首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Factor F430 is a yellow compound of unknown structure present in methanogenic bacteria. It has recently been shown to contain nickel. In this communication the influence of the nickel concentration in the growth medium on the factor F430 content of Methanobacterium thermoautotrophicum and on the nickel content of factor F430 was studied. It was found: (1) The content of factor F430 in the cells was strongly dependent on the nickel concentration of the growth medium. Cells grown on media with 2.5 M NiCl2 contained 28 times as much factor F430 per g as those grown on media with 0.075 M NiCl2; (2) factor F430 was synthesized in nickel deprived cells only upon the addition of nickel Nickel uptake paralleled factor F430 synthesis; (3) independent of the nickel concentration in the growth medium, the extinction coefficient at 430 nm of factor F430 per mol nickel was always near 22,500 cm-1 (mol Ni)-1. These findings indicate that nickel is an essential component of factor F430.Dedicated to Professor Otto Kandler on the occasion of his 60th birthday  相似文献   

2.
Coenzyme M (2-mercaptoethane sulfonic acid) and factor F430 (a nickel porphinoid) are coenzymes found in methanogenic bacteria. Recently it has been proposed that in these bacteria a coenzyme MF430 also exists which plays a key role in methane formation and in which coenzyme M and F430 are bound to each other. To test this hypothesis Methanobrevibacter ruminantium, which requires coenzyme M as a vitamin, was grown in the presence of [2-14C]CoMSH. F430 and 'CoM' (mixture of CoMSH and its disulfides) were quantitatively extracted from these cells and from partially purified methyl-CoM reductase using various methods. The extracts were chromatographed on cellulose or Sephadex G-10. Under all conditions factor F430 and 'CoM' were completely (greater than 99%) separated. There was no indication for the existence of a protein-free F430 species containing covalently bound coenzyme M in Mb. ruminantium. The results support the structure previously assigned to coenzyme F430.  相似文献   

3.
Cells of Methanobacterium thermoautotrophicum were fixed with glutaraldehyde, sectioned and labeled with antibodies against the subunit of component C (=methyl-CoM reductase) of methyl-CoM reductase system and with colloidal gold-labeled protein A. It was found that the gold particles were located predominantly in the vicinity of the cytoplasmic membrane, when the cells were grown under conditions where methyl-CoM reductase was not overproduced. This finding confirms the recent data obtained with Methanococcus voltae showing via the same immunocytochemical localization technique that in this organism methyl-CoM reductase is membrane associated.  相似文献   

4.
Factors F430 from methanogenic bacteria have recently been shown to contain nickel and it has been speculated that they may have a nickel tetrapyrrole structure. This assumption was tested by determining whether succinate is incorporated by growing Methanobacterium thermoautotrophicum into three factors F430. Succinate is assimilated by Methanobacterium thermoautotrophicum into the amino acids glutamate, arginine and proline and into tetrapyrroles rather than other cell components. It was found that per mol nickel 8–9 mol of succinate were incorporated into the three factors F430 which is the amount predicted for a tetrapyrrole structure. Since the three factors F430 only contained significant amounts of glutamate rather than arginine or proline, the incorporation data suggest that factors F430 are nickel tetrapyrrole compounds. Spectral properties of the three factors F430, apparent molecular weights, and the absence of phosphor in these compounds are also described.  相似文献   

5.
Reductive dechlorination of 1,2-dichloroethane (1,2-DCA) to ethylene and chloroethane (CA) by crude cell extracts of Methanobacterium thermoautotrophicum delta H with H2 as the electron donor was stimulated by Mg-ATP. The heterodisulfide of coenzyme M (CoM) and 7-mercaptoheptanoylthreonine phosphate together with Mg-ATP partially inhibited ethylene production but stimulated CA production compared Mg-ATP alone. The pH optimum for the dechlorination was 6.8 (at 60 degrees C). Michaelis-Menten kinetics for initial product formation rates with different 1,2-DCA concentrations indicated the enzymatic character of the dechlorination. Apparent Kms for 1,2-DCA of 89 and 119 microM and Vmaxs of 34 and 20 pmol/min/mg of protein were estimated for ethylene and CA production, respectively. 3-Bromopropanesulfonate, a specific inhibitor for methyl-CoM reductase, completely inhibited dechlorination of 1,2-DCA. Purified methyl-CoM reductase, together with flavin adenine dinucleotide and a crude component A fraction which reduced the nickel of factor F430 in methyl-CoM reductase, converted 1,2-DCA to ethylene and CA with H2 as the electron donor. In this system, methyl-CoM reductase was also able to transform its own inhibitor 2-bromoethanesulfonate to ethylene.  相似文献   

