首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ubiquity of elongation factor Tu (EF-Tu)-dependent conformational changes in amino-acyl-tRNA (aa-tRNA) and the origin of the binding energy associated with aa-tRNA.EF-Tu.GTP ternary complex formation have been examined spectroscopically. Fluorescein was attached covalently to the 4-thiouridine base at position 8 (s4U-8) in each of four elongator tRNAs (Ala, Met-m, Phe, and Val). Although the probes were chemically identical, their emission intensities in the free aa-tRNAs differed by nearly 3-fold, indicating that the dyes were in different environments and hence that the aa-tRNAs had different tertiary structures near s4U-8. Upon association with EF-Tu.GTP, the emission intensities increased by 244%, 57%, or 15% for three aa-tRNAs due to a change in tRNA conformation; the fourth aa-tRNA exhibited no fluorescence change upon binding to EF-Tu.GTP. Despite the great differences in the emission intensities of the free aa-tRNAs and in the magnitudes of their EF-Tu-dependent intensity increases, the emission intensity per aa-tRNA molecule was nearly the same (within 9% of the average) for the four aa-tRNAs when bound to EF-Tu-GTP. Thus, the binding of EF-Tu.GTP induced or selected a tRNA conformation near s4U-8 that was very similar, and possibly the same, for each aa-tRNA species. It therefore appears that EF-Tu functions, at least in part, by minimizing the conformational diversity in aa-tRNAs prior to their beginning the recognition and binding process at the single decoding site on the ribosome. Since an EF-Tu-dependent fluorescence change was also observed with fluorescein-labeled tRNA(Phe), the protein-dependent structural change is effected by direct interactions between EF-Tu and the tRNA and does not require the aminoacyl group. The Kd of the tRNA(Phe).EF-Tu.GTP ternary complex was determined, at equilibrium, to be 2.6 microM by the ability of the unacylated tRNA to compete with fluorescent Phe-tRNA for binding to the protein. Comparison of this Kd with that of the Phe-tRNA ternary complex showed that in this case the aminoacyl moiety contributed 4.3 kcal/mol toward ternary complex formation at 6 degrees C but that the bulk of the binding energy in the ternary complex was derived from direct protein-tRNA interactions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Elongation factor Tu (EF-Tu) binds to all standard aminoacyl transfer RNAs (aa-tRNAs) and transports them to the ribosome while protecting the ester linkage between the tRNA and its cognate amino acid. We use molecular dynamics simulations to investigate the dynamics of the EF-Tu·guanosine 5′-triphosphate·aa-tRNACys complex and the roles played by Mg2+ ions and modified nucleosides on the free energy of protein·RNA binding. Individual modified nucleosides have pronounced effects on the structural dynamics of tRNA and the EF-Tu·Cys-tRNACys interface. Combined energetic and evolutionary analyses identify the coevolution of residues in EF-Tu and aa-tRNAs at the binding interface. Highly conserved EF-Tu residues are responsible for both attracting aa-tRNAs as well as providing nearby nonbonded repulsive energies that help fine-tune molecular attraction at the binding interface. In addition to the 3′ CCA end, highly conserved tRNA nucleotides G1, G52, G53, and U54 contribute significantly to EF-Tu binding energies. Modification of U54 to thymine affects the structure of the tRNA common loop resulting in a change in binding interface contacts. In addition, other nucleotides, conserved within certain tRNA specificities, may be responsible for tuning aa-tRNA binding to EF-Tu. The trend in EF-Tu·Cys-tRNACys binding energies observed as the result of mutating the tRNA agrees with experimental observation. We also predict variations in binding free energies upon misacylation of tRNACys with d-cysteine or O-phosphoserine and upon changing the protonation state of l-cysteine. Principal components analysis in each case reveals changes in the communication network across the protein·tRNA interface and is the basis for the entropy calculations.  相似文献   

