首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SUMMARY We have cloned and analyzed two Emx genes from the lamprey Petromyzon marinus and our findings provide insight into the patterns and developmental consequences of gene duplications during early vertebrate evolution. The Emx gene family presents an excellent case for addressing these issues as gnathostome vertebrates possess two or three Emx paralogs that are highly pleiotropic, functioning in or being expressed during the development of several vertebrate synapomorphies. Lampreys are the most primitive extant vertebrates and characterization of their development and genomic organization is critical for understanding vertebrate origins. We identified two Emx genes from P. marinus and analyzed their phylogeny and their embryological expression relative to other chordate Emx genes. Our phylogenetic analysis shows that the two lamprey Emx genes group independently from the gnathostome Emx1, Emx2 , and Emx3 paralogy groups. Our expression analysis shows that the two lamprey Emx genes are expressed in distinct spatial and temporal patterns that together broadly encompass the combined sites of expression of all gnathostome Emx genes. Our data support a model wherein large-scale regulatory evolution of a single Emx gene occurred after the protochordate/vertebrate divergence, but before the vertebrate radiation. Both the lamprey and gnathostome lineages then underwent independent gene duplications followed by extensive paralog subfunctionalization. Emx subfunctionalization in the telencephalon is remarkably convergent and refines our understanding of lamprey forebrain patterning. We also identify lamprey-specific sites of expression that indicate either neofunctionalization in lampreys or sites-specific nonfunctionalization of all gnathostome Emx genes. Overall, we see only very limited correlation between Emx gene duplications and the acquisition of novel expression domains.  相似文献   

2.
Lampreys are agnathans (vertebrates without jaws). They occupy a key phylogenetic position in the emergence of novelties and in the diversification of morphology at the dawn of vertebrates. We have used lampreys to investigate the possibility that embryonic midline signaling systems have been a driving force for the evolution of the forebrain in vertebrates. We have focused on Sonic Hedgehog/Hedgehog (Shh/Hh) signaling. In this article, we first review and summarize our recent work on the comparative analysis of embryonic expression patterns for Shh/Hh, together with Fgf8 (fibroblast growth factor 8) and Wnt (wingless-Int) pathway components, in the embryonic lamprey forebrain. Comparison with nonvertebrate chordates on one hand, and jawed vertebrates on the other hand, shows that these morphogens/growth factors acquired new expression domains in the most rostral part of the neural tube in lampreys compared to nonvertebrate chordates, and in jawed vertebrates compared to lampreys. These data are consistent with the idea that changes in Shh, Fgf8 or Wnt signaling in the course of evolution have been instrumental for the emergence and diversification of the telencephalon, a part of the forebrain that is unique to vertebrates. We have then used comparative genomics on Shh/Hh loci to identify commonalities and differences in noncoding regulatory sequences across species and phyla. Conserved noncoding elements (CNEs) can be detected in lamprey Hh introns, even though they display unique structural features and need adjustments of parameters used for in silico alignments to be detected, because of lamprey-specific properties of the genome. The data also show conservation of a ventral midline enhancer located in Shh/Hh intron 2 of all chordates, the very species which possess a notochord and a floor plate, but not in earlier emerged deuterostomes or protostomes. These findings exemplify how the Shh/Hh locus is one of the best loci to study genome evolution with regards to developmental events.  相似文献   

3.
Agnathan or jawless vertebrates, such as lampreys, occupy a critical phylogenetic position between the gnathostome or jawed vertebrates and the cephalochordates, represented by amphioxus. In order to gain insight into the evolution of the vertebrate head, we have cloned and characterized a homolog of the head-specific gene Otx from the lamprey Petromyzon marinus. This lamprey Otx gene is a clear phylogenetic outgroup to both the gnathostome Otx1 and Otx2 genes. Like its gnathostome counterparts, lamprey Otx is expressed throughout the presumptive forebrain and midbrain. Together, these results indicate that the divergence of Otx1 and Otx2 took place after the gnathostome/agnathan divergence and does not correlate with the origin of the vertebrate brain. Intriguingly, Otx is also expressed in the cephalic neural crest cells as well as mesenchymal and endodermal components of the first pharyngeal arch in lampreys, providing molecular evidence of homology with the gnathostome mandibular arch and insights into the evolution of the gnathostome jaw.  相似文献   