6.
7.
Methanobacterium thermoautotrophicum, growing on medium supplemented with 2 mol 63NiCl2/l, was found to take up 1.2 mol 63Ni per g cells (dry weight). More than 70% of the radioisotope was incorporated into a compound, which dissociated from the protein fraction after heat treatment, was soluble in 70% acetone, and could be purified by chromatography on QAE-Sephadex A-25, Sephadex G-25, and DEAE cellulose. The purified 63Ni labelled compound had an absorption spectrum and properties identical to those of factor F 430 and is therefore considered to be identical with factor F 430.Factor F 430, a compound of molecular weight higher than 1000 with an absorbance maximum at 430 nm, has recently been purified from Methanobacterium thermoautotrophicum (Gunsalus and Wolfe, 1978). The structure and function of this compound are not yet known.  相似文献   

8.
What stabilizes the unique Ni(I) state of the active form of coenzyme F(430) and of methylcoenzyme M reductase, the enzyme responsible for the last methane-evolving step of biological methanogenesis? A survey of F(430) model compounds suggests that the monoanionic nature of the F(430) ligand goes a long way toward explaining the stability of Ni(I) F(430). Second, nature appears to have manipulated the stereochemistry of the macrocycle, particularly that of the 12- and 13- substituents, so that the cofactor is sterically constrained against ruffling and forced to adopt a relatively planar conformation with long Ni--N distances. Third, the carbonyl substituent at the 15-meso position electronically stabilizes the Ni(I) state of the cofactor. With regard to the mechanism of methylcoenzyme M reductase, the most reasonable mechanism, in our opinion, involves a Ni(I)-mediated homolytic cleavage of the S--CH(3) bond in methylcoenzyme M, followed immediately by the quenching of the methyl radical by coenzyme B (a thiol) to produce methane.  相似文献   

9.
Abstract

We undertook an empirical force field analysis of the conformational changes that accompany the diepimeriztion of coenzyme F430. The crystal structure of 12,13-diepi F430M was used as a test of the parameter set and as the basis for the calculations. The individual pyrrole rings in 13-epi and 12,13-diepi F430 adopt alternating half chair conformations leading to a ruffled macrocycle, native F430 is also ruffled but the individual pyrroles are planar. The 12,13 di-dehydro F430 and native F430 conformations are extremely similar, this accounts for the experimental observation that reduction of 12,13 di-dehydro-F430 forms native F430 and not 12,13-diepi F430. Native F430 can easily accommodate both square planar and, by bending, trigonal bipyramidal coordination geometries about nickel. We suggest the bent trigonal bipyramidal form is the conformer bound to the protein and that direct binding of the amino acid side chains to nickel is probably not important.  相似文献   

