首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The fundamental statistical aspects of population coding of the movement direction in the motor cortex are studied numerically. The activity of neurons in a population is simulated using pseudorandom numbers so that the directional selectivity of the neurons is similar to that observed experimentally. Accuracy of the coding, which is evaluated by the root-mean-square (rms) error, is analyzed for various population sizes, degrees of variability of neuronal activity, and degrees of nonuniformity of distribution of the preferred directions. The dependence of the rms error on the population size shows a good fit to the inverse square-root law, from which it is estimated that a single population must contain around 10 000 neurons in order to attain the accuracy that allows 1 deg rms error, for example. The coding is studied further for populations with different types of tuning function. The results support the hypothesis proposed by Georgopoulos et al. (1988) except that the tuning function must be tuned in the sense that the average value of the function for movements with components in the preferred direction is larger than for movements away from the preferred direction.  相似文献   

3.
In many nonhuman species, neural computations of navigational information such as position and orientation are not tied to a specific sensory modality [1, 2]. Rather, spatial signals are integrated from multiple input sources, likely leading to abstract representations of space. In contrast, the potential for abstract spatial representations in humans is not known, because most neuroscientific experiments on human navigation have focused exclusively on visual cues. Here, we tested the modality independence hypothesis with two functional magnetic resonance imaging (fMRI) experiments that characterized computations in regions implicated in processing spatial layout [3]. According to the hypothesis, such regions should be recruited for spatial computation of 3D geometric configuration, independent of a specific sensory modality. In support of this view, sighted participants showed strong activation of the parahippocampal place area (PPA) and the retrosplenial cortex (RSC) for visual and haptic exploration of information-matched scenes but not objects. Functional connectivity analyses suggested that these effects were not related to visual recoding, which was further supported by a similar preference for haptic scenes found with blind participants. Taken together, these findings establish the PPA/RSC network as critical in modality-independent spatial computations and provide important evidence for a theory of high-level abstract spatial information processing in the human brain.  相似文献   

4.
Neural stem cells in the adult human brain   总被引:39,自引:0,他引:39  
New neurons are continuously generated in certain regions of the adult brain. Studies in rodents have shown that new neurons are generated from self-renewing multipotent neural stem cells. Here we demonstrate that both the lateral ventricle wall and the hippocampus of the adult human brain harbor self-renewing cells capable of generating neurons, astrocytes, and oligodendrocytes in vitro, i.e., bona fide neural stem cells.  相似文献   

5.
Neural processing of auditory looming in the human brain   总被引:2,自引:0,他引:2  
Acoustic intensity change, along with interaural, spectral, and reverberation information, is an important cue for the perception of auditory motion. Approaching sound sources produce increases in intensity, and receding sound sources produce corresponding decreases. Human listeners typically overestimate increasing compared to equivalent decreasing sound intensity and underestimate the time to contact of approaching sound sources. These characteristics could provide a selective advantage by increasing the margin of safety for response to looming objects. Here, we used dynamic intensity and functional magnetic resonance imaging to examine the neural underpinnings of the perceptual priority for rising intensity. We found that, consistent with activation by horizontal and vertical auditory apparent motion paradigms, rising and falling intensity activated the right temporal plane more than constant intensity. Rising compared to falling intensity activated a distributed neural network subserving space recognition, auditory motion perception, and attention and comprising the superior temporal sulci and the middle temporal gyri, the right temporoparietal junction, the right motor and premotor cortices, the left cerebellar cortex, and a circumscribed region in the midbrain. This anisotropic processing of acoustic intensity change may reflect the salience of rising intensity produced by looming sources in natural environments.  相似文献   

6.
A prolonged observation of a point-like stimulus moving in a given direction influences the perception of movement direction of subsequent stimuli. The prolonged observation of the same stimulus results in a subjective drift of the perceived movement towards horizontal or vertical direction depending on which of these directions is nearer to the stimulus trajectory. If, however, the stimulus moves in vertical, diagonal and horizontal directions its perception does not change under prolonged observation.  相似文献   

