首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
L. W. Morgan  J. F. Feldman 《Genetics》1997,146(2):525-530
A new circadian clock mutant has been isolated in Neurospora crassa. This new mutation, called period-6 (prd-6), has two features novel to known clock mutations. First, the mutation is temperature sensitive. At restrictive temperatures (above 21°) the mutation shortens circadian period length from a wild-type value of 21.5 hr to 18 hr. At permissive temperatures (below 21°) the mutant has a 20.5-hr period length close to that of the wild-type strain. Second, the prd-6 mutation is epistatic to the previously isolated clock mutation period-2 (prd-2). This epistasis is unusual in that the prd-2 prd-6 double mutant strain has an 18-hr period length at both the restrictive and permissive temperatures. That is, the temperature-sensitive aspect of the phenotype of the prd-6 strain is lost in the prd-2 prd-6 double mutant strain. This suggests that the gene products of the prd-2 and prd-6 loci may interact physically and that the presence of a normal prd-2(+) protein is required for low temperature to ``rescue' the prd-6 mutant phenotype. These results, combined with our recent finding that prd-2 and some alleles of the frq gene show genetic synergy, suggest that it may be possible to establish a more comprehensive model of the Neurospora circadian clock.  相似文献   

2.
Mutations at four loci in Neurospora crassa that alter the period of the circadian rhythm have been used to construct a series of double mutant strains in order to detect interactions between these mutations. Strains carrying mutations at three of these loci have altered periods on minimal media: prd-1, several alleles at the olir (oligomycin resistance) locus and four alleles at the frq locus. A mutation at the fourth locus, cel, which results in a defect in fatty acid synthesis, also leads to lengthening of the period when the medium is supplemented with linoleic acid (18:2). The cel mutation was crossed into strains carrying the frq, prd-1 and olir mutations, and the periods of the double mutant strains with and without 18:2 supplementation were determined. In addition, data from the literature for other combinations of loci and/or chemical effects on the period have been reanalyzed.--It was found that both prd-1 and olir are epistatic to the effects of 18:2 on cel; in the series of cel frq double mutant strains, the period-lengthening effect of 18:2 is inversely proportional to the period of the frq parent, indicating an interaction between frq and cel; period effects reported in the literature can be described as changes by a fixed ratio or percentage of the period rather than by a fixed number of hours, and the data, therefore, can support a multiplicative as well as an additive model.--Several biochemical interpretations of these interactions are discussed, based on simple chemical kinetics, enzyme inhibition kinetics and the control of flux through metabolic pathways.  相似文献   

3.
Lombardi L  Schneider K  Tsukamoto M  Brody S 《Genetics》2007,175(3):1175-1183
In Neurospora, the circadian rhythm is expressed as rhythmic conidiation driven by a feedback loop involving the protein products of frq (frequency), wc-1 (white collar-1), and wc-2, known as the frq/wc (FWC) oscillator. Although strains carrying null mutations such as frq(10) or wc-2Delta lack a functional FWC oscillator and do not show a rhythm under most conditions, a rhythm can be observed in them by the addition of geraniol or farnesol to the media. Employing this altered media as an assay, the effect of other clock mutations in a frq(10)- or wc-2Delta-null background can be measured. It was found that the existing clock mutations fall into three classes: (1) those, such as prd-3 or prd-4 or frq(1), that showed no effect in a clock null background; (2) those, such as prd-1 or prd-2 or prd-6, that did have a measurable effect in the frq(10) background; and (3) those, such as the new mutation ult, that suppressed the frq(10) or wc-2Delta effect, i.e., geraniol/farnesol was not required for a visible rhythm. This classification suggests that some of the known clock mutations are part of a broader multioscillator system.  相似文献   