10.
Rhizosphere microorganisms harboring nickel hyperaccumulators, Rinorea bengalensis (Wall.) O. K. and Dichapetalum gelonioides ssp. andamanicum (King) Leenh. endemic to serpentine outcrops of Andaman Islands, India, were screened for their tolerance and accumulation of Ni. The rhizosphere soils from both the plants were rich in total and available Ni along with Co, Cr, Fe and Mg but poor in microbial density and were dominated by bacteria. Out of total 123 rhizosphere microorganisms (99 bacteria and 24 fungi), bacteria were more tolerant to Ni than fungi. Viable cells of selected Ni-tolerant bacterial isolates (MIC = 13.6–28.9 mM Ni) belonging to Pseudomonas, Bacillus and Cupriavidus were capable of accumulating nickel (209.5–224.0 μM Ni g−1 protein) from aqueous solution. Cupriavidus pauculus KPS 201 (MTCC 6280), showing highest degree of nickel tolerance (MIC 28.9 mM Ni) and uptake (224.0 μM Ni g−1 protein, 60 min) was used for detailed study. Kinetics of nickel uptake in C. pauculus KPS 201 followed a linearized Lineweaver-Burk plot. The K m and V max for nickel uptake by minimal medium grown-cells approximated 1.5 mM Ni and 636.9 μM Ni g−1 protein, respectively. The uptake process was inhibited by Co, Cu, Cd, Mg, Mn and Zn, however, complete inhibition was not achieved even in presence of 500 mM Mg. Metabolic inhibitors, sodium azide (1.0 mM) and carbonyl cyanide m-chlorophenylhydrazone (0.4 mM) strongly inhibited nickel uptake suggesting the process as an energy dependent one. The present study clearly shows that bacteria in the rhizosphere of Ni-hyperaccumulators are capable of tolerating high concentration of Ni and also possesses nickel uptake potential. The Ni-hyperaccumulators in combination with these Ni-resistant bacteria could be an ideal tool for nickel bioremediation.  相似文献   

11.
X-ray absorption spectroscopic characterization of axial ligand coordination to factor F430, the nickel-tetrapyrrole cofactor of the S-methyl-coenzyme M (CH3SCoM) methyl reductase enzyme from methanogenic bacteria, is presented. The nickel of isolated F430 is hexacoordinate at 10 K in aqueous solution (as is the enzyme-bound cofactor), whereas the epimerized and ring-oxidized derivatives of F430 have four-coordinate nickel. Reduction of the ring-oxidized derivative, F560, with dithionite yields F430 in its native configuration, with axial ligands indistinguishable from those present when the cofactor is obtained directly from the holoenzyme. Thus, we conclude that the axial ligands to F430 in aqueous solution are water molecules. Analysis of the nickel extended x-ray absorption fine structure is consistent with this conclusion. Resonance Raman spectra obtained at room temperature contain features characteristic of both 4- and 6-coordinate forms of the cofactor. We have found that the resonance Raman, optical, and x-ray absorption spectra of aqueous solutions of F430 are temperature-dependent due to a ligand-binding equilibrium involving the square-planar and 6-coordinate bis-aquo forms of the cofactor. At low temperatures (less than 250 K) the 6-coordinate form predominates, whereas higher temperature solutions contain both 4- and 6-coordinate species in a dynamic equilibrium. Similar behavior is observed in other weakly coordinating solvents such as methanol and ethanol. The 4-coordinate form is predominant in solvents with strong electron-withdrawing substituents such as 2,2,2-trifluoroethanol and 2-mercaptoethanol. The relevance of this facile ligand exchange to the active site structure and enzymatic mechanism of the parent enzyme is discussed.  相似文献   