3.
BACKGROUND:. The translation elongation factor EF-Tu in its GTP-bound state forms a ternary complex with any aminoacylated tRNA (aa-tRNA), except initiator tRNA and selenocysteinyl-tRNA. This complex delivers aa-tRNA to the ribosomal A site during the elongation cycle of translation. The crystal structure of the yeast Phe-tRNAPhe ternary complex with Thermus aquaticus EF-Tu-GDPNP (Phe-TC) has previously been determined as one representative of this general yet highly discriminating complex formation. RESULTS: The ternary complex of Escherichia coli Cys-tRNACys and T. aquaticus EF-Tu-GDPNP (Cys-TC) has been solved and refined at 2.6 degrees resolution. Conserved and variable features of the aa-tRNA recognition and binding by EF-Tu-GTP have been revealed by comparison with the Phe-TC structure. New tertiary interactions are observed in the tRNACys structure. A 'kissing complex' is observed in the very close crystal packing arrangement. CONCLUSIONS: The recognition of Cys-tRNACys by EF-Tu-GDPNP is restricted to the aa-tRNA motif previously identified in Phe-TC and consists of the aminoacylated 3' end, the phosphorylated 5' end and one side of the acceptor stem and T stem. The aminoacyl bond is recognized somewhat differently, yet by the same primary motif in EF-Tu, which suggests that EF-Tu adapts to subtle variations in this moiety among all aa-tRNAs. New tertiary interactions revealed by the Cys-tRNACys structure, such as a protonated C16:C59 pyrimidine pair, a G15:G48 'Levitt pair' and an s4U8:A14:A46 base triple add to the generic understanding of tRNA structure from sequence. The structure of the 'kissing complex' shows a quasicontinuous helix with a distinct shape determined by the number of base pairs.  相似文献   

4.
The G-protein EF-Tu, which undergoes a major conformational change when EF-Tu·GTP is converted to EF-Tu·GDP, forms part of an aminoacyl(aa)-tRNA·EF-Tu·GTP ternary complex (TC) that accelerates the binding of aa-tRNA to the ribosome during peptide elongation. Such binding, placing a portion of EF-Tu in contact with the GTPase Associated Center (GAC), is followed by GTP hydrolysis and Pi release, and results in formation of a pretranslocation (PRE) complex. Although tRNA movement through the ribosome during PRE complex formation has been extensively studied, comparatively little is known about the dynamics of EF-Tu interaction with either the ribosome or aa-tRNA. Here we examine these dynamics, utilizing ensemble and single molecule assays employing fluorescent labeled derivatives of EF-Tu, tRNA, and the ribosome to measure changes in either FRET efficiency or fluorescence intensity during PRE complex formation. Our results indicate that ribosome-bound EF-Tu separates from the GAC prior to its full separation from aa-tRNA, and suggest that EF-Tu·GDP dissociates from the ribosome by two different pathways. These pathways correspond to either reversible EF-Tu·GDP dissociation from the ribosome prior to the major conformational change in EF-Tu that follows GTP hydrolysis, or irreversible dissociation after or concomitant with this conformational change.  相似文献   

5.
The accuracy of ribosomal translation is achieved by an initial selection and a proofreading step, mediated by EF-Tu, which forms a ternary complex with aminoacyl(aa)-tRNA. To study the binding modes of different aa-tRNAs, we compared cryo-EM maps of the kirromycin-stalled ribosome bound with ternary complexes containing Phe-tRNAPhe, Trp-tRNATrp, or Leu-tRNALeuI. The three maps suggest a common binding manner of cognate aa-tRNAs in their specific binding with both the ribosome and EF-Tu. All three aa-tRNAs have the same ‘loaded spring' conformation with a kink and twist between the D-stem and anticodon stem. The three complexes are similarly integrated in an interaction network, extending from the anticodon loop through h44 and protein S12 to the EF-Tu-binding CCA end of aa-tRNA, proposed to signal cognate codon–anticodon interaction to the GTPase centre and tune the accuracy of aa-tRNA selection.  相似文献   