4.
A new circadian clock mutant of Neurospora crassa has been isolated, whose most distinctive characteristic is the complete loss of temperature compensation of its period length. The Q10 of the period length was found to be equal to about 2 in the temperature range from 18 degrees to 30 degrees C. The period length was also found to be dependent on the composition of the medium, including the nature and concentration of both the carbon source and the nitrogen source. Although the rate of the clock and the growth rate were directly related when affected by varying the temperature, they were inversely related when altered by changing the composition of the medium. Therefore, the mutation has not simply coupled clock rate to growth rate in this strain. The mutation maps to the frq locus, where seven other clock mutations previously studied also map. Therefore, this mutant has been called frq-9. Since several of the other frq mutants show partial loss in temperature compensation, it is suggested that the frq gene or its product is closely related to the temperature compensation mechanism of the circadian clock of Neurospora.  相似文献   

5.
Temperature compensation of circadian period length in 12 clock mutants of Neurospora crassa has been examined at temperatures between 16 and 34°C. In the wild-type strain, below 30°C (the “breakpoint” temperature), the clock is well-compensated (Q10 = 1), while above 30°C, the clock is less well-compensated (Q10 = 1.3). For mutants at the frq locus, mutations that shorten the circadian period length (frq-1, frq-2, frq-4, and frq-6) do not alter this temperature compensation response. In long period frq mutants (frq-3, frq-7, frq-8), however, the breakpoint temperature is lowered, and the longer the period length of the mutants the lower the breakpoint temperature. Long period mutants at other loci exhibit other types of alterations in temperature compensation—e.g. chr is well-compensated even above 30°C, while prd-3 has a Q10 significantly less than 1 below 30°C. Prd-4, a short period mutant, has several breakpoint temperatures. Among four double mutants examined, the only unusual interaction between the individual mutations occurred with chr prd, which had an unusually low Q10 value of 0.86 below 27°C. There was no correlation between circadian period length and growth rate. These strains should be useful tools to test models for the temperature compensation mechanism.  相似文献   

6.
The mode of interaction in haploid Saccharomyces cerevisiae of two pso mutations with each other and with rad mutations affected in their excision-resynthesis (rad3), error-prone (rad6), and deoxyribonucleic acid double-strand break (rad52) repair pathways was determined for various double mutant combinations. Survival data for 8-methoxypsoralen photoaddition, 254-nm ultraviolet light and gamma rays are presented. For 8-methoxypsoralen photoaddition, which induces both deoxyribonucleic acid interstrand cross-links and monoadditions, the pso1 mutation is epistatic to the rad6, rad52, and pso2 mutations, whereas it is synergistic to rad3. The pso2 mutation, which is specifically sensitive to photoaddition of psoralens, is epistatic to rad3 and demonstrates a nonepistatic interaction with rad6 and rad52. rad3 and rad6, as well as rad 6 and rad52, show synergistic interactions with each other, whereas rad 3 is epistatic to rad52. Consequently, it is proposed that PSO1 and RAD3 genes govern steps in the independent pathways. The PSO1 activity leading to an intermediate which is repaired via the three incidence pathways controlled by RAD6, RAD52, and PSO2 genes. Since pso1 interacts synergistically with rad3 and rad52 and epistatically with rad6 after UV radiation, the PSO1 gene appears to belong to the RAD6 group. For gamma ray sensitivity, pso1 is epistatic to rad6 and rad52, which suggests that this gene controls a step which is common to the two other independent pathways.  相似文献   

7.
To understand the role of white collar-2 in the Neurospora circadian clock, we examined alleles of wc-2 thought to encode partially functional proteins. We found that wc-2 allele ER24 contained a conservative mutation in the zinc finger. This mutation results in reduced levels of circadian rhythm-critical clock gene products, frq mRNA and FRQ protein, and in a lengthened period of the circadian clock. In addition, this mutation altered a second canonical property of the clock, temperature compensation: as temperature increased, period length decreased substantially. This temperature compensation defect correlated with a temperature-dependent increase in overall FRQ protein levels, with the relative increase being greater in wc-2 (ER24) than in wild type, while overall frq mRNA levels were largely unaltered by temperature. We suggest that this temperature-dependent increase in FRQ levels partially rescues the lowered levels of FRQ resulting from the wc-2 (ER24) defect, yielding a shorter period at higher temperatures. Thus, normal activity of the essential clock component WC-2, a positive regulator of frq, is critical for establishing period length and temperature compensation in this circadian system.  相似文献   