12.
Methyl-coenzyme M reductase (MCR) catalyzes the methane-forming step in methanogenic archaea. It contains the nickel porphinoid F430, a prosthetic group that has been proposed to be directly involved in the catalytic cycle by the direct binding and subsequent reduction of the substrate methyl-coenzyme M. The active enzyme (MCRred1) can be generated in vivo and in vitro by reduction from MCRox1, which is an inactive form of the enzyme. Both the MCRred1 and MCRox1 forms have been proposed to contain F430 in the Ni(I) oxidation state on the basis of EPR and ENDOR data. In order to further address the oxidation state of the Ni center in F430, variable-temperature, variable-field magnetic circular dichroism (VTVH MCD), coupled with parallel absorption and EPR studies, have been used to compare the electronic and magnetic properties of MCRred1, MCRox1, and various EPR silent forms of MCR, with those of the isolated penta-methylated cofactor (F430M) in the +1, +2 and +3 oxidation states. The results confirm Ni(I) assignments for MCRred1 and MCRred2 forms of MCR and reveal charge transfer transitions involving the Ni d orbitals and the macrocycle orbitals that are unique to Ni(I) forms of F430. Ligand field transitions associated with S=1 Ni(II) centers are assigned in the near-IR MCD spectra of MCRox1-silent and MCR-silent, and the splitting in the lowest energy d–d transition is shown to correlate qualitatively with assessments of the zero-field splitting parameters determined by analysis of VTVH MCD saturation magnetization data. The MCD studies also support rationalization of MCRox1 as a tetragonally compressed Ni(III) center with an axial thiolate ligand or a coupled Ni(II)-thiyl radical species, with the reality probably lying between these two extremes. The reinterpretation of MCRox1 as a formal Ni(III) species rather than an Ni(I) species obviates the need to invoke a two-electron reduction of the F430 macrocyclic ligand on reductive activation of MCRox1 to yield MCRred1.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00775-004-0549-9Abbreviations F430 cofactor 430 - F430M penta-methylated form of cofactor 430 - Ni(I)F430M F430M with the nickel atom in the +1 oxidation state - Ni(II)F430M F430M with the nickel atom in the +2 oxidation state - Ni(III)F430M F430M with the nickel atom in the +3 oxidation state - MCR methyl-coenzyme M reductase - MCRox1 MCR exhibiting the MCR-ox1 EPR signal - MCRox1-silent EPR silent form of MCR obtained from the MCRox1 form - MCRred1 MCR exhibiting the EPR signals red1c and/or red1m - MCRred1c MCRred1 in the presence of coenzyme M - MCRred1m MCRred1 in the presence of methyl-coenzyme M - MCRred2 MCR exhibiting both the red1 and red2 EPR signals - MCRred1-silent EPR silent form of MCR obtained from the MCRred1 form - MCRsilent EPR silent form of MCR  相似文献   

13.
Coenzyme F430 is a hydroporphinoid nickel complex present in all methanogenic bacteria. It is part of the enzyme system which catalyzes methane formation from methyl-coenzyme M. We describe here that under certain conditions a second nickel porphinoid accumulates in methanogenic bacteria. The compound was identified at 15,17(3)-seco-F430-17(3)-acid. The structural assignment rests on 14C-labelling experiments, fast-atom-bombardment mass spectra, 1H-NMR spectra of the corresponding hexamethyl ester, and ultraviolet/visible spectral comparison with model compounds. In cell extracts and in intact cells of methanogenic bacteria, 15,17(3)-seco-F430-17(3)-acid was converted to F430. These findings indicate that the new nickel-containing porphinoid is an intermediate in the biosynthesis of coenzyme F430.  相似文献   

14.
F430 is the prosthetic group of the methylcoenzyme M reductase of methanogenic bacteria. The compound isolated from Methanosarcina barkeri appears to be identical to the one obtained from the only distinctly related Methanobacterium thermoautotrophicum. F430 is thermolabile and in the presence of acetonitrile or C10 in4 sup- two epimerization products are obtained upon heating; in the absence of these compounds F430 is oxidized to 12, 13-didehydro-F430. The latter is stereoselectively reduced under H2 atmosphere to F430 by cell-free extracts of M. barkeri or M. thermoautotrophicum. H2 may be replaced by the reduced methanogenic electron carrier coenzyme F420.Abbreviations CH3S-CoM methylcoenzyme M, 2-methylthioethanesulfonic acid - HS-CoM coenzyme M, 2-mercaptoethanesulfonic acid - F430 Ni(II) tetrahydro-(12, 13)-corphin with a uroporphinoid (III) ligand skeleton - 13-epi-F430 and 12,13-di-epi-F430 the 12, 13- and 12, 13-derivatives of F430 - 12, 13-didehydro-F430 F430 oxidized at C-12 and C-13 - coenzyme F420 7,8-didemethyl-8-hydroxy-5-deazaflavin derivative - coenzyme F420H2 reduced coenzyme F420 - MV+ methylviologen semiquinone - HPLC high-performance liquid chromatography  相似文献   