6.
Elongation factor (EF) Tu promotes the binding of aminoacyl-tRNA (aa-tRNA) to the acceptor site of the ribosome. This process requires the formation of a ternary complex (EF-Tu.GTP.aa-tRNA). EF-Tu is released from the ribosome as an EF-Tu.GDP complex. Exchange of GDP for GTP is carried out through the formation of a complex with EF-Ts (EF-Tu.Ts). Mammalian mitochondrial EF-Tu (EF-Tu(mt)) differs from the corresponding prokaryotic factors in having a much lower affinity for guanine nucleotides. To further understand the EF-Tu(mt) subcycle, the dissociation constants for the release of aa-tRNA from the ternary complex (K(tRNA)) and for the dissociation of the EF-Tu.Ts(mt) complex (K(Ts)) were investigated. The equilibrium dissociation constant for the ternary complex was 18 +/- 4 nm, which is close to that observed in the prokaryotic system. The kinetic dissociation rate constant for the ternary complex was 7.3 x 10(-)(4) s(-)(1), which is essentially equivalent to that observed for the ternary complex in Escherichia coli. The binding of EF-Tu(mt) to EF-Ts(mt) is mutually exclusive with the formation of the ternary complex. K(Ts) was determined by quantifying the effects of increasing concentrations of EF-Ts(mt) on the amount of ternary complex formed with EF-Tu(mt). The value obtained for K(Ts) (5.5 +/- 1.3 nm) is comparable to the value of K(tRNA).  相似文献   

7.
The elongation factor Tu binds aminoacyl-tRNA in the presence of GDP   总被引:7,自引:0,他引:7  
Escherichia coli elongation factor (EF-Tu) binds aminoacyl-tRNAs (aa-tRNA) not only in the presence of GTP but also in the presence of GDP. Complex formation leads to a protection of the aa-tRNA against nonenzymatic deacylation and digestion by pancreatic ribonuclease, as well as to a protection of EF-Tu against proteolysis by trypsin. The equilibrium constant for the binding of Phe-tRNAPheyeast for example to EF-Tu.GDP has been determined to be 0.7 X 10(5) M-1 which is 2 orders of magnitude lower than the equilibrium constant for Phe-tRNAPheyeast binding to EF-Tu.GTP. In the presence of kirromycin, aminoacyl-tRNA binding to EF-Tu.GDP is not affected as much: Phe-tRNAPheyeast is bound with an equilibrium constant of 3 X 10(5) M-1. While there is also a measurable interaction between EF-Tu.GTP and tRNA, such an interaction cannot be detected with EF-Tu.GDP and tRNA, not even at millimolar concentrations. A so far undetected complex formation between aminoacyl-tRNA and EF-Tu.GTP in the presence of pulvomycin, however, could be detected. The results are discussed in terms of the structural requirements of ternary complex formation and in the light of proofreading schemes involving A-site binding on the E. coli ribosome.  相似文献   

8.
The interaction of three different Met-tRNAsMet from E. coli with bacterial elongation factor (EF) Tu X GTP was investigated by affinity chromatography. Met-tRNAfMet which lacks the base pair at the end of the acceptor stem binds only weakly to EF-Tu X GTP, while Met-tRNAmMet has a high affinity for the elongation factor. A modified Met-tRNAfMet which has a C1-G72 base pair binds much more strongly to immobilized EF-Tu X GTP than the native aminoacyl(aa)-tRNA with non-base-paired C1A72 at this position, demonstrating that the base pair including the first nucleotide in the tRNA is one of the essential structural requirements for the aa-tRNA X EF-Tu X GTP ternary complex formation.  相似文献   

