首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tree mortality is a key process underlying forest dynamics and community assembly. Understanding how tree mortality is driven by simultaneous drivers is needed to evaluate potential effects of climate change on forest composition. Using repeat-measure information from c. 400,000 trees from the Spanish Forest Inventory, we quantified the relative importance of tree size, competition, climate and edaphic conditions on tree mortality of 11 species, and explored the combined effect of climate and competition. Tree mortality was affected by all of these multiple drivers, especially tree size and asymmetric competition, and strong interactions between climate and competition were found. All species showed L-shaped mortality patterns (i.e. showed decreasing mortality with tree size), but pines were more sensitive to asymmetric competition than broadleaved species. Among climatic variables, the negative effect of temperature on tree mortality was much larger than the effect of precipitation. Moreover, the effect of climate (mean annual temperature and annual precipitation) on tree mortality was aggravated at high competition levels for all species, but especially for broadleaved species. The significant interaction between climate and competition on tree mortality indicated that global change in Mediterranean regions, causing hotter and drier conditions and denser stands, could lead to profound effects on forest structure and composition. Therefore, to evaluate the potential effects of climatic change on tree mortality, forest structure must be considered, since two systems of similar composition but different structure could radically differ in their response to climatic conditions.  相似文献   

2.
Climate change may reduce forest growth and increase forest mortality, which is connected to high carbon costs through reductions in gross primary production and net ecosystem exchange. Yet, the spatiotemporal patterns of vulnerability to both short‐term extreme events and gradual environmental changes are quite uncertain across the species’ limits of tolerance to dryness. Such information is fundamental for defining ecologically relevant upper limits of species tolerance to drought and, hence, to predict the risk of increased forest mortality and shifts in species composition. We investigate here to what extent the impact of short‐ and long‐term environmental changes determines vulnerability to climate change of three evergreen conifers (Scots pine, silver fir, Norway spruce) and two deciduous hardwoods (European beech, sessile oak) tree species at their southernmost limits of distribution in the Mediterranean Basin. Finally, we simulated future forest growth under RCP 2.6 and 8.5 emission scenarios using a multispecies generalized linear mixed model. Our analysis provides four key insights into the patterns of species’ vulnerability to climate change. First, site climatic marginality was significantly linked to the growth trends: increasing growth was related to less climatically limited sites. Second, estimated species‐specific vulnerability did not match their a priori rank in drought tolerance: Scots pine and beech seem to be the most vulnerable species among those studied despite their contrasting physiologies. Third, adaptation to site conditions prevails over species‐specific determinism in forest response to climate change. And fourth, regional differences in forests vulnerability to climate change across the Mediterranean Basin are linked to the influence of summer atmospheric circulation patterns, which are not correctly represented in global climate models. Thus, projections of forest performance should reconsider the traditional classification of tree species in functional types and critically evaluate the fine‐scale limitations of the climate data generated by global climate models.  相似文献   

3.
Intense droughts combined with increased temperatures are one of the major threats to forest persistence in the 21st century. Despite the direct impact of climate change on forest growth and shifts in species abundance, the effect of altered demography on changes in the composition of functional traits is not well known. We sought to (1) quantify the recent changes in functional composition of European forests; (2) identify the relative importance of climate change, mean climate and forest development for changes in functional composition; and (3) analyse the roles of tree mortality and growth underlying any functional changes in different forest types. We quantified changes in functional composition from the 1980s to the 2000s across Europe by two dimensions of functional trait variation: the first dimension was mainly related to changes in leaf mass per area and wood density (partially related to the trait differences between angiosperms and gymnosperms), and the second dimension was related to changes in maximum tree height. Our results indicate that climate change and mean climatic effects strongly interacted with forest development and it was not possible to completely disentangle their effects. Where recent climate change was not too extreme, the patterns of functional change generally followed the expected patterns under secondary succession (e.g. towards late‐successional short‐statured hardwoods in Mediterranean forests and taller gymnosperms in boreal forests) and latitudinal gradients (e.g. larger proportion of gymnosperm‐like strategies at low water availability in forests formerly dominated by broad‐leaved deciduous species). Recent climate change generally favoured the dominance of angiosperm‐like related traits under increased temperature and intense droughts. Our results show functional composition changes over relatively short time scales in European forests. These changes are largely determined by tree mortality, which should be further investigated and modelled to adequately predict the impacts of climate change on forest function.  相似文献   

