首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In this study, we have mapped the onset of hematopoietic development in the mouse embryo using colony-forming progenitor assays and PCR-based gene expression analysis. With this approach, we demonstrate that commitment of embryonic cells to hematopoietic fates begins in proximal regions of the egg cylinder at the mid-primitive streak stage (E7.0) with the simultaneous appearance of primitive erythroid and macrophage progenitors. Development of these progenitors was associated with the expression of SCL/tal-1 and GATA-1, genes known to be involved in the development and maturation of the hematopoietic system. Kinetic analysis revealed the transient nature of the primitive erythroid lineage, as progenitors increased in number in the developing yolk sac until early somite-pair stages of development (E8.25) and then declined sharply to undetectable levels by 20 somite pairs (E9.0). Primitive erythroid progenitors were not detected in any other tissue at any stage of embryonic development. The early wave of primitive erythropoiesis was followed by the appearance of definitive erythroid progenitors (BFU-E) that were first detectable at 1-7 somite pairs (E8.25) exclusively within the yolk sac. The appearance of BFU-E was followed by the development of later stage definitive erythroid (CFU-E), mast cell and bipotential granulocyte/macrophage progenitors in the yolk sac. C-myb, a gene essential for definitive hematopoiesis, was expressed at low levels in the yolk sac just prior to and during the early development of these definitive erythroid progenitors. All hematopoietic activity was localized to the yolk sac until circulation was established (E8.5) at which time progenitors from all lineages were detected in the bloodstream and subsequently in the fetal liver following its development. This pattern of development suggests that definitive hematopoietic progenitors arise in the yolk sac, migrate through the bloodstream and seed the fetal liver to rapidly initiate the first phase of intraembryonic hematopoiesis. Together, these findings demonstrate that commitment to hematopoietic fates begins in early gastrulation, that the yolk sac is the only site of primitive erythropoiesis and that the yolk sac serves as the first source of definitive hematopoietic progenitors during embryonic development.  相似文献   

3.
During embryonic development, hematopoiesis occurs through primitive and definitive waves, giving rise to distinct blood lineages. Hematopoietic stem cells (HSCs) emerge from hemogenic endothelial (HE) cells, through endothelial‐to‐hematopoietic transition (EHT). In the adult, HSC quiescence, maintenance, and differentiation are closely linked to changes in metabolism. However, metabolic processes underlying the emergence of HSCs from HE cells remain unclear. Here, we show that the emergence of blood is regulated by multiple metabolic pathways that induce or modulate the differentiation toward specific hematopoietic lineages during human EHT. In both in vitro and in vivo settings, steering pyruvate use toward glycolysis or OXPHOS differentially skews the hematopoietic output of HE cells toward either an erythroid fate with primitive phenotype, or a definitive lymphoid fate, respectively. We demonstrate that glycolysis‐mediated differentiation of HE toward primitive erythroid hematopoiesis is dependent on the epigenetic regulator LSD1. In contrast, OXPHOS‐mediated differentiation of HE toward definitive hematopoiesis is dependent on cholesterol metabolism. Our findings reveal that during EHT, metabolism is a major regulator of primitive versus definitive hematopoietic differentiation.  相似文献   

4.
5.
The embryonic stem cell differentiation system was used to define the roles of the Activin/Nodal, BMP, and canonical Wnt signaling pathways at three distinct developmental stages during hematopoietic ontogeny: induction of a primitive streak-like population, formation of Flk1(+) mesoderm, and induction of hematopoietic progenitors. Activin/Nodal and Wnt, but not BMP, signaling are required for the induction of the primitive streak. Although BMP is not required for primitive streak induction, it displays a strong posteriorizing effect on this population. All three signaling pathways regulate induction of Flk1(+) mesoderm. The specification of Flk1(+) mesoderm to the hematopoietic lineages requires VEGF and Wnt, but not BMP or Activin/Nodal signaling. Specifically, Wnt signaling is essential for commitment of the primitive erythroid, but not the definitive lineages. These findings highlight dynamic changes in signaling requirements during blood cell development and identify a role for Wnt signaling in the establishment of the primitive erythroid lineage.  相似文献   

