首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-frequency vibrations e.g., induced by legs impacting with the ground during terrestrial locomotion can provoke damage within tendons even leading to ruptures. So far, macroscopic Hill-type muscle models do not account for the observed high-frequency damping at low-amplitudes. Therefore, former studies proposed that protective damping might be explained by modelling the contractile machinery of the muscles in more detail, i.e., taking the microscopic processes of the actin–myosin coupling into account. In contrast, this study formulates an alternative hypothesis: low but significant damping of the passive material in series to the contractile machinery—e.g., tendons, aponeuroses, titin—may well suffice to damp these hazardous vibrations. Thereto, we measured the contraction dynamics of a piglet muscle–tendon complex (MTC) in three contraction modes at varying loads and muscle–tendon lengths. We simulated all three respective load situations on a computer: a Hill-type muscle model including a contractile element (CE) and each an elastic element in parallel (PEE) and in series (SEE) to the CE pulled on a loading mass. By comparing the model to the measured output of the MTC, we extracted a consistent set of muscle parameters. We varied the model by introducing either linear damping in parallel or in series to the CE leading to accordant re-formulations of the contraction dynamics of the CE. The comparison of the three cases (no additional damping, parallel damping, serial damping) revealed that serial damping at a physiological magnitude suffices to explain damping of high-frequency vibrations of low amplitudes. The simulation demonstrates that any undamped serial structure within the MTC enforces SEE-load eigenoscillations. Consequently, damping must be spread all over the MTC, i.e., rather has to be de-localised than localised within just the active muscle material. Additionally, due to suppressed eigenoscillations Hill-type muscle models taking into account serial damping are numerically more efficient when used in macroscopic biomechanical neuro-musculo-skeletal models.  相似文献   

2.
Hill-type muscle models are commonly used in biomechanical simulations to predict passive and active muscle forces. Here, a model is presented which consists of four elements: a contractile element with force–length and force–velocity relations for concentric and eccentric contractions, a parallel elastic element, a series elastic element, and a serial damping element. With this, it combines previously published effects relevant for muscular contraction, i.e. serial damping and eccentric force–velocity relation. The model is exemplarily applied to arm movements. The more realistic representation of the eccentric force–velocity relation results in human-like elbow-joint flexion. The model is provided as ready to use Matlab ®® and Simulink ®® code.  相似文献   

3.
Hill's (1938) two component muscle model is used as basis for digital computer simulation of human muscular contraction by means of an iterative process. The contractile (CC) and series elastic (SEC) components are lumped components of structures which produce and transmit torque to the external environment. The CC is described in angular terms along four dimensions as a series of non-planar torque-angle-angular velocity surfaces stacked on top of each other, each surface being appropriate to a given level of muscular activation. The SEC is described similarly along dimensions of torque, angular stretch, overall muscle angular displacement and activation. The iterative process introduces negligible error and allows the mechanical outcome of a variety of normal muscular contractions to be evaluated parsimoniously. The model allows analysis of many aspects of muscle behaviour as well as optimization studies. Definition of relevant relations should also allow reproduction and prediction of the outcome of contractions in individuals.  相似文献   

4.
A new phenomenological model of activated muscle is presented. The model is based on a combination of a contractile element, an elastic element that engages upon activation, a linear dashpot and a linear spring. Analytical solutions for a few selected experiments are provided. This model is able to reproduce the response of cat soleus muscle to ramp shortening and stretching and, unlike standard Hill-type models, computations are stable on the descending limb of the force–length relation and force enhancement (depression) following stretching (shortening) is predicted correctly. In its linear version, the model is consistent with a linear force–velocity law, which in this model is a consequence rather than a fundamental characteristic of the material. Results show that the mechanical response of activated muscle can be mimicked by a viscoelastic system. Conceptual differences between this model and standard Hill-type models are analyzed and the advantages of the present model are discussed.  相似文献   