7.
The ability to recognize abstract features of voice during auditory perception is an intricate feat of human audition. For the listener, this occurs in near-automatic fashion to seamlessly extract complex cues from a highly variable auditory signal. Voice perception depends on specialized regions of auditory cortex, including superior temporal gyrus (STG) and superior temporal sulcus (STS). However, the nature of voice encoding at the cortical level remains poorly understood. We leverage intracerebral recordings across human auditory cortex during presentation of voice and nonvoice acoustic stimuli to examine voice encoding at the cortical level in 8 patient-participants undergoing epilepsy surgery evaluation. We show that voice selectivity increases along the auditory hierarchy from supratemporal plane (STP) to the STG and STS. Results show accurate decoding of vocalizations from human auditory cortical activity even in the complete absence of linguistic content. These findings show an early, less-selective temporal window of neural activity in the STG and STS followed by a sustained, strongly voice-selective window. Encoding models demonstrate divergence in the encoding of acoustic features along the auditory hierarchy, wherein STG/STS responses are best explained by voice category and acoustics, as opposed to acoustic features of voice stimuli alone. This is in contrast to neural activity recorded from STP, in which responses were accounted for by acoustic features. These findings support a model of voice perception that engages categorical encoding mechanisms within STG and STS to facilitate feature extraction.

Voice perception occurs via specialized networks in higher order auditory cortex, but how voice features are encoded remains a central unanswered question. Using human intracerebral recordings of auditory cortex, this study provides evidence for categorical encoding of voice.  相似文献   

8.
Neural coding in the chick cochlear nucleus   总被引:5,自引:0,他引:5  
Physiological recordings were made from single units in the two divisions of the chick cochlear nucleus-nucleus angularis (NA) and nucleus magnocellularis (NM). Sound evoked responses were obtained in an effort to quantify functional differences between the two nuclei. In particular, it was of interest to determine if nucleus angularis and magnocellularis code for separate features of sound stimuli, such as temporal and intensity information. The principal findings are: 1. Spontaneous activity patterns in the two nuclei are very different. Neurons in nucleus angularis tend to have low spontaneous discharge rates while magnocellular units have high levels of spontaneous firing. 2. Frequency tuning curves recorded in both nuclei are similar in form, although the best thresholds of NA units are about 10 dB more sensitive than their NM counterparts across the entire frequency range. A wide spread of neural thresholds is evident in both NA and NM. 3. Large driven increases in discharge rate are seen in both NA and NM. Rate intensity functions from NM units are all monotonic, while a substantial percentage (22%) of NA units respond to increased sound level in a nonmonotonic fashion. 4. Most NA units with characteristic frequencies (CF) above 1000 Hz respond to sound stimuli at CF as 'choppers', while units with CF's below 1000 Hz are 'primary-like'. Several 'onset' units are also seen in NA. In contrast, all NM units show 'primary-like' response. 5. Units in both nuclei with CF's below 1000 Hz show strong neural phase-locking to stimuli at their CF. Above 1000 Hz, few NA units are phase-locked, while phase-locking in NM extends to 2000 Hz. 6. These results are discussed with reference to the hypothesis that NM initiates a neural pathway which codes temporal information while NA is involved primarily with intensity coding, similar in principle to the segregation of function seen in the cochlear nucleus of the barn owl (Sullivan and Konishi 1984).  相似文献   

9.
Temporal information is an embedded feature of our sensory and motor experiences. How is temporal information encoded in the brain? In the two-stage theory of timing, an explicit representation of timing is responsible for the movement initiation while movement duration is coded implicitly. We investigated the correlation of movement duration and amplitude in a repetitive one-dimensional non-visually guided movement to find out if temporal information could be coded independently from movement. Subjects were asked to learn the distance between two points by moving their hands repeatedly along the distance between two sticks, while they could not see their hands and hand path. After a training phase, a delay of either 2 or 20 s was imposed and the subjects were asked to reproduce the learned distance. There was no correlation between distance difference and time difference in either delay condition. In the 20 s delay experiment, in comparison to the 2 s delay experiment, there was a significant increase in distance reproduction error. However, there was no significant change in time differences in either of the experiments. In addition, the time difference between the training and test trials was independent from the direction of the distance difference (i.e., overshot, undershot, or accurate). In conclusion, time may be coded as an independent measure after the delay period, so it should be a kind of explicitly coded information.  相似文献   