6.
7.
Embryonic stem (ES) cells differentiate into multiple hematopoietic lineages during embryoid body formation in vitro, but to date, an ES-derived hematopoietic stem cell has not been identified and subjected to clonal analysis in a manner comparable with hematopoietic stem cells from adult bone marrow. As the chronic myeloid leukemia-associated BCR/ABL oncogene endows the adult hematopoietic stem cell with clonal dominance without inhibiting pluripotent lymphoid and myeloid differentiation, we have used BCR/ABL as a tool to enable engraftment and clonal analysis. We show that embryoid body-derived hematopoietic progenitors expressing BCR/ABL maintain a primitive hematopoietic blast stage of differentiation and generate only primitive erythroid cell types in vitro. These cells can be cloned, and when injected into irradiated adult mice, they differentiate into multiple myeloid cell types as well as T and B lymphocytes. While the injected cells express embryonic (beta-H1) globin, donor-derived erythroid cells in the recipient express only adult (beta-major) globin, suggesting that these cells undergo globin gene switching and developmental maturation in vivo. These data demonstrate that an embryonic hematopoietic stem cell arises in vitro during ES cell differentiation that constitutes a common progenitor for embryonic erythroid and definitive lymphoid-myeloid hematopoiesis.  相似文献   

8.
Kyba M  Perlingeiro RC  Daley GQ 《Cell》2002,109(1):29-37
The extent to which primitive embryonic blood progenitors contribute to definitive lymphoid-myeloid hematopoiesis in the adult remains uncertain. In an effort to characterize factors that distinguish the definitive adult hematopoietic stem cell (HSC) and primitive progenitors derived from yolk sac or embryonic stem (ES) cells, we examined the effect of ectopic expression of HoxB4, a homeotic selector gene implicated in self-renewal of definitive HSCs. Expression of HoxB4 in primitive progenitors combined with culture on hematopoietic stroma induces a switch to the definitive HSC phenotype. These progenitors engraft lethally irradiated adults and contribute to long-term, multilineage hematopoiesis in primary and secondary recipients. Our results suggest that primitive HSCs are poised to become definitive HSCs and that this transition can be promoted by HoxB4 expression. This strategy for blood engraftment enables modeling of hematopoietic transplantation from ES cells.  相似文献   

9.
Shifting sites of blood cell production during development is common across widely divergent phyla. In zebrafish, like other vertebrates, hematopoietic development has been roughly divided into two waves, termed primitive and definitive. Primitive hematopoiesis is characterized by the generation of embryonic erythrocytes in the intermediate cell mass and a distinct population of macrophages that arises from cephalic mesoderm. Based on previous gene expression studies, definitive hematopoiesis has been suggested to begin with the generation of presumptive hematopoietic stem cells (HSCs) along the dorsal aorta that express c-myb and runx1. Here we show, using a combination of gene expression analyses, prospective isolation approaches, transplantation, and in vivo lineage-tracing experiments, that definitive hematopoiesis initiates through committed erythromyeloid progenitors (EMPs) in the posterior blood island (PBI) that arise independently of HSCs. EMPs isolated by coexpression of fluorescent transgenes driven by the lmo2 and gata1 promoters exhibit an immature, blastic morphology and express only erythroid and myeloid genes. Transplanted EMPs home to the PBI, show limited proliferative potential, and do not seed subsequent hematopoietic sites such as the thymus or pronephros. In vivo fate-mapping studies similarly demonstrate that EMPs possess only transient proliferative potential, with differentiated progeny remaining largely within caudal hematopoietic tissue. Additional fate mapping of mesodermal derivatives in mid-somitogenesis embryos suggests that EMPs are born directly in the PBI. These studies provide phenotypic and functional analyses of the first hematopoietic progenitors in the zebrafish embryo and demonstrate that definitive hematopoiesis proceeds through two distinct waves during embryonic development.  相似文献   