5.
Summary Estimation of muscle parameters specifying force–length and force–velocity behavior requires in general a large number of sophisticated experiments often including a combination of isometric, isokinetic, isotonic, and quick-release experiments. This study validates a simpler method (ISOFIT) to determine muscle properties by fitting a Hill-type muscle model to a set of isovelocity data. Muscle properties resulting from the ISOFIT method agreed well with muscle properties determined separately in in vitro measurements using frog semitendinosus muscles. The force–length curve was described well by the results of the model. The force–velocity curve resulting from the model coincided with the experimentally determined curve above approximately 20% of maximum isometric force (correlation coefficient R>0.99). At lower forces and thus higher velocities the predicted curve underestimated velocity. The stiffness of the series elastic component determined with direct experiments was approximately 10% lower than that determined by the ISOFIT method. Use of the ISOFIT method can decrease experimental time up to 80% and reduce potential changes in muscle parameters due to fatigue.  相似文献   

6.
The mechanics of mouse skeletal muscle when shortening during relaxation   总被引:1,自引:0,他引:1  
The dynamic properties of relaxing skeletal muscle have not been well characterised but are important for understanding muscle function during terrestrial locomotion, during which a considerable fraction of muscle work output can be produced during relaxation. The purpose of this study was to characterise the force-velocity properties of mouse skeletal muscle during relaxation. Experiments were performed in vitro (21 degrees C) using bundles of fibres from mouse soleus and EDL muscles. Isovelocity shortening was applied to muscles during relaxation following short tetanic contractions. Using data from different contractions with different shortening velocities, curves relating force output to shortening velocity were constructed at intervals during relaxation. The velocity component included contributions from shortening of both series elastic component (SEC) and contractile component (CC) because force output was not constant. Early in relaxation force-velocity relationships were linear but became progressively more curved as relaxation progressed. Force-velocity curves late in relaxation had the same curvature as those for the CC in fully activated muscles but V(max) was reduced to approximately 50% of the value in fully activated muscles. These results were the same for slow- and fast-twitch muscles and for relaxation following maximal tetani and brief, sub-maximal tetani. The measured series elastic compliance was used to partition shortening velocity between SEC and CC. The curvature of the CC force-velocity relationship was constant during relaxation. The SEC accounted for most of the shortening and work output during relaxation and its power output during relaxation exceeded the maximum CC power output. It is proposed that unloading the CC, without any change in its overall length, accelerated cross-bridge detachment when shortening was applied during relaxation.  相似文献   

7.
Skeletal muscles are surrounded by other muscles, connective tissue and bones, which may transfer transversal forces to the muscle belly. Simple Hill-type muscle models do not consider transversal forces. Thus, the aim of this study was to examine and model the influence of transversal muscle loading on contraction dynamics, e.g. on the rate of force development and on the maximum isometric muscle force (Fim). Isometric experiments with and without transversal muscle loading were conducted on rat muscles. The muscles were loaded (1.3 N cm? 2) by a custom-made plunger which was able to move in transversal direction. Then the muscle was fully stimulated, the isometric force was measured at the distal tendon and the movement of the plunger was captured with a high-speed camera. The interaction between the muscle and the transversal load was modelled based on energy balance between the (1) work done by the contractile component (CC) and (2) the work done to lift the load, to stretch the series elastic structures and to deform the muscle. Compared with the unloaded contraction, the force rate was reduced by about 25% and Fim was reduced by 5% both in the experiment and in the simulation. The reduction in Fim resulted from using part of the work done by the CC to lift the load and deform the muscle. The response of the muscle to transversal loading opens a window into the interdependence of contractile and deformation work, which can be used to specify and validate 3D muscle models.  相似文献   

8.
A state-variable model for skeletal muscle, termed the "Distribution-Moment Model," is derived from A. F. Huxley's 1957 model of molecular contraction dynamics. The state variables are the muscle stretch and the three lowest-order moments of the bond-distribution function (which represent, respectively, the contractile tissue stiffness, the muscle force, and the elastic energy stored in the contractile tissue). The rate equations of the model are solved under various conditions, and compared to experimental results for the cat soleus muscle subjected to constant stimulation. The model predicts several observed effects, including yielding of the muscle force in constant velocity stretches, different "force-velocity relations" in isotonic and isovelocity experiments, and a decrease of peak force below the isometric level in small-amplitude sinusoidal stretches. Chemical energy and heat rates predicted by the model are also presented.  相似文献   