15.
Collagenase isolated rat hepatocytes were transfected with liposome encapsulated pEJ (LE-pEJ), a plasmid carrying the human cellular activated Ha-rasEJ oncogene. A proliferative cell line was cloned from these cells transfected in vitro. It secreted per day 0.87 µg albumin and 0.32 µg transferrin per 106 cells, and 11.06 nmol free and conjugated bile acids (BA) per mg protein. Also, it metabolized 2-acetylaminoflourene (2-AFAF) into N- and ring-hydroxylated metabolites and 2-aminofluorene at rates of 1.50, 9.73, and 1.98 nmol/mg cell protein/24 hr, respectively. Rats were i.v. injected with both LE-pEJ and LE-p17hGHnneo carrying the hGH cDNA gene, and secreted hGH in the plasma which induced the synthesis of anti-hGH antibodies. A cell line was cloned from cultures of primary hepatocytes isolated from the liver of transfected rats. After 2 to 3 months in culture, this cell line secreted per day 18.9 µg albumin and 11.0 µg transferrin per 106 cells, 38.75 nmol total BA per mg cell protein, and up to 31 ng hGHper 106 cells without cloning hGH recombinant cells. A 24 hr control culture of primary hepatocytes isolated from non transfected rats secreted 25.5 µg albumin and 11.7 µg transferrin per 106 cells, and produced 21.64 nmol total BA and 2.13 nmol N-OH-2-AFAF per mg cell protien. Hence, Ha-ras EJ transfection of either hepatocytes in vitro or liver cells in vivo, initiated cell cycles leading to presumptive proliferating hepatocytes which express liver function.Abbreviations BWE basal Williams' medium E - FBS fetal bovine serum - F10 or F12 basal Ham's F10 or F12 medium - Ha-ras EJ EJ allele of the human cellular ras oncogen of Harvey - hGH human growth hormone - hsp heat shock protein gene - LE-p liposome encapsulated plasmid - N-OH-2-AFAF N-hydroxy-2-acetylaminofluorene - RLECC rat liver epithelial cell - SF serum-free - SS serum-supplemented - UGG serum substitute UGltroser G® - 1-OH-, 3-OH-2-AFAFF 1-hydroxy-, 3-hydroxy-2-acetylaminofluorene - 2-AFAF 2-acetylaminofluorene - 2-AFF 2-aminofluorene  相似文献   

16.
There were significant differences in the contents of molybdenum cofactor (Mo-co), both in a low-molecular-mass form (free Mo-co) and in a protein-bound form, in seeds of sevenVicia faba genotypes. Low-molecular-mass Mo-co species present in the extracts were detected by their ability to reactivate, through a dialysis membrane, aponitrate reductase from theNeurospora crassa nit-1 mutant. In extracts of all genotypes tested, the amount of Mo-co capable of directly reactivating nitrate reductase of theN. crassa nit-1 mutant was always much higher than that of low-molecular-mass Moco. These data cannot be explained by considering, as traditionally, that Mo-co detected directly, i.e. without any previous treatment for its release from Mo-coproteins, corresponds to free low-molecular mass Mo-co. A protein which bound Mo-co was purified to electrophoretic homogeneity. This protein consisted of a single 70-kDa polypeptide chain and carried a Mo-co that could be efficiently released when in contact with aponitrate reductase.Abbreviations CP carrier protein - Mo-co molybdenum cofactor - NR nitrate reductase - XO xanthine oxidase  相似文献   

17.
The location of the dissimilatory nitrite reductase and orientation of its reducing site of the Grampositive denitrifier, Bacillus firmus NIAS 237 were examined. Approximately 90% of the total dissimilatory nitrite reductase activity with ascorbate-reduced phenazine methosulfate (PMS) as the electron donor was on the protoplast membrane. Nitrite induced with intact Bacillus cells an alkalinization in the external medium, followed by acidification. The electron transfer inhibitor, 2-heptyl-4-hydroxyquinoline-N-oxide, which blocked nitrite reduction with endogenous substrates, inhibited the acidification, but not the alkalinization. Alkalinization was not affected with ascorbate-reduced PMS as the artificial electron donor. This indicated that the alkalinization is not associated with proton consumption outside the cytoplasmic membrane by the extracellular nitrite reduction. The dissimilatory nitrite reductase of B. firmus NIAS 237 was located on the cytoplasmic membrane, and its reducing site is suggested to be on the inner side of this membrane.Abbreviations CCCP carbonylcyanide m-chlorophenylhydrazone - HOQNO 2-heptyl-4-hydroxyquinoline-N-oxide - PMS phenazine methosulfate - H+/NO inf2 sup- ratio number of consumed protons in the external medium per one ion of NO inf2 sup- reduced  相似文献   