10.
Endoh M  Ogawa M  Orkin S  Nishikawa S 《The EMBO journal》2002,21(24):6700-6708
Hematopoiesis in most vertebrate species occurs in two distinct phases, primitive and definitive, which diverge from FLK1(+)VE-cadherin(-) mesoderm and FLK1(+)VE-cadherin(+) endothelial cells (EC), respectively. This study aimed at determining the stage at which hematopoietic lineage fate is determined by manipulating the SCL/tal-1 expression that is known to be essential for the early development of the primitive and definitive hematopoietic systems. We established SCL-null ES cell lines in which SCL expression is rescued by tamoxifen-inducible Cre recombinase-loxP site-mediated recombination. While no hematopoietic cells (HPC) were detected in SCL-null ES cell differentiation cultures, SCL gene reactivation from day 2 to day 4 after initiation of differentiation could rescue both primitive and definitive hematopoiesis. SCL reactivation at later phases was ineffective. Moreover, generation of VE-cadherin(+) EC that can give rise to definitive HPC required SCL reactivation prior to VE-cadherin expression. These results indicated that the competence to become HPC is acquired at the mesodermal stage by a SCL-dependent process that takes place independently of determination of endothelial fate.  相似文献   

11.
12.
The functions of actin family members during development are poorly understood. To investigate the role of beta-actin in mammalian development, a beta-actin knockout mouse model was used. Homozygous beta-actin knockout mice are lethal at embryonic day (E)10.5. At E10.25 beta-actin knockout embryos are growth retarded and display a pale yolk sac and embryo proper that is suggestive of altered erythropoiesis. Here we report that lack of beta-actin resulted in a block of primitive and definitive hematopoietic development. Reduced levels of Gata2, were associated to this phenotype. Consistently, ChIP analysis revealed multiple binding sites for beta-actin in the Gata2 promoter. Gata2 mRNA levels were almost completely rescued by expression of an erythroid lineage restricted ROSA26-promotor based GATA2 transgene. As a result, erythroid differentiation was restored and the knockout embryos showed significant improvement in yolk sac and embryo vascularization. These results provide new molecular insights for a novel function of beta-actin in erythropoiesis by modulating the expression levels of Gata2 in vivo.  相似文献   

13.
Identification of sequential progenitors leading to blood formation from pluripotent stem cells (PSCs) will be essential for understanding the molecular mechanisms of hematopoietic lineage specification and for development of technologies for in vitro production of hematopoietic stem cells (HSCs). It is well established that during development, blood and endothelial cells in the extraembryonic and embryonic compartments are formed in parallel from precursors with angiogenic and hematopoietic potentials. However, the identity and hierarchy of these precursors in human PSC (hPSC) cultures remain obscure. Using developmental stage-specific mesodermal and endothelial markers and functional assays, we recently identified discrete populations of angiohematopoietic progenitors from hPSCs, including mesodermal precursors and hemogenic endothelial cells with primitive and definitive hematopoietic potentials. In addition, we discovered a novel population of multipotent hematopoietic progenitors with an erythroid phenotype, which retain angiogenic potential. Here we introduce our recent findings and discuss their implication for defining putative HSC precursor and factors required for activation of self-renewal potential in hematopoietic cells emerging from endothelium.  相似文献   