9.
Aminoacyl-tRNA (aa-tRNA) is delivered to the ribosome in a ternary complex with elongation factor Tu (EF-Tu) and GTP. The stepwise movement of aa-tRNA from EF-Tu into the ribosomal A site entails a number of intermediates. The ribosome recognizes aa-tRNA through shape discrimination of the codon-anticodon duplex and regulates the rates of GTP hydrolysis by EF-Tu and aa-tRNA accommodation in the A site by an induced fit mechanism. Recent results of kinetic measurements, ribosome crystallography, single molecule FRET measurements, and cryo-electron microscopy suggest the mechanism of tRNA recognition and selection.  相似文献   

10.
The interaction of the Escherichia coli elongation factor Tu guanosine tetraphosphate complex (EF-Tu ppGpp) with aminoacyl-tRNAs(aa-tRNA) was reinvestigated by gel filtration and hydrolysis protection experiments. These experiments show that EF-Tu X ppGpp like EF-Tu X GDP (Pingoud, A., Block, W., Wittinghofer, A., Wolf, H. & Fischer, E. (1982) J. Biol. Chem. 257, 11261-11267) forms a fairly stable complex with Phe-tRNAPhe, KAss being 0.6 X 10(5) M-1 at 25 degrees C. The binding of the EF-Tu X ppGpp X aa-tRNA complex to programmed ribosomes was investigated by a centrifugation technique. It is shown that this complex is bound codon-specific with KAss = 3 X 10(7) M-1 at 0 degrees C and that it stimulates peptidyl transfer. A numerical estimation of the intracellular concentration of EF-Tu X GTP X aa-tRNA and EF-Tu X ppGpp X aa-tRNA during normal growth and under the stringent response indicates that ppGpp accumulation does affect the EF-Tu X GTP X aa-tRNA concentration but does not lead to major depletion of this pool. Furthermore, due to the higher affinity of EF-Tu X GTP to aa-tRNA and of the ternary complex EF-Tu X GTP X aa-tRNA to the ribosome, EF-Tu X ppGpp X aa-tRNA binding to the ribosome is not significant. According to our measurements and calculations, therefore, a direct participation of EF-Tu in slowing down the rate of protein biosynthesis and improving its accuracy during amino acid starvation is not obvious.  相似文献   

11.
The influence of kirromycin on the elongation factor Tu (EF-Tu) in its binary and ternary complexes was investigated. The equilibrium constant for the binding of the antibiotic to EF-Tu . GDP and EF-Tu . GTP was determined by circular dichroism titrations to be 4 x 10(6) M-1, and to EF-Tu . GTP . aa-tRNA by a combination of circular dichroism titrations and hydrolysis protection experiments to be 2 x 10(6) M-1. In the presence of kirromycin the binding of aminoacyl-tRNAs to EF-Tu . GTP is weakened by a factor of two. The antibiotic changes the conformation of the ternary complex in such a way that the aminoacyl moiety of the aminoacyl-tRNA is more accessible to the non-enzymatic hydrolysis. It is concluded that this structural alteration is responsible for the inhibitory action of the antibiotic.  相似文献   

12.
Pulvomycin inhibits protein synthesis by preventing the formation of the ternary complex between elongation factor Tu (EF-Tu) x GTP and aa-tRNA. In this work, the crystal structure of Thermus thermophilus EF-Tu x pulvomycin in complex with the GTP analogue guanylyl imino diphosphate (GDPNP) at 1.4 A resolution reveals an antibiotic binding site extending from the domain 1-3 interface to domain 2, overlapping the domain 1-2-3 junction. Pulvomycin binding interferes with the binding of the 3'-aminoacyl group, the acceptor stem, and 5' end of tRNA. Only part of pulvomycin overlaps the binding site of GE2270 A, a domain 2-bound antibiotic of a structure unrelated to pulvomycin, which also hinders aa-tRNA binding. The structure of the T. thermophilus EF-Tu x GDPNP x GE2270 A complex at 1.6 A resolution shows that GE2270 A interferes with the binding of the 3'-aminoacyl group and part of the acceptor stem of aa-tRNA but not with the 5' end. Both compounds, pulvomycin more markedly, hinder the correct positioning of domain 1 over domains 2 and 3 that characterizes the active form of EF-Tu, while they affect the domain 1 switch regions that control the EF-Tu x GDP/GTP transitions in different ways. This work reveals how two antibiotics with different structures and binding modes can employ a similar mechanism of action.  相似文献   