9.
In recent years, it has been recognised that improvements to classic models of muscle mechanical behaviour are often necessary for properly modelling co-ordinated multi-joint actions. In this respect, the purpose of the present study was to improve on modelling stretch-induced force enhancement and shortening-induced force depression of muscle contraction. For this purpose, two models were used: a modified Hill model and a model based loosely on mechano-chemistry of the cross-bridge cycle (exponential decay model). The models were compared with a classic Hill model and experimental data. Parameter values were based, as much as possible, on experimental findings in the literature, and tested with new experiments on the gastrocnemius of the rat. Both models describe many features of slow-ramp movements well during short contractions (300–500 ms), but long-duration behaviour is described only partly. The exponential decay model does not incorporate a force–velocity curve. Therefore, its good performance indicates that the status of the classic force–velocity characteristic may have to be reconsidered. Like movement-induced force depression and enhancement, it seems a particular manifestation of time-dependent force behaviour of muscle, rather than a fundamental property of muscle (like the length–tension curve). It is argued that a combination of the exponential decay model (or other models based on the mechano-chemistry of contraction) and structurally based models may be fruitful in explaining this time-dependent contraction behaviour. Furthermore, not in the least because of its relative simplicity, the exponential decay model may prove more suitable for modelling multi-joint movements than the Hill model. Received: 19 March 1999 / Accepted in revised form: 9 June 2000  相似文献   

10.
We investigated the effectiveness of simple, Hill-type, phenomenological models of the force-length-velocity relationship for simulating measured length trajectories during muscle shortening, and, if so, what forms of the model are most useful. Using isotonic shortening data from mouse soleus and toad depressor mandibulae muscles, we showed that Hill-type models can indeed simulate the shortening trajectories with sufficiently good accuracy. However, we found that the standard form of the Hill-type muscle model, called the force-scaling model, is not a satisfactory choice. Instead, the results support the use of less frequently used models, the f-max scaling model and force-scaling with parallel spring, to simulate the shortening dynamics of muscle.  相似文献   

11.
Models of muscle crossbridge dynamics have great potential for understanding muscle contraction and having a wide range of application. However, the estimation of many model parameters, most of which are difficult to measure, limits their applicability. This study developed a method of estimating parameters in the Distribution Moment crossbridge model from measurements of force-length and force-velocity relationships in cat soleus single muscle fibers. Analysis of the parameter estimates showed that the detachment rate parameters had more uncertainty than the attachment rate parameter, which could reflect physiological variations in the contractile protein content and in the response of muscle to lengthenings.  相似文献   

12.
The purpose of this study was to choose between two popular models of skeletal muscle: one with the parallel elastic component in parallel with both the contractile element and the series elastic component (model A), and the other in which it is in parallel with only the contractile element (model B). Passive and total forces were obtained at a variety of muscle lengths for the medial gastrocnemius muscle in anesthetized rats. Passive force was measured before the contraction (passive A) or was estimated for the fascicle length at which peak total force occurred (passive B). Fascicle length was measured with sonomicrometry. Active force was calculated by subtracting passive (A or B) force from peak total force at each fascicle or muscle length. Optimal length, that fascicle length at which active force is maximized, was 13.1 +/- 1.2 mm when passive A was subtracted and 14.0 +/- 1.1 mm with passive B (P < 0.01). Furthermore, the relationship between double-pulse contraction force and length was broader when calculated with passive B than with passive A. When the muscle was held at a long length, passive force decreased due to stress relaxation. This was accompanied by no change in fascicle length at the peak of the contraction and only a small corresponding decrease in peak total force. There is no explanation for the apparent increase in active force that would be obtained when subtracting passive A from the peak total force. Therefore, to calculate active force, it is appropriate to subtract passive force measured at the fascicle length corresponding to the length at which peak total force occurs, rather than passive force measured at the length at which the contraction begins.  相似文献   