4.
Climate change is expected to affect forest landscape dynamics in many ways, but it is possible that the most important direct impact of climate change will be drought stress. We combined data from weather stations and forest inventory plots (FIA) across the upper Great Lakes region (USA) to study the relationship between measures of drought stress and mortality for four drought sensitivity species groups using a weight-of-evidence approach. For all groups, the model that predicted mortality as a function of mean drought length had the greatest plausibility. Model tests confirmed that the models for all groups except the most drought tolerant had predictive value. We assumed that no relationship exists between drought and mortality for the drought-tolerant group. We used these empirical models to develop a drought extension for the forest landscape disturbance and succession model LANDIS-II, and applied the model in Oconto county, Wisconsin (USA) to assess the influence of drought on forest dynamics relative to other factors such as stand-replacing disturbance and site characteristics. The simulations showed that drought stress does affect species composition and total biomass, but effects on age classes, spatial pattern, and productivity were insignificant. We conclude that (for the upper Midwest) (1) a drought-induced tree mortality signal can be detected using FIA data, (2) tree species respond primarily to the length of drought events rather than their severity, (3) the differences in drought tolerance of tree species can be quantified, (4) future increases in drought can potentially change forest composition, and (5) drought is a potentially important factor to include in forest dynamics simulations because it affects forest composition and carbon storage.  相似文献   

5.
There is evidence that climate change induced tree mortalities in boreal and temperate forests and increased forest turnover rates (both mortality and recruitment rates) in Amazon forests. However, no study has examined China's tropical and subtropical evergreen broadleaved forests (TEBF) that cover >26% of China's terrestrial land. The sustainability of this biome is vital to the maintenance of local ecosystem services (e.g., carbon sequestration, biodiversity conservation, climatic regulation), many of which may influence patterns of atmospheric circulation and composition at regional to global scales. Here, we analyze time‐series data collected from thirteen permanent plots within China's unmanaged TEBF to study whether and how this biome has changed over recent decades. We find that the numbers of individuals and species for shrub and small tree have increased since 1978, whereas the numbers of individuals and species for tree have decreased over this same time period. The shift in species composition is accompanied by a decrease in the mean diameter at breast height (DBH) for all individuals combined. China's TEBF may thereby be transitioning from cohorts of fewer and larger individuals to ones of more and smaller individuals, which shows a unique change pattern differing from the documented. Regional‐scale drying is likely responsible for the biome's reorganization. This biome‐wide reconstitution would deeply impact the regimes of carbon sequestration and biodiversity conservation and have implications for the sustainability of economic development in the area.  相似文献   

6.
 NEWCOP模型是一个新的适于模拟东北森林的种类组成动态的林窗类计算机模拟模型,它通过模拟在每一个林分斑块上的每株树木的更新、生长和死亡的全过程来反映森林群落的中长期生长和演替动态。由于 NEWCOP模型是一个由气候变量驱动的生态系统模型,故可用于评价气候变化对东北森林生长和演替的影响。在东北大兴安岭、小兴安岭和长白山地区对NEWCOP模型进行了验证和校准。沿环境梯度对NEWCOP模型的数字模拟实验表明:它能准确地再现顶极森林中树种组成及其在东北地区的垂直分布规律和水平分布规律;能准确地再现大兴安岭、小兴安岭和长白山的主要类型森林的生长和演替规律;在一定的场合NEWCOP还可反映林分的径级结构;NEWCOP模型还具有对现有森林的跟踪模拟能力。应用NEWCOP模型评估了东北森林生态系统对可能气候变化的敏感性。在GFDL 2×CO2和GISS 2×CO2气候变化情景下,东北森林的种类组成将发生很大变化,落叶阔叶树将取代目前长白山、小兴安岭的红松(Pinus koraiensis)和大兴安岭的兴安落叶松(Larix gmelinii)成为东北森林主要树种,而针叶树将在地带性森林中占很小的比重,阔叶树中蒙古栎(Quercus mongolica)将是最重要的树种,它将成为小兴安岭和大兴安岭最主要树种;东北地区适于森林生长的区域将大幅度减少,这些变化主要发生在气候变化过渡期。东北森林对不同的气候变化情景有不同响应。但是,总的趋势是未来东北森林中落叶阔叶树的比重将大幅度增加。这些结论对在全球气候变化背景下,我国东北合理地选择造林树种和制定现有森林的保护经营策略具有一定参考价值。  相似文献   