13.
The mRNA codon in the ribosomal A-site is recognized by aminoacyl-tRNA (aa-tRNA) in a ternary complex with elongation factor Tu (EF-Tu) and GTP. Here we report the 13 A resolution three-dimensional reconstruction determined by cryo-electron microscopy of the kirromycin-stalled codon-recognition complex. The structure of the ternary complex is distorted by binding of the tRNA anticodon arm in the decoding center. The aa-tRNA interacts with 16S rRNA, helix 69 of 23S rRNA and proteins S12 and L11, while the sarcin-ricin loop of 23S rRNA contacts domain 1 of EF-Tu near the nucleotide-binding pocket. These results provide a detailed snapshot view of an important functional state of the ribosome and suggest mechanisms of decoding and GTPase activation.  相似文献   

14.
The fidelity of protein synthesis depends on the rate constants for the reaction of ribosomes with ternary complexes of elongation factor Tu (EF-Tu), GTP, and aminoacyl (aa)-tRNA. By measuring the rate constants for the reaction of poly(U)-programmed ribosomes with a binary complex of elongation factor (EF-Tu) and GTP we have shown that two of the key rate constants in the former reaction are determined exclusively by ribosome-EF-Tu interactions and are not affected by the aa-tRNA. These are the rate constant for GTP hydrolysis, which plays an important role in the fidelity of ternary complex selection by the ribosome, and the rate constant for EF-Tu.GDP dissociation from the ribosome, which plays an equally important role in subsequent proofreading of the aa-tRNA. We conclude that the fidelities of ternary complex selection and proofreading are fundamentally dependent on ribosome-EF-Tu interactions. These interactions determine the absolute value of the rate constants for GTP hydrolysis and EF-Tu.GDP dissociation. The ribosome then uses these rate constants as internal standards to measure, respectively, the rate constants for ternary complex and aa-tRNA dissociation from the ribosome. These rates, in turn, are highly dependent on whether the ternary complex and aa-tRNA are cognate or near-cognate to the codon being translated.  相似文献   

15.
In most prokaryotes Asn-tRNAAsn and Gln-tRNAGln are formed by amidation of aspartate and glutamate mischarged onto tRNAAsn and tRNAGln, respectively. Coexistence in the organism of mischarged Asp-tRNAAsn and Glu-tRNAGln and the homologous Asn-tRNAAsn and Gln-tRNAGln does not, however, lead to erroneous incorporation of Asp and Glu into proteins, since EF-Tu discriminates the misacylated tRNAs from the correctly charged ones. This property contrasts with the canonical function of EF-Tu, which is to non-specifically bind the homologous aa-tRNAs, as well as heterologous species formed in vitro by aminoacylation of non-cognate tRNAs. In Thermus thermophilus that forms the Asp-tRNAAsn intermediate by the indirect pathway of tRNA asparaginylation, EF-Tu must discriminate the mischarged aminoacyl-tRNAs (aa-tRNA). We show that two base pairs in the tRNA T-arm and a single residue in the amino acid binding pocket of EF-Tu promote discrimination of Asp-tRNAAsn from Asn-tRNAAsn and Asp-tRNAAsp by the protein. Our analysis suggests that these structural elements might also contribute to rejection of other mischarged aa-tRNAs formed in vivo that are not involved in peptide elongation. Additionally, these structural features might be involved in maintaining a delicate balance of weak and strong binding affinities between EF-Tu and the amino acid and tRNA moieties of other elongator aa-tRNAs.  相似文献   

