首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
A 1023 bp fragment and truncated derivatives of the maize (Zea mays L.) histone H3C4 gene promoter were fused to the ß-glucuronidase (GUS) gene and introduced via Agrobacterium tumefaciens into the genome of Arabidopsis thaliana. GUS activity was found in various meristems of transgenic plants as for other plant histone promoters, but unexplained activity also occurred at branching points of both stems and roots. Deletion of the upstream 558 bp of the promoter reduced its activity to an almost basal expression. Internal deletion of a downstream fragment containing plant histone-specific sequence motifs reduced the promoter activity in all tissues and abolished the expression in meristems. Thus, both the proximal and distal regions of the promoter appear necessary to achieve the final expression pattern in dicotyledonous plant tissues. In mesophyll protoplasts isolated from the transformed Arabidopsis plants, the full-length promoter showed both S phase-dependent and -independent activity, like other plant histone gene promoters. Neither of the 5-truncated nor the internal-deleted promoters were able to direct S phase-dependent activity, thus revealing necessary cooperation between the proximal and distal parts of the promoter to achieve cell cycle-regulated expression. The involvement of the different regions of the promoter in the different types of expression is discussed.  相似文献   

5.
拟南芥psy基因cDNA的克隆及其植物表达载体的构建   总被引:1,自引:0,他引:1  
为了获得胚乳组织特异性表达八氢番茄红素的转基因小麦,以拟南芥幼叶RNA为模板,由特异型引物通过RT-PCR一步法得到大小约为1.3kb的基因片段,将此片段连接在克隆载体pMD18-T进行测序,结果表明,该基因片段为八氢番茄红素合成酶基因(psy)cDNA片段。将psy基因片段正向插入植物表达载体pLRPT中高分子量麦谷蛋白亚基基因1Dx5启动子与nos终止子之间,pLRPT载体无1Dx5基因开放阅读框,运用菌落PCR对重组子进行筛选与鉴定,说明拟南芥psy基因已正确插入pL-RPT,成功构建了植物表达载体pLRPTPSY。  相似文献   

6.
Emerging evidence suggests that plant cell-wall-modifying enzymes induced by root-parasitic nematodes play important roles in feeding cell formation. We previously identified a tobacco endo-β-1,4-glucanase (cellulase) gene, NtCel7 , that was strongly induced in both root-knot and cyst nematode feeding cells. To characterize further the developmental and nematode-responsive regulation of NtCel7 , we isolated the NtCel7 promoter and analysed its expression over a time course of nematode infection and in response to auxin, gibberellin, ethylene and sucrose in soybean and tomato hairy roots and in Arabidopsis containing the NtCel7 promoter fused to the β-glucuronidase (GUS) reporter gene. Histochemical analyses of transgenic plant materials revealed that the NtCel7 promoter exhibited a unique organ-specific expression pattern during plant development suggestive of important roles for NtCel7 in both vegetative and reproductive growth. In all plant species tested, strong GUS expression was observed in root tips and lateral root primordia of uninfected roots with weaker expression in the root vasculature. Further analyses of transgenic Arabidopsis plants revealed expression in shoot and root meristems and the vasculature of most organs during plant development. We also determined that the NtCel7 promoter was induced by auxin, but not gibberellin, ethylene or sucrose. Moreover, strong GUS activity was observed in both cyst and root-knot nematode-induced feeding sites in transgenic roots of soybean, tomato and Arabidopsis. The conserved developmental and nematode-responsive expression of the NtCel7 promoter in heterologous plants indicates that motifs of this regulatory element play a fundamental role in regulating NtCel7 gene expression within nematode feeding sites and that this regulation may be mediated by auxin.  相似文献   

7.
8.
Cloning of the Arabidopsis thaliana genomic DNA fragment presumably corresponding to the promoter region of the ornithine-delta-aminotransferase (OAT) gene is reported. The reporter-gene construct, containing the Escherichia coli beta-glucouronidase gene under control of the OAT gene promoter was generated. The Nicotian tabacum SR1 transformants carrying this construct were obtained. It was demonstrated that in normal conditions, expression of the reporter gene was associated with the meristems and the zones of intensive shoot growth. Possible role of the OAT gene in nitrogen metabolism and shoot development is discussed.  相似文献   