8.
Kim Y  Yeom M  Kim H  Lim J  Koo HJ  Hwang D  Somers D  Nam HG 《Molecular plant》2012,5(3):678-687
The endogenous circadian clock regulates many physiological processes related to plant survival and adaptability. GIGANTEA (GI), a clock-associated protein, contributes to the maintenance of circadian period length and amplitude, and also regulates flowering time and hypocotyl growth in response to day length. Similarly, EARLY FLOWERING 4 (ELF4), another clock regulator, also contributes to these processes. However, little is known about either the genetic or molecular interactions between GI and ELF4 in Arabidopsis. In this study, we investigated the genetic interactions between GI and ELF4 in the regulation of circadian clock-controlled outputs. Our mutant analysis shows that GI is epistatic to ELF4 in flowering time determination, while ELF4 is epistatic to GI in hypocotyl growth regulation. Moreover, GI and ELF4 have a synergistic or additive effect on endogenous clock regulation. Gene expression profiling of gi, elf4, and gi elf4 mutants further established that GI and ELF4 have differentially dominant influences on circadian physiological outputs at dusk and dawn, respectively. This phasing of GI and ELF4 influences provides a potential means to achieve diversity in the regulation of circadian physiological outputs, including flowering time and hypocotyl growth.  相似文献   

9.
The red and far-red light-absorbing phytochromes interact with the circadian clock, a central oscillator that sustains a 24-h period, to measure accurately seasonal changes in day-length and regulate the expression of several key flowering genes. The interactions and subsequent signalling steps upstream of the flowering genes such as CONSTANS (CO) and FLOWERING LOCUS T (FT) remain largely unknown. We report here that a photomorphogenic mutant, red and far-red insensitive 2-1 ( rfi2-1), flowered early particularly under long days. The rfi2-1 mutation also enhanced the expression of CO and FT under day/night cycles or constant light. Both co-2 and gigantea-2 (gi-2) were epistatic to rfi2-1 in their flowering responses. The gi-2 mutation was also epistatic to the rfi2-1 mutation in the expression of CO and hypocotyl elongation. However, the rfi2-1 mutation did not affect the expression of GI, a gene that mediates between the circadian clock and the expression of CO. Like many other flowering genes, the expression of RFI2 oscillated under day/night cycles and was rhythmic under constant light. The amplitude of the rhythmic expression of RFI2 was significantly reduced in phyB-9 or lhy-20 plants, and was also affected by the gi-2 mutation. As previously reported, the gi-2 mutation affects the period length and amplitude of CCA1 and LHY expression, and GI may act through a feedback loop to maintain a proper circadian function. We propose a regulatory step in which RFI2 represses the expression of CO, whereas GI may maintain the proper expression of RFI2 through its positive action on the circadian clock. The regulatory step serves to tune the circadian outputs that control the expression of CO and photoperiodic flowering.  相似文献   

10.
We have examined membrane fractions from mutant strains of Neurospora crassa that have altered responses to blue light or have altered circadian rhythms. Using an in vitro assay, we assessed whether the mutations affected the levels of photoreducible cytochromes. Three of the mutant strains, prd-1, rib-1, and wc-1, were not qualitatively different from the wild type. The poky strain was found to have high concentrations of photoreducible cytochrome c. After removal of this cytochrome, however, the photoreducible cytochromes in the plasma membrane and endoplasmic reticulum were also similar to those of the wild type. The most significant differences were found in strains mutated at the frq locus, which affects circadian rhythms. In the frq-9 strain, the cytochrome in the endoplasmic reticulum was not detectably reduced by blue light. The frq-1 mutation caused a significant shift in the spectrum of blue-light-reduced cytochrome in the endoplasmic reticulum.  相似文献   