18.
Prospects of using marine actinobacteria as probiotics in aquaculture   总被引:1,自引:0,他引:1  
In the present study, optimum culture conditions for the production of extracellular polysaccharides (EPS) in submerged culture of an edible mushroom, Laetiporus sulphureus var. miniatus and their stimulatory effects on insulinoma cell (RINm5F) proliferation and insulin secretion were investigated. The maximum mycelial growth (4.1 g l−1) and EPS production (0.6 g l−1) in submerged flask culture were achieved in a medium containing 30 g l−1 maltose, 2 g l−1 soy peptone, and 2 mM MnSO4·5H2O at an initial pH 2.0 and temperature 25°C. In the stirred-tank fermenter under optimized medium, the concentrations of mycelial biomass and EPS reached a maximum level of 8.1 and 3.9 g l−1, respectively. Interestingly, supplementation of deep sea water (DSW) into the culture medium significantly increased both mycelial biomass and EPS production by 4- and 6.7-fold at 70% (v/v) DSW medium, respectively. The EPS were proved to be glucose-rich polysaccharides and were able to increase proliferation and insulin secretary function of rat insulinoma RINm5F cells, in a dose-dependent manner. In addition, EPS also strikingly reduced the streptozotocin-induced apoptosis in RINm5F cells indicating the mode of the cytoprotective role of EPS on RINm5F cells.  相似文献   

19.
An evaluation of human osteoblast metabolism usually involves measurements of the by-products of bone matrix elaboration. The assessment of glycolytic activity of osteoblasts is not a standard tool in most of the reports, but might be of value by providing a direct indicator of cellular metabolism. Measurement of the incorporation of [18F]-fluorodeoxyglucose, which is not further degradable following its conversion into glycose-6-phosphate during glycolysis and is trapped in this form within the cells, can be used as an effective research tool for estimation of osteoblast metabolism. In order to estimate the [18F]-fluorodeoxyglucose incorporation we used cultured human osteoblast-like cells. Following incubation of the culture samples in a glucose free medium with 5 μ Ci [18F]-fluorodeoxyglucose we measured the radioactivity of the cell fraction, as a percent from the initial dose, and compared to the incorporation values in cells treated by protoporphyrine IX (10−5 M), an endogenous pro-apoptotic agent. To compare the response of [18F]-fluorodeoxyglucose incorporation studies, following treatment of cells with the protoporphyrine IX, to other experimental cell metabolism evaluation methods, we performed a parallel comparison of alkaline phospatase activity, which is a standard measurement tool of osteoblast metabolism, in the control and treatment groups. A narrow range of 0.22–1.36% of [18F]-fluorodeoxyglucose incorporation per million cells was found. Additionally in the protoporphyrine IX treated cells a significant 62% decrease of [18F]-fluorodeoxyglucose incorporation was observed (p < .05). A parallel significant decrease in alkaline phosphatase activity (p < .001) was found in the cells treated by the protoporphyrine IX. Therefore we suggest that the presented method of [18F]-fluorodeoxyglucose incorporation measurement can be utilized as an effective research tool for estimation of the cellular glycolitic activity in human osteoblast-like cells in vitro.  相似文献   

20.
Growth of Methanosarcina barkeri on methanol as energy source was found to be dependent on cobalt and molybdenum. In the presence of 10?6 M Co and 5 × 10?7M Mo optimal growth occurred. Furthermore it could be demonstrated that nickel and selenium each in a concentration of 10?7 M stimulated the growth of this methanogenic bacterium while the following elements tested in the range of 10?7 M to 10?3 had no influence: B, Cr, Cu, Mn, Pb. The requirement of Co and Ni for optimal growth are in accordance with the results that the cells contain the Co containing corrinoid Factor III (0.1 – 0.2 mg 5-hydroxylbenzimidazolylcyanocobamide per g wet cells) and Factor F430, a nickel component. Studies on the vitamin dependency of M. barkeri showed that this strain needs only the vitamin riboflavin for the growth in a defined medium. Under these conditions a cell density of 2.6 g dry cells/l could be obtained in a fed batch culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号