16.
The conformation change of Thermus thermophilus tRNA(1Ile) upon complex formation with T. thermophilus elongation factor Tu (EF-Tu) was studied by analysis of the circular dichroism (CD) bands at 315 nm (due to the 2-thioribothymidine residue in the T-loop) and at 295 nm (due to the core structure of tRNA). Formation of the ternary complex of isoleucyl-tRNA(1Ile) and EF-Tu.GTP increased the intensities of these CD bands, indicating stabilization of the association between the T-loop and the D-loop and also a significant conformation change of the core region. Upon complex formation of EF-Tu.GTP and uncharged tRNA, however, the conformation of the core region is not changed, while the association of the two loops is still stabilized. On the other hand, the binding with EF-Tu.GDP does not appreciably affect the conformation of isoleucyl-tRNA or uncharged tRNA. These indicate the importance of the gamma-phosphate group of GTP and the aminoacyl group in the formation of the active complex of aminoacyl-tRNA and EF-Tu.GTP.  相似文献   

17.
The addition of glycerol, sucrose, or other diol-containing reagents to solutions of aminoacyl-tRNA (aa-tRNA) substantially increased the rate of hydrolysis of the aminoacyl ester bond. Glycerol at 4.9% (v/v) doubled the rate of deacylation for several aa-tRNAs and peptidyl-tRNAs, including fMet-tRNAMetf, while 1% (v/v) glycerol increased the deacylation rate by 20%. This effect was not caused by a nuclease contamination, and tRNA deacylated in the presence of glycerol could be fully recharged. The deacylation of aa-tRNA was accelerated by glycerol and sucrose even in the presence of EF-Tu X GTP. In addition, the extent of tRNA aminoacylation was reduced when glycerol was present at concentrations above 2% (v/v). Thus, glycerol and sucrose are not necessarily inert or neutral additions to an in vitro incubation.  相似文献   

18.
In this work we show that intact aminoacyl-tRNA (aa-tRNA) and its 3' half-molecule, but not its 3' C-C-A-aa fragment, require selective ionic conditions for stimulating the mRNA-independent GTPase of elongation factor Tu (EF-Tu) in the presence of ribosomes.l Stimulation by aa-tRNA and its 3' half-molecule is only observed at 20 and 30 mM Mg2+ and not at 10 mM, where they exert inhibitory activity; by contrast, C-C-A-aa enhances the GTPase activity at all three of these Mg2+ concentrations. Ammonium ion is needed for stimulation by C-C-A-aa, whereas it inhibits the stimulation by aa-tRNA and its 3' half-molecule. The concentration of aminoacylated fragments needed for half-maximum stimulation follows this order: A-Val much greater than C-A-Val greater than C-C-A-Val much greater than 3' Val-tRNA1Val half-molecule greater than Val-tRNA1Val. The extent of maximum stimulation of the EF-Tu GTPase in the presence of ribosomes varies moderately depending on the aa-tRNA species; a clear dependence on the nature of the aminoacyl side chain is observed in the effects of their respective C-C-A-aa fragments tested (C-C-A-Arg, C-C-A-Val, C-C-A-Phe, C-C-A-Met, C-C-A-Lys). In the absence of ribosomes and at low [Mg2+], the one-round GTP hydrolysis by EF-Tu is enhanced by C-C-A-aa fragments, whereas it is inhibited by the corresponding aa-tRNAs. Our results suggest that besides the 3' aminoacylated extremity another region(s) of the aa-tRNA molecule controls the GTPase of EF-Tu. The "unspecific" stimulation by C-C-A-aa and the "specific," aa-tRNA-like effect of the 3' aa-tRNA half-molecule point to the importance of the T chi C loop and stem, as well as of the adjacent regions for the regulation of this function.  相似文献   