7.
The role of tree mortality in the global carbon balance is complicated by strong spatial and temporal heterogeneity that arises from the stochastic nature of carbon loss through disturbance. Characterizing spatio‐temporal variation in mortality (including disturbance) and its effects on forest and carbon dynamics is thus essential to understanding the current global forest carbon sink, and to predicting how it will change in future. We analyzed forest inventory data from the eastern United States to estimate plot‐level variation in mortality (relative to a long‐term background rate for individual trees) for nine distinct forest regions. Disturbances that produced at least a fourfold increase in tree mortality over an approximately 5 year interval were observed in 1–5% of plots in each forest region. The frequency of disturbance was lowest in the northeast, and increased southwards along the Atlantic and Gulf coasts as fire and hurricane disturbances became progressively more common. Across the central and northern parts of the region, natural disturbances appeared to reflect a diffuse combination of wind, insects, disease, and ice storms. By linking estimated covariation in tree growth and mortality over time with a data‐constrained forest dynamics model, we simulated the implications of stochastic variation in mortality for long‐term aboveground biomass changes across the eastern United States. A geographic gradient in disturbance frequency induced notable differences in biomass dynamics between the least‐ and most‐disturbed regions, with variation in mortality causing the latter to undergo considerably stronger fluctuations in aboveground stand biomass over time. Moreover, regional simulations showed that a given long‐term increase in mean mortality rates would support greater aboveground biomass when expressed through disturbance effects compared with background mortality, particularly for early‐successional species. The effects of increased tree mortality on carbon stocks and forest composition may thus depend partly on whether future mortality increases are chronic or episodic in nature.  相似文献   

8.
In the coming century, forecast climate changes caused by increasing greenhouse gases may produce dramatic shifts in tree species distributions and the rates at which individual tree species sequester carbon or release carbon back to the atmosphere. The species composition and carbon storage capacity of northern Wisconsin (USA) forests are expected to change significantly as a result. Projected temperature changes are relatively large (up to a 5.8°C increase in mean annual temperature) and these forests encompass a broad ecotone that may be particularly sensitive to climate change. Our objective was to estimate the combined effects of climate change, common disturbances, and species migrations on regional forests using spatially interactive simulations. Multiple scenarios were simulated for 200 years to estimate aboveground live biomass and tree species composition. We used a spatially interactive forest landscape model (LANDIS‐II) that includes individual tree species, biomass accumulation and decomposition, windthrow, harvesting, and seed dispersal. We used data from two global circulation models, the Hadley Climate Centre (version 2) and the Canadian Climate Center (version 1) to generate transient growth and decomposition parameters for 23 species. The two climate change scenarios were compared with a control scenario of continuing current climate conditions. The results demonstrate how important spatially interactive processes will affect the aboveground live biomass and species composition of northern Wisconsin forests. Forest composition, including species richness, is strongly affected by harvesting, windthrow, and climate change, although five northern species (Abies balsamea, Betula papyrifera, Picea glauca, Pinus banksiana, P. resinosa) are lost in both climate scenarios regardless of disturbance scenario. Changes in aboveground live biomass over time are nonlinear and vary among ecoregions. Aboveground live biomass will be significantly reduced because of species dispersal and migration limitations. The expected shift towards southern oaks and hickory is delayed because of seed dispersal limitations.  相似文献   

