12 d, PIP2 levels increased to 1200 ± 150 pmol g−1 fresh weight. In vitro assays indicated that phosphatidylinositol monophosphate (PIP) kinase specific activity increased from 75 to 230 pmol min−1 mg−1 protein between d 7 and 12. When G. sulphuraria cells were osmostimulated, transient increases of up to 4-fold could be observed in inositol-1,4,5-trisphosphate (IP3) levels within 90 s, regardless of the age of the cells. In d-12 cells, the increase in IP3 was preceded by a transient increase of up to 5-fold in specific PIP kinase activity, whereas no such increase was detected after osmostimulation of d-7 cells. The increase in PIP kinase activity before IP3 signaling in d-12 cells indicates that there is an additional pathway for regulation of phosphoinositide metabolism after stimulation other than an initial activation of phospholipase C. Also, the rapid activation of PIP2 biosynthesis in cells with already-high PIP2 levels suggests that the PIP2 present was not available for signal transduction. By comparing the response of the cells at d 7 and 12, we have identified two potentially distinct pools of PIP2.  相似文献   

14.
Indigenous serotypes 1-01 and 2-02 of Rhizobium trifolii occupied similar percentages (18 to 23%) of root nodules on soil-grown subclover (Trifolium subterraneum L.) and were virtually absent (4.5%) from nodules of soil-grown white clover (Trifolium repens L.). In contrast (with the exception of one dilution [10−4]), serotype 1-01 occupied a substantial portion of nodules (16 to 40%) on white clover seedlings grown on mineral salts agar and exposed to samples of the same soil in the form of a 10-fold dilution series (10−1 to 10−5). Under the latter conditions, occupancy of subclover nodules by 1-01 and of nodules of both plant species by 2-02 was consistent with the results obtained with soil-grown plants.  相似文献   

15.
Bacterial iodate (IO3) reduction is poorly understood largely due to the limited number of available isolates as well as the paucity of information about key enzymes involved in the reaction. In this study, an iodate-reducing bacterium, designated strain SCT, was newly isolated from marine sediment slurry. SCT is phylogenetically closely related to the denitrifying bacterium Pseudomonas stutzeri and reduced 200 μM iodate to iodide (I) within 12 h in an anaerobic culture containing 10 mM nitrate. The strain did not reduce iodate under the aerobic conditions. An anaerobic washed cell suspension of SCT reduced iodate when the cells were pregrown anaerobically with 10 mM nitrate and 200 μM iodate. However, cells pregrown without iodate did not reduce it. The cells in the former category showed methyl viologen-dependent iodate reductase activity (0.31 U mg−1), which was located predominantly in the periplasmic space. Furthermore, SCT was capable of anaerobic growth with 3 mM iodate as the sole electron acceptor, and the cells showed enhanced activity with respect to iodate reductase (2.46 U mg−1). These results suggest that SCT is a dissimilatory iodate-reducing bacterium and that its iodate reductase is induced by iodate under anaerobic growth conditions.  相似文献   

16.
A perfusion method for assaying nitrogenase activity (acetylene reduction) in marine sediments was developed. The method was used to assay sediment cores from Spartina alterniflora (salt marsh), Zostera marina (sea grass), and Thalassia testudinum (sea grass) communities, and the results were compared with those of conventional sealed-flask assays. Rates of ethylene production increased progressively with time in the perfusion assays, reaching plateau values of 2 to 3 nmol · g of dry sediment−1 · h−1 by 10 to 20 h. Depletion of interstitial NH4+ was implicated in this stimulation of nitrogenase activity. Initial acetylene reduction rates determined by the perfusion assay of cores from the Spartina community ranged from 0.15 to 0.60 nmol of C2H4 · g of dry sediment−1 · h−1. These rates were similar to those for sediments assayed in sealed flasks without seawater when determined over linear periods of C2H4 production. Initial values obtained by using the perfusion method were 0.66 nmol of C2H4 · g of dry sediment−1 · h−1 for sediments from Zostera communities and 0.70 nmol of C2H4 · g of dry sediment−1 · h−1 for sediments from Thalassia communities. In all cases, rates determined by simultaneous slurry assays were lower than those determined by the perfusion method.  相似文献   