11.
FREQUENCY (FRQ), a key component of the Neurospora circadian clock, is progressively phosphorylated after its synthesis. Previously, we identified casein kinase II (CKII) as a kinase that phosphorylates FRQ. Disruption of the catalytic subunit of CKII abolishes the clock function; it also causes severe defects in growth and development. To further establish the role of CKII in clock function, one of the CKII regulatory subunit genes, ckb1, was disrupted in Neurospora. In the ckb1 mutant strain, FRQ proteins are hypophosphorylated and more stable than in the wild-type strain, and circadian rhythms of conidiation and FRQ protein oscillation were observed to have long periods but low amplitudes. These data suggest that phosphorylation of FRQ by CKII regulates FRQ stability and the function of the circadian feedback loop. In addition, mutations of several putative CKII phosphorylation sites of FRQ led to hypophosphorylation of FRQ and long-period rhythms. Both CKA and CKB1 proteins are found in the cytoplasm and in the nucleus, but their expressions and localization are not controlled by the clock. Finally, disruption of a Neurospora casein kinase I (CKI) gene, ck-1b, showed that it is not required for clock function despite its important role in growth and developmental processes. Together, these data indicate that CKII is an important component of the Neurospora circadian clock.  相似文献   

12.
The fatty acid compositions of the phospholipids of Neurospora crassa mutants with altered periods were determined to test the possibility that some of these mutants might have altered membrane composition. In liquid shaker culture in constant light the bd (band) strain, which has a normal period (21.6 h), exhibited a growth-dependent increase in linoleic acid content and a decrease in linolenic acid content during early log phase growth. By late log phase, fatty acid composition was essentially constant. The phospholipid fatty acid compositions of bd strains containing mutations at the frq (frequency) and chr (chrono) loci were indistinguishable from that of the bd strain under the conditions used. However, a bd strain containing a mutation at the prd-1 (period) locus, as well as prd-1 segregants from a cross of this strain to a bd strain, had altered patterns of growth-dependent fatty acid composition; linoleic and linolenic acid contents changed more slow than in the bd strain and continued to change throughout growth. In addition, the fatty acid composition of a bd prd-1 strain on solid medium differed from that of the bd strain. It is proposed that the prd-1 mutation leads to altered membrane homeostasis, which in turn affects circadian rhythmicity because some or all components of the rhythm-generating system are membrane-localized.  相似文献   

13.
Wakabayashi M  Ishii C  Inoue H  Tanaka S 《DNA Repair》2008,7(12):1951-1961
DNA damage checkpoint is an important mechanism for organisms to maintain genome integrity. In Neurospora crassa, mus-9 and mus-21 are homologues of ATR and ATM, respectively, which are pivotal factors of DNA damage checkpoint in mammals. A N. crassa clock gene prd-4 has been identified as a CHK2 homologue, but its role in DNA damage response had not been elucidated. In this study, we identified another CHK2 homologue and one CHK1 homologue from the N. crassa genome database. As disruption of these genes affected mutagen tolerance, we named them mus-59 and mus-58, respectively. The mus-58 mutant was sensitive to hydroxyurea (HU), but the mus-59 and prd-4 mutants showed the same HU sensitivity as that of the wild-type strain. This indicates the possibility that MUS-58 is involved in replication checkpoint and stabilization of stalled forks like mammalian CHK1. Phosphorylation of MUS-58 and MUS-59 was observed in the wild-type strain in response to mutagen treatments. Genetic relationships between those three genes and mus-9 or mus-21 indicated that the mus-9 mutation was epistatic to mus-58, and mus-21 was epistatic to prd-4. These relationships correspond to two signal pathways, ATR-CHK1 and ATM-CHK2 that have been established in mammalian cells. However, both the mus-9 mus-59 and mus-21 mus-58 double mutants showed an intermediate level between the two parental strains for CPT sensitivity. Furthermore, these double mutants showed severe growth defects. Our findings suggest that the DNA damage checkpoint of N. crassa is controlled by unique mechanisms.  相似文献   