9.
Leaching losses of nitrate from forests can have potentially serious consequences for soils and receiving waters. In this study, based on extensive sampling of forested watersheds in the Catskill Mountains of New York State, we examine the relationships among stream chemistry, the properties of the forest floor, and the tree species composition of watersheds. We report the first evidence from North America that nitrate export from forested watersheds is strongly influenced by the carbon:nitrogen (C:N) ratio of the watershed soils. We also show that variation in soil C:N ratio is associated with variation in tree species composition. This implies that N retention and release in forested watersheds is regulated at least in part by tree species composition and that changes in species composition caused by introduced pests, climate change, or forest management could affect the capacity of a forest ecosystem to retain atmospherically deposited N. Received 4 March 2002; Accepted 4 June 2002.  相似文献   

10.
Tropical forest responses to climatic variability have important consequences for global carbon cycling, but are poorly understood. As empirical, correlative studies cannot disentangle the interactive effects of climatic variables on tree growth, we used a tree growth model (IBTREE) to unravel the climate effects on different physiological pathways and in turn on stem growth variation. We parameterized the model for canopy trees of Toona ciliata (Meliaceae) from a Thai monsoon forest and compared predicted and measured variation from a tree‐ring study over a 30‐year period. We used historical climatic variation of minimum and maximum day temperature, precipitation and carbon dioxide (CO2) in different combinations to estimate the contribution of each climate factor in explaining the inter‐annual variation in stem growth. Running the model with only variation in maximum temperature and rainfall yielded stem growth patterns that explained almost 70% of the observed inter‐annual variation in stem growth. Our results show that maximum temperature had a strong negative effect on the stem growth by increasing respiration, reducing stomatal conductance and thus mitigating a higher transpiration demand, and – to a lesser extent – by directly reducing photosynthesis. Although stem growth was rather weakly sensitive to rain, stem growth variation responded strongly and positively to rainfall variation owing to the strong inter‐annual fluctuations in rainfall. Minimum temperature and atmospheric CO2 concentration did not significantly contribute to explaining the inter‐annual variation in stem growth. Our innovative approach – combining a simulation model with historical data on tree‐ring growth and climate – allowed disentangling the effects of strongly correlated climate variables on growth through different physiological pathways. Similar studies on different species and in different forest types are needed to further improve our understanding of the sensitivity of tropical tree growth to climatic variability and change.  相似文献   

11.
Tropical forests play a critical role in carbon and water cycles at a global scale. Rapid climate change is anticipated in tropical regions over the coming decades and, under a warmer and drier climate, tropical forests are likely to be net sources of carbon rather than sinks. However, our understanding of tropical forest response and feedback to climate change is very limited. Efforts to model climate change impacts on carbon fluxes in tropical forests have not reached a consensus. Here, we use the Ecosystem Demography model (ED2) to predict carbon fluxes of a Puerto Rican tropical forest under realistic climate change scenarios. We parameterized ED2 with species‐specific tree physiological data using the Predictive Ecosystem Analyzer workflow and projected the fate of this ecosystem under five future climate scenarios. The model successfully captured interannual variability in the dynamics of this tropical forest. Model predictions closely followed observed values across a wide range of metrics including aboveground biomass, tree diameter growth, tree size class distributions, and leaf area index. Under a future warming and drying climate scenario, the model predicted reductions in carbon storage and tree growth, together with large shifts in forest community composition and structure. Such rapid changes in climate led the forest to transition from a sink to a source of carbon. Growth respiration and root allocation parameters were responsible for the highest fraction of predictive uncertainty in modeled biomass, highlighting the need to target these processes in future data collection. Our study is the first effort to rely on Bayesian model calibration and synthesis to elucidate the key physiological parameters that drive uncertainty in tropical forests responses to climatic change. We propose a new path forward for model‐data synthesis that can substantially reduce uncertainty in our ability to model tropical forest responses to future climate.  相似文献   