13.
Effects of moment arm length on kinetic outputs of a musculoskeletal system (muscle force development, joint moment development, joint power output and joint work output) were evaluated using computer simulation. A skeletal system of the human ankle joint was constructed: a lower leg segment and a foot segment were connected with a hinge joint. A Hill-type model of the musculus soleus (m. soleus), consisting of a contractile element and a series elastic element, was attached to the skeletal system. The model of the m. soleus was maximally activated, while the ankle joint was plantarflexed/dorsiflexed at a variation of constant angular velocities, simulating isokinetic exercises on a muscle testing machine. Profiles of the kinetic outputs (muscle force development, joint moment development, joint power output and joint work output) were obtained. Thereafter, the location of the insertion of the m. soleus was shifted toward the dorsal/ventral direction by 1cm, which had an effect of lengthening/shortening the moment arm length, respectively. The kinetic outputs of the musculoskeletal system during the simulated isokinetic exercises were evaluated with these longer/shorter moment arm lengths. It was found that longer moment arm resulted in smaller joint moment development, smaller joint power output and smaller joint work output in the larger plantarflexion angular velocity region (>120 degrees/s). This is because larger muscle shortening velocity was required with longer moment arm to achieve a certain joint angular velocity. Larger muscle shortening velocity resulted in smaller muscle force development because of the force-velocity relation of the muscle. It was suggested that this phenomenon should be taken into consideration when investigating the joint moment-joint angle and/or joint moment-joint angular velocity characteristics of experimental data.  相似文献   

14.
The two-element muscle model considered consists of a contractile element defined by a hyperbolic force-velocity relation connected in series with an “exponential spring”. Differential equations for the isometrically developed force during a tetanic contraction and the corresponding contractile element shortening velocity are derived and their stability is investigated. Analytical solutions to both equations are obtained. Two numerical examples are given, the second chosen to illustrate pressure-induced hypertrophy of a cardiac muscle.  相似文献   

15.
Hill's three-component model (Maxwell model) is used to represent the mechanical property of cardiac muscle. The parallel and series elastic elements of the fibres are described according to their non-linear exponential function; and Huxley's sliding-filaments model, together with the activating role of calcium, is applied to the contractile element.

With this composite model, the following responses can be simulated mathematically: isometric twitch at various muscle lengths, tension-length relationships; isometric contraction during quick stretch; and the Bowditch Treppe and tension velocity relationships of the contractile element.  相似文献   


16.
The muscle I2 is a smooth muscle from the buccal mass of the marine mollusc Aplysia californica whose neural control, in vivo kinematics, and behavioral role have been extensively analyzed. In this study, we measured the activation and contractile dynamics of the muscle in order to construct a Hill-type kinetic model of the muscle. This is the first study to our knowledge, of Aplysia muscle contractile dynamics. The isometric force-frequency relationship of I2 had a frequency threshold of about 6–8 Hz, and its force output saturated at 20–25 Hz, properties that match the high frequency (20 Hz) bursts generated by the B31/B32 neurons that innervate it. Peak isometric force was generated at about 118% of the in situ relaxed length. These results and I2's estimated in vivo kinematics suggest that it generates maximum force at the onset of protraction. The muscle tension during iso-velocity lengthening and shortening was an asymmetric function of velocity. Short range stiffness and yielding responses were observed in lengthening, whereas muscle tension decreased smoothly in shortening. These visco-elastic properties suggest that the I2 muscle can serve to brake forceful retraction movements. A Hill-type model, parameterized from the measurements, captured many of the mechanical properties of I2. Our results provide a quantitative understanding of the biomechanical significance of the muscle's neural control and provide a basis for simulation studies of the control of feeding behavior. Received: 5 February 1999 / Accepted in revised form: 18 May 1999  相似文献   