14.
Genetic dissection of the Drosophila circadian system   总被引:3,自引:0,他引:3  
Genetic experiments involving selected strains as well as single gene mutations have provided information concerning the organization of the Drosophila circadian system. The phase of the emergence rhythm of D. pseudoobscura can be altered by genetic selection without significantly affecting the phase and period of the light-sensitive pacemaker. The period of the D. melanogaster pacemaker, over the range 19 hours to 29 hours, can be encoded in the DNA sequence of a single genetic locus. The short-period and long-period mutations do not eliminate the pacemaker's temperature compensation mechanism. The short-period mutation alters the resetting behavior of the pacemaker from weak (type 1) in wild-type to strong (type 0) in the mutant. Five aperiodic mutations isolated in D. pseudoobscura belong to two complementation groups. In complements bearing one mutation from each group, the periodicity of the pacemaker is wild-type, but the phase of the emergence rhythm is 5 hours later than wild-type. Thus mutations in particular genetic loci have dramatic effects on the basic properties of circadian pacemakers and rhythms.  相似文献   

15.
16.
PERIOD proteins are central components of the Drosophila and mammalian circadian clock. Their function is controlled by daily changes in synthesis, cellular localization, phosphorylation, degradation, as well as specific interactions with other clock components. Here we present the crystal structure of a Drosophila PERIOD (dPER) fragment comprising two tandemly organized PAS (PER-ARNT-SIM) domains (PAS-A and PAS-B) and two additional C-terminal alpha helices (alphaE and alphaF). Our analysis reveals a noncrystallographic dPER dimer mediated by intermolecular interactions of PAS-A with PAS-B and helix alphaF. We show that alphaF is essential for dPER homodimerization and that the PAS-A-alphaF interaction plays a crucial role in dPER clock function, as it is affected by the 29 hr long-period perL mutation.  相似文献   

17.
Portolés S  Más P 《PLoS genetics》2010,6(11):e1001201
Circadian rhythms are daily biological oscillations driven by an endogenous mechanism known as circadian clock. The protein kinase CK2 is one of the few clock components that is evolutionary conserved among different taxonomic groups. CK2 regulates the stability and nuclear localization of essential clock proteins in mammals, fungi, and insects. Two CK2 regulatory subunits, CKB3 and CKB4, have been also linked with the Arabidopsis thaliana circadian system. However, the biological relevance and the precise mechanisms of CK2 function within the plant clockwork are not known. By using ChIP and Double-ChIP experiments together with in vivo luminescence assays at different temperatures, we were able to identify a temperature-dependent function for CK2 modulating circadian period length. Our study uncovers a previously unpredicted mechanism for CK2 antagonizing the key clock regulator CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1). CK2 activity does not alter protein accumulation or subcellular localization but interferes with CCA1 binding affinity to the promoters of the oscillator genes. High temperatures enhance the CCA1 binding activity, which is precisely counterbalanced by the CK2 opposing function. Altering this balance by over-expression, mutation, or pharmacological inhibition affects the temperature compensation profile, providing a mechanism by which plants regulate circadian period at changing temperatures. Therefore, our study establishes a new model demonstrating that two opposing and temperature-dependent activities (CCA1-CK2) are essential for clock temperature compensation in Arabidopsis.  相似文献   

18.
B. Elliott  R. S. Haltiwanger    B. Futcher 《Genetics》1996,144(3):923-933
We isolated a mutant strain unable to acquire heat shock resistance in stationary phase. Two mutations contributed to this phenotype. One mutation was at the TPS2locus, which encodes trehalose-6-phosphate phosphatase. The mutant fails to make trehalose and accumulates trehalose-6-phosphate. The other mutation was at the HSP104 locus. Gene disruptions showed that tps2 and hsp104 null mutants each produced moderate heat shock sensitivity in stationary phase cells. The two mutations were synergistic and the double mutant had little or no stationary phase-induced heat shock resistance. The same effect was seen in the tps1 (trehalose-6-phosphate synthase) hsp104 double mutant, suggesting that the extreme heat shock sensitivity was due mainly to a lack of trehalose rather than to the presence of trehalose-6-phosphate. However, accumulation of trehalose-6-phosphate did cause some phenotypes in the tps2 mutant, such as temperature sensitivity for growth. Finally, we isolated a high copy number suppressor of the temperature sensitivity of tps2, which we call PMU1, which reduced the levels of trehalose-6-phosphate in tps2 mutants. The encoded protein has a region homologous to the active site of phosphomutases.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号