10.
The aim of the present study was to examine the association of high blood lactate levels, induced with a maximal cycling or with an intravenous infusion, with spinal cord excitability. The study was carried out on 17 male athletes; all the subjects performed a maximal cycling test on a mechanically braked cycloergometer, while 6 of them were submitted to the intravenous infusion of a lactate solution (3?mg/kg in 1?min). Before the exercise or the injection, also at the end as well as 5 and 10?min after the conclusion, venous blood lactate was measured and excitability of the spinal α-motoneurons was evaluated by using the H reflex technique. In both experimental conditions, it has been observed that an exhaustive exercise is associated with a strong increase of blood lactate (but not of blood glucose) and with a significant reduction of spinal excitability. Since a similar augment of blood lactate induced by an intravenous infusion, in subjects not performing any exercise, is not associated with significant changes of spinal excitability, it can be concluded that the increase of blood lactate levels during a maximal exercise is not per se capable of modifying the excitability of spinal α-motoneurons.  相似文献   

11.
Closed-loop experimental testing of single medial temporal lobe neurons in?humans reveals top-down effects, opening new possibilities for describing neural representations at the highest level.  相似文献   

12.
Neural dynamics of envelope coding   总被引:1,自引:0,他引:1  
We consider the processing of narrowband signals that modulate carrier waveforms in sensory systems. The tuning of sensory neurons to the carrier frequency results in a high sensitivity to the amplitude modulations of the carrier. Recent work has revealed how specialized circuitry can extract the lower-frequency modulation associated with the slow envelope of a narrowband signal, and send it to higher brain along with the full signal. This paper first summarizes the experimental evidence for this processing in the context of electroreception, where the narrowband signals arise in the context of social communication between the animals. It then examines the mechanism of this extraction by single neurons and neural populations, using intracellular recordings and new modeling results contrasting envelope extraction and stochastic resonance. Low noise and peri-threshold stimulation are necessary to obtain a firing pattern that shows high coherence with the envelope of the input. Further, the output must be fed through a slow synapse. Averaging networks are then considered for their ability to detect, using additional noise, signals with power in the envelope bandwidth. The circuitry that does support envelope extraction beyond the primary receptors is available in many areas of the brain including cortex. The mechanism of envelope extraction and its gating by noise and bias currents is thus accessible to non-carrier-based coding as well, as long as the input to the circuit is a narrowband signal. Novel results are also presented on a more biophysical model of the receptor population, showing that it can encode a narrowband signal, but not its envelope, as observed experimentally. The model is modified from previous models by stimulus reducing contrast in order to make it sufficiently linear to agree with the experimental data.  相似文献   

13.
14.
The kinematics of stumbling and recovery induced by a rapidly reversing treadmill is described for eight healthy adults. Stability was achieved in approximately 400 ms following treadmill reversal (initiated at heel-strike) and the ensuing stumble. It appeared to be accomplished primarily by rapid flexion of the thigh and knee of the stance limb, which prevented damage to the knee joint and lowered the trunk, and by extension of the contralateral joints (swing limb), which contacted the ground presumably to deliver an impulsive thrust to counter the backward lean of the trunk. The movements of the ankle also contributed to the recovery from the stumble, but its movements were markedly more variable among the subjects than those of the thigh and knee. The observed kinematics to some extent resembled a crossed-extension reflex, which may have been triggered by muscle, joint, cutaneous or vestibular afferents. These data should provide a baseline by which to compare groups in which recovery from stumbling is known to be deficient (e.g., the elderly).  相似文献   

15.
Neural mechanisms in disorders of movement   总被引:2,自引:0,他引:2  
1. Experimental models of ballism, chorea and Parkinson's disease have been developed in the primate, and the underlying neural mechanisms which mediate these disorders of movement have been investigated using the 2-deoxyglucose uptake technique. 2. In ballism, the subthalamic nucleus is either lesioned or underactive. Because of the excitatory nature of subthalamic efferent fibres, this leads to abnormal underactivity of neurons in the medical segment of the globus pallidus which project to the ventral anterior and ventral lateral nuclei of the thalamus, and to the pedunculopontine nucleus of the caudal midbrain. 3. In chorea, there is underactivity of GABAergic striatal (putaminal) neurons which project to the lateral segment of the globus pallidus. This leads to overacting of lateral pallidal neurons and, thus, physiological inhibition of the subthalamic nucleus. Common neural mechanisms, therefore, underlie the appearance of dyskinesia in ballism and chorea. 4. In parkinsonism, there is overactivity of putaminal neurons projecting to the lateral pallidal segment. This results in excessive inhibition of lateral pallidal neurons and, as a consequence, disinhibition of the subthalamic nucleus. Overactivity of the subthalamic nucleus provides excessive drive upon medial pallidal neurons projecting to thalamic and pedunculopontine nuclei.  相似文献   