4.
Agnathan lampreys retain ancestral characteristics of vertebrates in the morphology of skeletal muscles derived from two mesodermal regions: trunk myotomes and unsegmented head mesoderm. During lamprey development, some populations of myoblasts migrate via pathways that differ from those of gnathostomes. To investigate the evolution of skeletal muscle differentiation in vertebrates, we characterize multiple contractile protein genes expressed in the muscle cells of the Japanese lamprey, Lethenteron japonicum. Lamprey actin gene LjMA2, and myosin heavy chain (MyHC) genes LjMyHC1 and LjMyHC2 are all expressed in the developing skeletal muscle cells of early embryos. However, LjMyHC1 and LjMyHC2 are expressed only in cells originating from myotomes, while LjMA2 is expressed in both myotomal and head musculature. Thus, in lampreys, myotomes and head mesoderm differ in the use of genes encoding contractile protein isoforms. Phylogenetic tree analyses including lamprey MyHCs suggest that the variety of muscle MyHC isoforms in different skeletal muscles may correspond to the morphological complexity of skeletal muscles of different vertebrate species. Another lamprey actin gene LjMA1 is likely to be the first smooth muscle actin gene isolated from non-tetrapods. We conclude that, in vertebrate evolution, the different regulatory systems for striated and smooth muscle-specific genes may have been established before the agnathan/gnathostome divergence.  相似文献   

5.
6.
Lampreys possess unique types of cartilage in which elastin-like proteins are the dominant matrix component, whereas gnathostome cartilage is mainly composed of fibrillar collagen. Despite the differences in protein composition, the Sox-col2a1 genetic cascade was suggested to be conserved between lamprey pharyngeal cartilage and gnathostome cartilage. We examined whether the cascade is conserved in another type of lamprey cartilage, the trabecular cartilage. We found that SoxD and SoxE are expressed in both trabecular and pharyngeal cartilages. However, trabecular cartilage shows no clade A fibrillar collagen gene expression, including genes expressed in pharyngeal cartilage of this animal. On the basis of these observations, we propose that lampreys possess an ancestral type of cartilage that is similar to amphioxus gill cartilage, and in this respect, gnathostome cartilage can be regarded as derived for the loss of elastin-like protein as a cartilage component and recruitment of fibrillar collagen, which is included as a minor component in the ancestral cartilage, as the main component.  相似文献   

7.
Dorsoventral (DV) specification is a crucial step for the development of the vertebrate telencephalon. Clarifying the origin of this mechanism will lead to a better understanding of vertebrate central nervous system (CNS) evolution. Based on the lamprey, a sister group of the gnathostomes (jawed vertebrates), we identified three lamprey Hedgehog (Hh) homologues, which are thought to play central signalling roles in telencephalon patterning. However, unlike in gnathostomes, none of these genes, nor Lhx6/7/8, a marker for the migrating interneuron subtype, was expressed in the ventral telencephalon, consistent with the reported absence of the medial ganglionic eminence (MGE) in this animal. Homologues of Gsh2, Isl1/2 and Sp8, which are involved in the patterning of the lateral ganglionic eminence (LGE) of gnathostomes, were expressed in the lamprey subpallium, as in gnathostomes. Hh signalling is necessary for induction of the subpallium identity in the gnathostome telencephalon. When Hh signalling was inhibited, the ventral identity was disrupted in the lamprey, suggesting that prechordal mesoderm-derived Hh signalling might be involved in the DV patterning of the telencephalon. By blocking fibroblast growth factor (FGF) signalling, the ventral telencephalon was suppressed in the lamprey, as in gnathostomes. We conclude that Hh- and FGF-dependent DV patterning, together with the resultant LGE identity, are likely to have been established in a common ancestor before the divergence of cyclostomes and gnathostomes. Later, gnathostomes would have acquired a novel Hh expression domain corresponding to the MGE, leading to the obtainment of cortical interneurons.  相似文献   

8.
Evolution of the vertebrate jaw has been reviewed and discussed based on the developmental pattern of the Japanese marine lamprey, Lampetra japonica. Though it never forms a jointed jaw apparatus, the L. japonica embryo exhibits the typical embryonic structure as well as the conserved regulatory gene expression patterns of vertebrates. The lamprey therefore shares the phylotype of vertebrates, the conserved embryonic pattern that appears at pharyngula stage, rather than representing an intermediate evolutionary state. Both gnathostomes and lampreys exhibit a tripartite configuration of the rostral-most crest-derived ectomesenchyme, each part occupying an anatomically equivalent site. Differentiated oral structure becomes apparent in post-pharyngula development. Due to the solid nasohypophyseal plate, the post-optic ectomesenchyme of the lamprey fails to grow rostromedially to form the medial nasal septum as in gnathostomes, but forms the upper lip instead. The gnathostome jaw may thus have arisen through a process of ontogenetic repatterning, in which a heterotopic shift of mesenchyme-epithelial relationships would have been involved. Further identification of shifts in tissue interaction and expression of regulatory genes are necessary to describe the evolution of the jaw fully from the standpoint of evolutionary developmental biology.  相似文献   