12.
Recent studies have suggested that tropical forests may not be resilient against climate change in the long term, primarily owing to predicted reductions in rainfall and forest productivity, increased tree mortality, and declining forest biomass carbon sinks. These changes will be caused by drought‐induced water stress and ecosystem disturbances. Several recent studies have reported that climate change has increased tree mortality in temperate and boreal forests, or both mortality and recruitment rates in tropical forests. However, no study has yet examined these changes in the subtropical forests that account for the majority of China's forested land. In this study, we describe how the monsoon evergreen broad‐leaved forest has responded to global warming and drought stress using 32 years of data from forest observation plots. Due to an imbalance in mortality and recruitment, and changes in diameter growth rates between larger and smaller trees and among different functional groups, the average DBH of trees and forest biomass have decreased. Sap flow measurements also showed that larger trees were more stressed than smaller trees by the warming and drying environment. As a result, the monsoon evergreen broad‐leaved forest community is undergoing a transition from a forest dominated by a cohort of fewer and larger individuals to a forest dominated by a cohort of more and smaller individuals, with a different species composition, suggesting that subtropical forests are threatened by their lack of resilience against long‐term climate change.  相似文献   

13.
Ongoing climate change poses significant threats to plant function and distribution. Increased temperatures and altered precipitation regimes amplify drought frequency and intensity, elevating plant stress and mortality. Large‐scale forest mortality events will have far‐reaching impacts on carbon and hydrological cycling, biodiversity, and ecosystem services. However, biogeographical theory and global vegetation models poorly represent recent forest die‐off patterns. Furthermore, as trees are sessile and long‐lived, their responses to climate extremes are substantially dependent on historical factors. We show that periods of favourable climatic and management conditions that facilitate abundant tree growth can lead to structural overshoot of aboveground tree biomass due to a subsequent temporal mismatch between water demand and availability. When environmental favourability declines, increases in water and temperature stress that are protracted, rapid, or both, drive a gradient of tree structural responses that can modify forest self‐thinning relationships. Responses ranging from premature leaf senescence and partial canopy dieback to whole‐tree mortality reduce canopy leaf area during the stress period and for a lagged recovery window thereafter. Such temporal mismatches of water requirements from availability can occur at local to regional scales throughout a species geographical range. As climate change projections predict large future fluctuations in both wet and dry conditions, we expect forests to become increasingly structurally mismatched to water availability and thus overbuilt during more stressful episodes. By accounting for the historical context of biomass development, our approach can explain previously problematic aspects of large‐scale forest mortality, such as why it can occur throughout the range of a species and yet still be locally highly variable, and why some events seem readily attributable to an ongoing drought while others do not. This refined understanding can facilitate better projections of structural overshoot responses, enabling improved prediction of changes in forest distribution and function from regional to global scales.  相似文献   

14.
Forest mortality constitutes a major uncertainty in projections of climate impacts on terrestrial ecosystems and carbon‐cycle feedbacks. Recent drought‐induced, widespread forest die‐offs highlight that climate change could accelerate forest mortality with its diverse and potentially severe consequences for the global carbon cycle, ecosystem services, and biodiversity. How trees die during drought over multiple years remains largely unknown and precludes mechanistic modeling and prediction of forest die‐off with climate change. Here, we examine the physiological basis of a recent multiyear widespread die‐off of trembling aspen (Populus tremuloides) across much of western North America. Using observations from both native trees while they are dying and a rainfall exclusion experiment on mature trees, we measure hydraulic performance over multiple seasons and years and assess pathways of accumulated hydraulic damage. We test whether accumulated hydraulic damage can predict the probability of tree survival over 2 years. We find that hydraulic damage persisted and increased in dying trees over multiple years and exhibited few signs of repair. This accumulated hydraulic deterioration is largely mediated by increased vulnerability to cavitation, a process known as cavitation fatigue. Furthermore, this hydraulic damage predicts the probability of interyear stem mortality. Contrary to the expectation that surviving trees have weathered severe drought, the hydraulic deterioration demonstrated here reveals that surviving regions of these forests are actually more vulnerable to future droughts due to accumulated xylem damage. As the most widespread tree species in North America, increasing vulnerability to drought in these forests has important ramifications for ecosystem stability, biodiversity, and ecosystem carbon balance. Our results provide a foundation for incorporating accumulated drought impacts into climate–vegetation models. Finally, our findings highlight the critical role of drought stress accumulation and repair of stress‐induced damage for avoiding plant mortality, presenting a dynamic and contingent framework for drought impacts on forest ecosystems.  相似文献   