16.
Gallio M  Ofstad TA  Macpherson LJ  Wang JW  Zuker CS 《Cell》2011,144(4):614-624
Thermosensation is an indispensable sensory modality. Here, we study temperature coding in Drosophila, and show that temperature is represented by a spatial map of activity in the brain. First, we identify TRP channels that function in the fly antenna to mediate the detection of cold stimuli. Next, we identify the hot-sensing neurons and show that hot and cold antennal receptors project onto distinct, but adjacent glomeruli in the Proximal-Antennal-Protocerebrum (PAP) forming a thermotopic map in the brain. We use two-photon imaging to reveal the functional segregation of hot and cold responses in the PAP, and show that silencing the hot- or cold-sensing neurons produces animals with distinct and discrete deficits in their behavioral responses to thermal stimuli. Together, these results demonstrate that dedicated populations of cells orchestrate behavioral responses to different temperature stimuli, and reveal a labeled-line logic for the coding of temperature information in the brain.  相似文献   

17.
The motivation to start or terminate a meal involves the continual updating of information on current body status by central gustatory and reward systems. Previous electrophysiological and neuroimaging investigations revealed region-specific decreases in activity as the subject's state transitions from hunger to satiety. By implanting bundles of microelectrodes in the lateral hypothalamus, orbitofrontal cortex, insular cortex, and amygdala of hungry rats that voluntarily eat to satiety, we have measured the behavior of neuronal populations through the different phases of a complete feeding cycle (hunger-satiety-hunger). Our data show that while most satiety-sensitive units preferentially responded to a unique hunger phase within a cycle, neuronal populations integrated single-unit information in order to reflect the animal's motivational state across the entire cycle, with higher activity levels during the hunger phases. This distributed population code might constitute a neural mechanism underlying meal initiation under different metabolic states.  相似文献   

18.
A fundamental problem in neuroscience, to which Prof. Segundo has made seminal contributions, is to understand how action potentials represent events in the external world. The aim of this paper is to review the issue of neural coding in the context of the rodent whiskers, an increasingly popular model system. Key issues we consider are: the role of spike timing; mechanisms of spike timing; decoding and context-dependence. Significant insight has come from the development of rigorous, information theoretic frameworks for tackling these questions, in conjunction with suitably designed experiments. We review both the theory and experimental studies. In contrast to the classical view that neurons are noisy and unreliable, it is becoming clear that many neurons in the subcortical whisker pathway are remarkably reliable and, by virtue of spike timing with millisecond-precision, have high bandwidth for conveying sensory information. In this way, even small (~200 neuron) subcortical modules are able to support the sensory processing underlying sophisticated whisker-dependent behaviours. Future work on neural coding in cortex will need to consider new findings that responses are highly dependent on context, including behavioural and internal states. This article is part of a special issue on Neuronal Dynamics of Sensory Coding.  相似文献   

19.
Neural coding of gustatory information.   总被引:6,自引:0,他引:6  
The nervous system encodes information relating chemical stimuli to taste perception, beginning with transduction mechanisms at the receptor and ending in the representation of stimulus attributes by the activity of neurons in the brain. Recent studies have rekindled the long-standing debate about whether taste information is coded by the pattern of activity across afferent neurons or by specifically tuned 'labeled lines'. Taste neurons are broadly tuned to stimuli representing different qualities and are also responsive to stimulus intensity and often to touch and temperature. Their responsiveness is also modulated by a number of physiological factors. In addition to representing stimulus quality and intensity, activity in taste neurons must code information about the hedonic value of gustatory stimuli. These considerations suggest that individual gustatory neurons contribute to the coding of more than one stimulus parameter, making the response of any one cell meaningful only in the context of the activity of its neighbors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号