17.
A pot experiment was conducted under natural conditions of screen house to evaluate the effect of saline irrigation given at flowering stage (30–35 DAS) on nodule functioning and their tolerance in two mungbean genotypes viz. Asha and Muskan based on various physiological traits. The pots containing sandy soil (Typic Torrispamments) were saturated with Cl-dominated saline irrigation to maintain ECe of 2.5, 5.0, 7.5 dS m−1 as compared to control. In both the genotypes osmotic potential (Ψs) and relative water content (RWC %) of nodules decreased significantly, while a sharp rise in proline and total soluble sugars contents were observed with the increasing level of saline irrigation after 10 and 20 days of treatment. A marked increase in hydrogen peroxide (H2O2), lipid peroxidation (MDA content) and relative stress injury (RSI %) was noticed in nodules which were much higher in Muskan. The decrease in Ψs of nodules was more pronounced in Asha than in Muskan, while reverse was true for RWC and proline accumulation. A sharp decline in acetylene reduction assay (ARA) for N2-fixation, leghemoglobin content and dry matter of the nodules was observed, but was more in Muskan than in Asha. Nitrogen (N) content declined while Na+/K+ ratio and Cl content increased significantly. The genotype Asha maintained better N2-fixing efficiency but lower Na+/K+ ratio and Cl content in nodules than Muskan. Though the nodule functioning was further deteriorated at 20 DAT in both the genotypes yet the tolerance capacity of nodules in Asha was better than in Muskan under saline conditions which is correlated with the compensatory mechanism i.e. osmoregulation in nodules.Key words: Leghemoglobin, Lipid peroxidation, Minerals, N2-ase activity, Vigna radiata, Water relations  相似文献   

18.
During anaerobic growth of Klebsiella pneumoniae on citrate, 9.4 mmol of H2/mol of citrate (4-kPa partial pressure) was formed at the end of growth besides acetate, formate, and CO2. Upon addition of NiCl2 (36 μM) to the growth medium, hydrogen formation increased about 36% to 14.8 mmol/mol of citrate (6 kPa), and the cell yield increased about 15%. Cells that had been harvested and washed under anoxic conditions exhibited an H2-dependent formation of NAD(P)H in vivo. The reduction of internal NAD(P)+ was also achieved by the addition of formate. In crude extracts, the H2:NAD+ oxidoreductase activity was 0.13 μmol min−1 mg−1, and 76% of this activity was found in the washed membrane fraction. The highest specific activities of the membrane fraction were observed in 50 mM potassium phosphate, with 1.6 μmol of NADPH formed min−1 mg−1 at pH 7.0 and 1.7 μmol of NADH formed min−1 mg−1 at pH 9.5. In the presence of the protonophore carbonyl cyanide m-chlorophenylhydrazone and the Na+/H+ antiporter monensin, the H2-dependent reduction of NAD+ by membrane vesicles decreased only slightly (about 16%). The NADP+- or NAD+-reducing hydrogenases were solubilized from the membranes with the detergent lauryldimethylamine-N-oxide or Triton X-100. NAD(P)H formation with H2 as electron donor, therefore, does not depend on an energized state of the membrane. It is proposed that hydrogen which is formed by K. pneumoniae during citrate fermentation is recaptured by a novel membrane-bound, oxygen-sensitive H2:NAD(P)+ oxidoreductase that provides reducing equivalents for the synthesis of cell material.  相似文献   

19.
Thermophilic, nitrogen-fixing, blue-green algae (cyanobacteria) were investigated for use in biophotolysis. Three strains of Mastigocladus laminosus were tested and were found to be equally effective in biophotolysis as judged by nitrogenase activity. The alga, M. laminosus NZ-86-m, which was chosen for further study, grew well in the temperature range from 35 to 50°C, with optimum growth at 45°C, at which temperature acetylene reduction activity was also greatest. The maximum tolerable temperature was 55°C. Acetylene reduction activity was saturated at a light intensity of 1 × 104 ergs cm−2 s−1. Atmospheric oxygen tension was found to be slightly inhibitory to acetylene reduction of both slowly growing and exponentially growing cultures. Nonsterile continuous cultures, which were conducted to test problems of culture maintenance, could be operated for 2 months without any significant decrease in nitrogenase activity or contamination by other algae. Nitrogen-starved cultures of M. laminosus NZ-86-m produced hydrogen at comparable rates to Anabaena cylindrica. The conversion efficiency of light to hydrogen energy at maximum rates of hydrogen production was 2.7%.  相似文献   

20.
An acetylene inhibition method was satisfactorily used for the in situ measurement of denitrification in two sediment-water systems incubated for not more than 22 h. In the presence of added nitrate, denitrification acted as a source of nitrous oxide in a drainage pond, but acted as a sink in its absence. The averaged rates of nitrous oxide accumulation with nitrate enrichment in the absence and presence of acetylene were 0.15 and 0.30 mg of N m−2h−1, respectively. Acetylene reduction at an average rate of 0.07 mmol of C2H4 formed m−2h−1 was simultaneously measured in the absence of added nitrate. In a small eutrophic lake where nitrogen was nonlimiting, the in situ rates of sediment denitrification were 0.09 and 0.11 mg of N m−2h−1 in the presence and absence of macrophytes, respectively, and no acetylene reduction activity was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号