9.
10.
11.
12.
13.
NICTABA is a carbohydrate-binding protein (also called lectin) that is expressed in several Nicotiana species after treatment with jasmonates and insect herbivory. Analyses with tobacco lines overexpressing the NICTABA gene as well as lines with reduced lectin expression have shown the entomotoxic effect of NICTABA against Lepidopteran larvae, suggesting a role of the lectin in plant defense. Until now, little is known with respect to the upstream regulatory mechanisms that are controlling the expression of inducible plant lectins. Using Arabidopsis thaliana plants stably expressing a promoter-β-glucuronidase (GUS) fusion construct, it was shown that jasmonate treatment influenced the NICTABA promoter activity. A strong GUS staining pattern was detected in very young tissues (the apical and root meristems, the cotyledons and the first true leaves), but the promoter activity decreased when plants were getting older. NICTABA was also expressed at low concentrations in tobacco roots and expression levels increased after cold treatment. The data presented confirm a jasmonate-dependent response of the promoter sequence of the tobacco lectin gene in Arabidopsis. These new jasmonate-responsive tobacco promoter sequences can be used as new tools in the study of jasmonate signalling related to plant development and defense.  相似文献   

14.
逆境诱导型启动子rd29A的克隆及植物表达载体的构建   总被引:3,自引:0,他引:3  
李晶  李杰  关英芝  朱延明 《植物研究》2004,24(1):111-114
根据文献上发表的逆境诱导型启动子rd29A 序列设计并合成了一对引物, 通过PCR 的方法从拟南芥基因组中扩增到rd29A 的启动子序列。根据GenBank 中已发表的转录因子DREB1A基因的cDNA 序列设计并合成了一对引物, 通过RT-PCR 的方法从低温处理的拟南芥总RNA 中扩增出DREB1A 基因的全长cDNA 片段。以植物表达载体pBch 为基础, 构建了由rd29A 调控的DREB1A 基因的植物表达载体pBDR29A, 为利用DREB1A 基因改良植物抗逆性奠定了物质基础。  相似文献   

15.
16.
The present study was carried out to analyze the dihydrodipicolinate synthase (dhdps) gene promoter activity by tracing the GUS expression in tissues and in organs of Arabidopsis thaliana by in planta transformation. The Agrobacterium construct pBI101 used in the studies consists of the reporter gene gus under the control of Arabidopsis thaliana dhdps promoter with 3’ nos controlling sequences and nptll gene under the control of nos promoter and nos terminator. GUS expression in transformed Arabidopsis thaliana was found to be cell type-specific and expressed mainly in the fast growing tissues, where the protein synthesis is high. The histochemical analysis results indicate that the GUS expression was mainly observed in root meristem (elongation zone), emerging lateral roots and in the leaf vascular tissues. In reproductive organs, the GUS expression was observed in anthers, pollen grains and young immature embryos. Southern blot analysis results of T2, progeny showed the presence of a single integration locus for both the nptll and dhdps promoter.The segregation analysis results showed that the kanamycin resistance gene has not followed the normal Mendelian inheritance.This might be due to the methylation of the nptll gene in some of the transformants.  相似文献   

17.
18.
19.
20.
Although the regulation of amino acid synthesis has been studied extensively at the biochemical level, it is still not known how genes encoding amino acid biosynthesis enzymes are regulated during plant development. In the present report, we have used the [beta]-glucuronidase (GUS) reporter gene to study the regulation of expression of an Arabidopsis thaliana aspartate kinase-homoserine dehydrogenase (AK/HSD) gene in transgenic tobacco plants. The polypeptide encoded by the AK/HSD gene comprises two linked key enzymes in the biosynthesis of aspartate-family amino acids. AK/HSD-GUS gene expression was highly stimulated in apical and lateral meristems, lateral buds, young leaves, trichomes, vascular and cortical tissues of growing stems, tapetum and other tissues of anthers, pollen grains, various parts of the developing gynoecium, developing seeds, and, in some transgenic plants, also in stem and leaf epidermal trichomes. AK/HSD-GUS gene expression gradually dimished upon maturation of leaves, stems, floral tissues, and embryos. GUS expression was relatively low in roots. During seed development, expression of the AK/HSD gene in the embryo was coordinated with the initiation and onset of storage protein synthesis, whereas in the endosperm it was coordinated with the onset of seed desiccation. Upon germination, AK/HSD-GUS gene expression in the hypocotyl and the cotyledons was significantly affected by light. The expression pattern of the A. thaliana AK/HSD-GUS reporter gene positively correlated with the levels of aspartate-family amino acids and was also very similar to the expression pattern of the endogenous tobacco AK/HSD mRNA as determined by in situ hybridization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号