17.
The contribution of muscle in-series compliance on maximum performance of the muscle tendon complex was investigated using a forward dynamic computer simulation. The model of the human body contains 8 Hill-type muscles of the lower extremities. Muscle activation is optimized as a function of time, so that maximum drop jump height is achieved by the model. It is shown that the muscle series elastic energy stored in the downward phase provides a considerable contribution (32%) to the total muscle energy in the push-off phase. Furthermore, by the return of stored elastic energy all muscle contractile elements can reduce their shortening velocity up to 63% during push-off to develop a higher force due to their force velocity properties. The additional stretch taken up by the muscle series elastic element allows only m. rectus femoris to work closer to its optimal length, due to its force length properties. Therefore the contribution of the series elastic element to muscle performance in maximum height drop jumping is to store and return energy, and at the same time to increase the force producing ability of the contractile elements during push-off.  相似文献   

18.
Musculoskeletal simulations of human movement commonly use Hill muscle models to predict muscle forces, but their sensitivity to model parameter values is not well understood. The purpose of this study was to evaluate muscle model sensitivity to perturbations in 14 Hill muscle model parameters in forward dynamic simulations of running and walking by varying each by +/-50%. Three evaluations of the muscle model were performed based on: (1) calculating the sensitivity of the muscle model only, (2) determining the continuous partial derivatives of the muscle equations with respect to each parameter, and (3) evaluating the effects on the running and walking simulations. Model evaluations were found to be very sensitive (percent change in outputs greater than parameter perturbation) to parameters defining the series elastic component (tendon), force-length curve of the contractile element and maximum isometric force. For some parameters, the range of literature values was larger than the model sensitivity. Model evaluations were insensitive to parameters defining the parallel elastic element, force-velocity curve of the contractile element and muscle activation time constants. The derivative method provided similar results, but also provided a generic, continuous equation that can easily be applied to other motions. The sensitivities of the running and walking simulations were reduced compared to the sensitivity of the muscle model alone. Results demonstrate the importance of evaluating sensitivity of a musculoskeletal simulation in a controlled manner and provide an indication of which parameters must be selected most carefully based on the sensitivity of a given movement.  相似文献   

19.
We extend and analyze the Wang and Politi modified Hai–Murphy model of smooth muscle cell contractions to capture uterine muscle cell response to variations in intracellular calcium concentrations. This model is used to estimate values of unknown parameters in uterine smooth muscle cell cross-bridging. Uterine motility is responsible for carrying out important processes throughout all phases of the nonpregnant female reproductive cycle, including sperm transport, menstruation, and embryo implantation. The modified Hai–Murphy partial differential equation model accounts for the displacement of myosin cross-bridge heads relative to their binding sites. This model was originally developed for the study of airway contractions; we now extended it for use in modeling nonisometric uterine contractions. Our extended model incorporates cross-bridge position and contractile velocity into the original model, resulting in more accurate modeling of the initial stages of contraction and modeling nonisometric contractions. Numerical simulations show that the contraction rate in our extended model is faster than the original Hai–Murphy model. These simulations provide quantitative estimates for the increased level of responsiveness of our extended model to intracellular calcium concentrations. The extended model and new parameter estimates for the cross-bridging can be coupled with uterine flow models to advance our understanding of embryonic motility and intrauterine flow.  相似文献   

20.
The stress-strain curve for the series elastic component (SEC) of tracheal smooth muscle was obtained by quick releasing the muscle from isometric tension to various afterloads and measuring the elastic recoils (SEC lengths) at a specific time after stimulation. A family of such curves was obtained by releasing the muscle at different points in time during contraction. Stiffnesses of the SEC (slopes of the stress-strain curves) at a specific stress level calculated from these curves (constant-stress stiffness) showed significant difference from one another. The same difference can also be characterized by the slope of the linear stiffness-stress curve, the constant A. The constant A during a 10-s isometric contraction was maximal at 2 s. It then decreased with time. This stiffness behavior is only seen when the effect of stress is held constant or eliminated. If stress is allowed to increase with time as it does during a tetanus then stiffness appears to increase monotonically. The SEC stiffness during active contraction was found to vary within the boundaries of the stiffness of muscle in rigor (upper limit) and that at resting state (lower limit).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号