9.
10.
Evolution in development can be viewed as a sequence of changes in gene regulation. To investigate the cross-species compatibility of 5' upstream regulatory regions, we introduced exogenous gene constructs derived from a gnathostome genome into fertilized eggs of the Japanese lamprey, Lampetra japonica, a sister group of the gnathostomes. Eggs were injected with gene constructs in which a sequence encoding the green fluorescent protein (GFP) had been located downstream of either a virus promoter or 5' regulatory regions of medaka actin genes. Reporter gene expression was recorded for more than a month starting two days after injection. Although the expression patterns were highly mosaic and differed among individuals, GFP was expressed predominantly in the striated muscles of lamprey embryos when driven by the 5' upstream regions of the medaka muscle actin genes. This implies that a pan-vertebrate muscle-specific gene regulatory mechanism may have evolved before the agnathan/gnathostome divergence. This gene-transfer technique potentially facilitates the visualization of cells in various differentiating tissues throughout development. The introduction of developmental genes of the lamprey or other animals into lamprey embryos is another potentially important application, one that could provide us with information on the evolutionary changes in functions of genes or gene cascades.  相似文献   

11.
Cranial neurogenic placodes and the neural crest make essential contributions to key adult characteristics of all vertebrates, including the paired peripheral sense organs and craniofacial skeleton. Neurogenic placode development has been extensively characterized in representative jawed vertebrates (gnathostomes) but not in jawless fishes (agnathans). Here, we use in vivo lineage tracing with DiI, together with neuronal differentiation markers, to establish the first detailed fate-map for placode-derived sensory neurons in a jawless fish, the sea lamprey Petromyzon marinus, and to confirm that neural crest cells in the lamprey contribute to the cranial sensory ganglia. We also show that a pan-Pax3/7 antibody labels ophthalmic trigeminal (opV, profundal) placode-derived but not maxillomandibular trigeminal (mmV) placode-derived neurons, mirroring the expression of gnathostome Pax3 and suggesting that Pax3 (and its single Pax3/7 lamprey ortholog) is a pan-vertebrate marker for opV placode-derived neurons. Unexpectedly, however, our data reveal that mmV neuron precursors are located in two separate domains at neurula stages, with opV neuron precursors sandwiched between them. The different branches of the mmV nerve are not comparable between lampreys and gnatho-stomes, and spatial segregation of mmV neuron precursor territories may be a derived feature of lampreys. Nevertheless, maxillary and mandibular neurons are spatially segregated within gnathostome mmV ganglia, suggesting that a more detailed investigation of gnathostome mmV placode development would be worthwhile. Overall, however, our results highlight the conservation of cranial peripheral sensory nervous system development across vertebrates, yielding insight into ancestral vertebrate traits.  相似文献   

12.
We report here the isolation and functional expression of a neuropeptide Y (NPY) receptor from the river lamprey, Lampetra fluviatilis. The receptor displays approximately 50% amino-acid sequence identity to all previously cloned Y1-subfamily receptors including Y1, Y4, and y6 and the teleost subtypes Ya, Yb and Yc. Phylogenetic analyses point to a closer relationship with Y4 and Ya/b/c suggesting that the lamprey receptor could possibly represent a pro-orthologue of some or all of those gnathostome receptors. Our results support the notion that the Y1 subfamily increased in number by genome or large-scale chromosome duplications, one of which may have taken place prior to the divergence of lampreys and gnathostomes whereas the second duplication probably occurred in the gnathostome lineage after this split. Functional expression of the lamprey receptor in a cell line facilitated specific binding of the three endogenous lamprey peptides NPY, peptide YY and peptide MY with picomolar affinities. Binding studies with a large panel of NPY analogues revealed indiscriminate binding properties similar to those of another nonselective Y1-subfamily receptor, zebrafish Ya. RT-PCR detected receptor mRNA in the central nervous system as well as in several peripheral organs suggesting diverse functions. This lamprey receptor is evolutionarily the most distant NPY receptor that clearly belongs to the Y1 subfamily as defined in mammals, which shows that subtypes Y2 and Y5 arose even earlier in evolution.  相似文献   

13.
snail genes mark presumptive mesoderm across bilaterian animals. In gnathostome vertebrates, snail genes are a multimember family that are also markers of premigratory neural crest (pnc) and some postmigratory neural crest derivatives in the pharyngeal arches. Previous studies of nonvertebrate chordates indicate that they have single snail genes that retain ancestral functions in mesoderm development and perhaps in specification of a pnc-like cell population. Lampreys are the most basal extant vertebrates, with well-defined developmental morphology. Here, we identify a single snail gene from the lamprey Petromyzon marinus that is the phylogenetic outgroup of all gnathostome snail genes. This single lamprey snail gene retains ancestral snail patterning domains present in nonvertebrate chordates. Lamprey snail is also expressed in tissues that are broadly equivalent to the combined sites of expression of all three gnathostome snail paralogy groups, excepting in embryonic tissues that are unique to gnathostomes. Importantly, while snail does not appear to demarcate an early neural crest population in lampreys as it does in gnathostomes, it may be involved in later neural crest development. Together, our results indicate that significant cis-regulatory innovation occurred in a single snail gene before the vertebrate radiation, and significant subfunctionalization occurred after snail gene duplications in the gnathostome lineages.  相似文献   