15.
Tropical forests are paramount in regulating the global carbon cycle due to the storage of large amounts of carbon in their biomass. Using repeat censuses of permanent plots located at 15 sites in the Andes Mountains of northwest Colombia, we evaluate: (1) the relationship between aboveground biomass (AGB) stocks, AGB dynamics (mortality, productivity, and net change), and changes in temperature across a ca. 3000-m elevational gradient (≈?16.1 °C); (2) how AGB mortality and AGB productivity interact to determine net AGB change; and (3) the extent to which either fine-grain (0.04-ha) or coarse-grain (1-ha) processes determine the AGB dynamics of these forests. We did not find a significant relationship between elevation/temperature and biomass stocks. The net AGB sequestered each year by these forests (2.21?±?0.51 Mg ha?1 year?1), equivalent to approximately 1.09% of initial AGB, was primarily determined by tree growth. Both forest structural properties and global warming influenced AGB mortality and net change. AGB productivity increases with greater inequality of tree sizes, a pattern characteristic of forest patches recovering from disturbances. Overall, we find that global warming is triggering directional changes in species composition by thermophilization via increased tree mortality of species in the lower portions of their thermal ranges and that the inclusion of small-scale forest structural changes can effectively account for endogenous processes such as changes in forest structure. The inclusion of fine-grain processes in assessments of AGB dynamics could provide additional insights about the effects that ongoing climate change has on the functioning of tropical montane forests.  相似文献   

16.
While forest communities are changing as a result of global environmental change, the impacts of tree species shifts on ecosystem services such as carbon storage are poorly quantified. In many parts of the eastern United States (US), more xeric-adapted oak-hickory dominated stands are being replaced with mesic beech-maple assemblages. To examine the possible impacts of this ongoing change in forest composition, we investigated how two wide-ranging and co-occurring eastern US species – Acer saccharum (sugar maple) and Quercus alba (white oak) – respond to interannual climate variability. Using 781 tree cores from 418 individual trees at 18 locations, we found late-growing season drought reduced A. saccharum growth more than that of Q. alba. A gradient in the growth reduction across latitude was also found in A. saccharum, where southern populations of A. saccharum experienced greater reductions in growth during drought. Drought had a legacy effect on growth for both species, with drought occurring later in the growing season having a larger legacy effect. Consequently, as forests shift from oak to maple dominance, drought in the later part of the growing season is likely to become an increasingly important control on forest productivity. Thus, our findings suggest that co-occurring species are responding to environmental conditions during different times in the growing season and, therefore, the timing of drought conditions will play an important role in forest productivity and carbon sequestration as forest species composition changes. These findings are particularly important because the projected increases in potential evapotranspiration, combined with possible changes in the seasonality of precipitation could have a substantial impact on how tree growth responds to future climatic change.  相似文献   

17.
Although it is widely predicted that the geographic distributions of tree species and forest types will undergo substantial shifts in future, modelling approaches used to date are largely unable to project the pace at which forest distributions will respond to environmental change. The expansion and contraction of forest distributions act against considerable demographic inertia in the present composition and size‐structure of forest stands as climate‐induced changes in growth, mortality, and recruitment alter population dynamics through time. We aimed to better understand how shifts in forest distributions reflect long‐term changes in tree demographic rates and population dynamics, and how such shifts are influenced by 1) disturbance from forest harvesting and 2) local environmental heterogeneity. Using a simple, data‐constrained gap model, we simulated regional forest dynamics in the eastern United States over the next 500 yr. We then compared the geographic distributions of five different forest types through time under present and altered climatic conditions, in scenarios that variously included and excluded forest harvesting and environmental heterogeneity. Although we held climate fixed after 100 yr, it took another 160 yr after this for these forest types to collectively experience 90% of their eventual climate‐related distribution gains and losses. Competition strongly affected the nature of responses to climate change. Harvesting accelerated and amplified gains by an early‐successional forest type at the expense of a late‐successional one, but these gains did not occur faster than those for other forest types. Environmental heterogeneity had little effect on distribution gains or losses through time. These findings indicate that forest distributions should respond quite slowly to climate change, with the leading and trailing edges of different forest types shifting over a span of centuries. Disturbances can expedite some transitions, but are unlikely to lead to wholesale changes in forest types in the coming decades.  相似文献   