19.
Translational regulation by modifications of the elongation factor Tu   总被引:1,自引:0,他引:1  
EF-Tu fromE. coli, one of the superfamily of GTPase switch proteins, plays a central role in the fast and accurate delivery of aminoacyl-tRNAs to the translating ribosome. An overview is given about the regulatory effects of methylation, phosphorlation and phage-induced cleavage of EF-Tu on its function. During exponential growth, EF-Tu becomes monomethylated at Lys56 which is converted to Me2Lys upon entering the stationary phase. Lys56 is in the GTPase switch-1 regions (residues 49–62), a strongly conserved site involved in interactions with the nucleotide and the 5′ end of tRNA. Methylation was found to attenuate GTP hydrolysis and may thus enhance translational accuracy.In vivo 5–10% of EF-Tu is phosphorylated at Thr382 by a ribosome-associated kinase. In EF-Tu-GTP, Thr382 in domain 3 has a strategic position in the interface with domain 1; it is hydrogen-bonded to Glu117 that takes part in the switch-2 mechanism, and is close to the T-stem binding site of the tRNA, in a region known for many kirromycin-resistance mutations. Phosphorylation is enhanced by EF-Ts, but inhibited by kirromycin. In reverse, phosphorylated EF-Tu has an increased affinity for EF-Ts, does not bind kirromycin and can no longer bind aminoacyl tRNA. Thein vivo role of this reversibles modification is still a matter of speculation. T4 infection ofE. coli may trigger a phage-exclusion mechanism by activation of Lit, a host-encoded proteinase. As a result, EF-Tu is cleaved site-specifically between Gly59-Ile60 in the switch-1 region. Translation was found to drop beyond a minimum level. Interestingly, the identical sequence in the related EF-G appeared to remain fully intact. Although the Lit cleavage-mechanism may eventually lead to programmed cell death, the very efficient prevention of phage multiplication may be caused by a novel mechanisms ofin cis inhibition of late T4 mRNA translation. Presented at theSymposium on Regulation of Translation of Genetic Information by Protein Phosphorylation, 21st Congress of the Czechoslovak Society for Microbiology, Hradec Králové (Czech Republic), September 6–10, 1998.  相似文献   

20.
In this work, we have studied the effect of aa-tRNA and derived 3' aminoacylated fragments on the EF-Tu GTPase in the presence of kirromycin, using two systems: without and with ribosomes. The aa-tRNA fragments were obtained by enzymatic digestion. Procedures for the enzymatic preparation of C-A-Val and Val-tRNA Val1 3' half molecule, as well as a purification method for short 3' aminoacylated fragments based on the amino group charge, were newly developed for this work. Aminoacyl-adenosine was found to be able to stimulate the EF-Tu x kirromycin GTPase, but only to a very small extent. Increasing the length of the aminoacylated fragments increased the stimulatory effect as follow: A-Val much less than C-A-Val less than C-C-A-Val less than 3' valyladenosine dodecanucleotide much less than Val-tRNA Val1 3' half molecule less than Val-tRNA Val1. The presence of ribosomes did not affect the order of effectiveness, but increased the basic GTPase activity of EF-Tu x kirromycin and the stimulation by aa-tRNA, its 3' half molecule and even more by its 3' short fragments. The effect of aa-tRNA and derived 3' fragments in the absence of ribosomes was not influenced by MgCl2 concentrations of 5-30 mM whereas, in the presence of ribosomes, low concentrations of MgCl2 (5 mM) greatly reduced the stimulation of aa-tRNA and, to a lesser extent, also the effect of the C-C-A-aa as well as the basic activity of the EF-Tu x kirromycin GTPase. The extent of the stimulation by aa-tRNA, and even more by C-C-A-aa, depends on the nature of the amino acid. Among the aminoacyl side chains tested (Arg-, Phe-, Val-, Met-, Leu-, Lys-) arginine was found to be the most active and leucine the least. Our results show that (a) the 3' aminoacylated extremity is of prime importance for the stimulation of the EF-Tu GTPase, (b) in the 3' extremity there are critical sequences for the interaction with EF-Tu and (c) other domains of the aa-tRNA molecule are capable of influencing this reaction: one of the most important is the region including the T psi C loop and stem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号