14.
The jaw is one of the earliest innovations in vertebrate history. Several recent findings suggest a scenario for jaw evolution as a progression of changes in pharyngeal developmental mechanisms. The lamprey, an extant jawless vertebrate, constitutes a model for the pre-gnathostome ancestry. Comparing expression patterns of regulatory genes between the gnathostome and lamprey embryos may enable us to get a glimpse of the essential changes that were responsible for the evolution of the jaw. We hypothesize that a specific topographical change of inductive tissue interactions to be described here brought about the jaw as an evolutionary novelty.  相似文献   

15.
16.
The vertebrates are traditionally classified into two distinct groups, Agnatha (jawless vertebrates) and Gnathostomata (jawed vertebrates). Extant agnathans are represented by hagfishes (Myxiniformes) and lampreys (Petromyzontiformes), frequently grouped together within the Cyclostomata. Whereas the recognition of the Gnathostomata as a clade is commonly acknowledged, a consensus has not been reached regarding whether or not Cyclostomata represents a clade. In the present study we have used newly established sequences of the protein-coding genes of the mitochondrial DNA molecule of the hagfish to explore agnathan and gnathostome relationships. The phylogenetic analysis of Pisces, using echinoderms as outgroup, placed the hagfish as a sister group of Vertebrata sensu stricto, i.e., the lamprey and the gnathostomes. The phylogenetic analysis of the Gnathostomata identified a basal divergence between gnathostome fishes and a branch leading to birds and mammals, i.e., between ``Anamnia' and Amniota. The lungfish has a basal position among gnathostome fishes with the teleosts as the most recently evolving lineage. The findings portray a hitherto unrecognized polarity in the evolution of bony fishes. The presently established relationships are incompatible with previous molecular studies. Received: 15 August 1997 / Accepted: 1 October 1997  相似文献   

17.
18.
J Freitag  A Beck  G Ludwig  L von Buchholtz  H Breer 《Gene》1999,226(2):165-174
In vertebrates, recognition of odorous compounds is based on a large repertoire of receptor subtypes encoded by a multigene family. Towards an understanding of the phylogenetic origin of the vertebrate olfactory receptor family, attempts have been made to identify related receptor genes in the river lampreys (Lampetra fluviatilis), which are descendants of the earliest craniates and living representatives of the most ancient vertebrates. Employing molecular cloning approaches led to the discovery of four genes encoding heptahelical receptors, which share only a rather low overall sequence identity but several of the characteristic structural hallmarks with vertebrate olfactory receptors. Furthermore, in situ hybridization studies demonstrated that the identified genes are expressed in chemosensory cells of the singular lamprey olfactory organ. Molecular phylogenetic analysis confirmed a close relationship of the lamprey receptors to vertebrate olfactory receptors and in addition demonstrated that olfactory genes of the agnathostomes diverged from the gnathostome receptor genes before those split into class I and class II receptors. The data indicate that the lamprey receptors represent the most ancient family of the hitherto identified vertebrate olfactory receptors.  相似文献   

19.
20.
To investigate the embryonic development of the central nervous system of the lamprey Lampetra fluviatilis, we have isolated and analysed the expression patterns of members of the LIM-homeodomain, Pax, Hedgehog and Nkx2.1 families. Using degenerate RT-PCR, single representatives of Lhx1/Lhx5, Lhx2/Lhx9, Pax3/Pax7 and Hedgehog families could be isolated in L. fluviatilis. Expression analysis revealed that the lamprey forebrain presents a clear neuromeric pattern. We describe the existence of 4 embryonic diencephalic prosomeres whose boundaries can be identified by the combined and relative expressions of LfPax37, LfLhx15 and LfLhx29. This suggests that the embryonic lamprey and gnathostome forebrain are patterned in a highly similar manner. Moreover, analysis of the LfHh gene, which is expressed in the hypothalamus, zona limitans intrathalamica and floor plate, reveals the possible molecular origin of this neuromeric brain pattern. By contrast, LfHh and LfNkx2.1 expressions suggest major differences in patterning mechanisms of the ventral telencephalon when compared to gnathostomes. In summary, our findings highlight a neuromeric organisation of the embryonic agnathan forebrain and point to the possible origin of this organisation, which is thus a truly vertebrate character. They also suggest that Hh/Shh midline signalling might act as a driving force for forebrain evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号