18.
Separating the effects of environmental factors and spatial distance on microbial composition is difficult when these factors covary. We examined the composition of ectomycorrhizal (EM) fungi along elevation gradients on geographically distant mountains to clarify the effect of climate at the regional scale. Soil cores were collected from various forest types along an elevation gradient in southwestern Japan. Fungal species were identified by the internal transcribed spacer regions of the rDNA using direct sequencing. The occurrence of fungal species in this study was compared with a previous study conducted on a mountain separated by ∼550 km. In total, we recorded 454 EM fungi from 330 of 350 soil cores. Forty-seven fungal species (∼20% of the total excluding singletons) were shared between two mountains, mostly between similar forest types on both mountains. Variation partitioning in redundancy analysis revealed that climate explained the largest variance in EM fungal composition. The similarity of forest tree composition, which is usually determined by climatic conditions, was positively correlated with the similarity of the EM fungal composition. However, the lack of large host effects implied that communities of forest trees and EM fungi may be determined independently by climate. Our data provide important insights that host plants and mutualistic fungi may respond to climate change idiosyncratically, potentially altering carbon and nutrient cycles in relation to the plant–fungus associations.  相似文献   

19.
Bioenergy from forest residues can be used to avoid fossil carbon emissions, but removing biomass from forests reduces carbon stock sizes and carbon input to litter and soil. The magnitude and longevity of these carbon stock changes determine how effective measures to utilize bioenergy from forest residues are to reduce greenhouse gas (GHG) emissions from the energy sector and to mitigate climate change. In this study, we estimate the variability of GHG emissions and consequent climate impacts resulting from producing bioenergy from stumps, branches and residual biomass of forest thinning operations in Finland, and the contribution of the variability in key factors, i.e. forest residue diameter, tree species, geographical location of the forest biomass removal site and harvesting method, to the emissions and their climate impact. The GHG emissions and the consequent climate impacts estimated as changes in radiative forcing were comparable to fossil fuels when bioenergy production from forest residues was initiated. The emissions and climate impacts decreased over time because forest residues were predicted to decompose releasing CO2 even if left in the forest. Both were mainly affected by forest residue diameter and climatic conditions of the forest residue collection site. Tree species and the harvest method of thinning wood (whole tree or stem‐only) had a smaller effect on the magnitude of emissions. The largest reduction in the energy production climate impacts after 20 years, up to 62%, was achieved when coal was replaced by the branches collected from Southern Finland, whereas the smallest reduction 7% was gained by using stumps from Northern Finland instead of natural gas. After 100 years the corresponding values were 77% and 21%. The choice of forest residue biomass collected affects significantly the emissions and climate impacts of forest bioenergy.  相似文献   

20.
Question: What is the effect of climate change on tree species abundance and distribution in the Italian peninsula? Location: Italian peninsula. Methods: Regression tree analysis, Random Forest, generalized additive model and geostatistical methods were compared to identify the best model for quantifying the effect of climate change on tree species distribution and abundance. Future potential species distribution, richness, local colonization, local extinction and species turnover were modelled according to two scenarios (A2 and B1) for 2050 and 2080. Results: Robust Random Forest proved to be the best statistical model to predict the potential distribution of tree species abundance. Climate change could lead to a shift in tree species distribution towards higher altitudes and a reduction of forest cover. Pinus sylvestris and Tilia cordata may be considered at risk of local extinction, while the other species could find potential suitable areas at the cost of a rearrangement of forest community composition and increasing competition. Conclusions: Geographical and topographical regional characteristics can have a noticeable influence on the impact of predicted climate change on forest ecosystems within the Mediterranean basin. It would be highly beneficial to create a standardized and harmonized European forest inventory in order to evaluate, at high resolution, the effect of climate change on forest ecosystems, identify regional differences and develop specific adaptive management strategies and plans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号