14.
Vertebrate hematopoiesis occurs in two distinct phases, primitive (embryonic) and definitive (adult). Genes that are required specifically for the definitive program, or for both phases of hematopoiesis, have been described. However, a specific regulator of primitive hematopoiesis has yet to be reported. The zebrafish bloodless (bls) mutation causes absence of embryonic erythrocytes in a dominant but incompletely penetrant manner. Primitive macrophages appear to develop normally in bls mutants. Although the thymic epithelium forms normally in bls mutants, lymphoid precursors are absent. Nonetheless, the bloodless mutants can progress through embryogenesis, where red cells begin to accumulate after 5 days post-fertilization (dpf). Lymphocytes also begin to populate the thymic organs by 7.5 dpf. Expression analysis of hematopoietic genes suggests that formation of primitive hematopoietic precursors is deficient in bls mutants and those few blood precursors that are specified fail to differentiate and undergo apoptosis. Overexpression of scl, but not bmp4 or gata1, can lead to partial rescue of embryonic blood cells in bls. Cell transplantation experiments show that cells derived from bls mutant donors can differentiate into blood cells in a wild-type host, but wild-type donor cells fail to form blood in the mutant host. These observations demonstrate that the bls gene product is uniquely required in a non-cell autonomous manner for primitive hematopoiesis, potentially acting via regulation of scl.  相似文献   

15.
16.
17.
Hemangioblasts are thought to be one of the sources of hematopoietic progenitors, yet little is known about their localization and fate in the mouse embryo. We show here that a subset of cells co-expressing the hematopoietic marker GATA-1 and the endothelial marker VE-cadherin localize on the yolk sac blood islands at embryonic day 7.5. Clonal analysis demonstrated that GATA-1(+) cells isolated from E7.0-7.5 embryos include a common precursor for hematopoietic and endothelial cells. Moreover, this precursor possesses primitive and definitive hematopoietic bipotential. By using a transgenic complementation rescue approach, GATA-1(+) cell-derived progenitors were selectively restored in Runx1-deficient mice. In the rescued mice, definitive erythropoiesis was recovered but the rescued progenitors did not display multilineage hematopoiesis or intra-aortic hematopoietic clusters. These results provide evidence of the presence of GATA-1(+) hemangioblastic cells in the extra-embryonic region and also their functional contribution to hematopoiesis in the embryo.  相似文献   

18.
Homozygosity for a null mutation in the scl gene causes mid-gestational embryonic lethality in the mouse due to failure of development of primitive hematopoiesis. Whilst this observation established the role of the scl gene product in primitive hematopoiesis, the death of the scl null embryos precluded analysis of the role of scl in later hematopoietic development. To address this question, we created embryonic stem cell lines with a homozygous null mutation of the scl gene (scl-/-) and used these lines to derive chimeric mice. Analysis of the chimeric mice demonstrates that the scl-/- embryonic stem cells make a substantial contribution to all non-hematopoietic tissues but do not contribute to any hematopoietic lineage. These observations reveal a crucial role for the scl gene product in definitive hematopoiesis. In addition, in vitro differentiation assays with scl-/- embryonic stem cells showed that the scl gene product was also required for formation of hematopoietic cells in this system.  相似文献   

19.
20.
Mdm2 is an E3 ubiquitin ligase that targets p53 for degradation. p53(515C) (encoding p53R172P) is a hypomorphic allele of p53 that rescues the embryonic lethality of Mdm2(-/-) mice. Mdm2(-/-) p53(515C/515C) mice, however, die by postnatal day 13 resulting from hematopoietic failure. Hematopoietic stem cells and progenitors of Mdm2(-/-) p53(515C/515C) mice were normal in fetal livers but were depleted in postnatal bone marrows. After birth, these mice had elevated reactive oxygen species (ROS) thus activating p53R172P. In the absence of Mdm2, stable p53R172P induced ROS and cell cycle arrest, senescence, and cell death in the hematopoietic compartment. This phenotype was partially rescued with antioxidant treatment and upon culturing of hematopoietic cells in methycellulose at 3% oxygen. p16 was also stabilized because of ROS, and its loss increased cell cycling and partially rescued hematopoiesis and survival. Thus, Mdm2 is required to control ROS-induced p53 levels for sustainable hematopoiesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号