首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The physiological significance of cardiac mitochondrial uncoupling protein 2 (UCP2)-mediated uncoupling respiration in exercise is unknown. In the current study, mitochondrial respiratory function, UCP2 mRNA level, UCP2-mediated respiration (UCR), and reactive oxygen species (ROS) generation, as well as manganese superoxide dismutase (MnSOD) activity were determined in rat heart with or without endurance training after an acute bout of exercise of different duration. In the untrained rats, state 4 respiration and UCR-independent respiration rates were progressively increased with exercise time and were 64 and 70% higher, respectively, than resting rate at 150 min, whereas UCR was elevated by 86% with no significant change in state 3 respiration. UCP2 mRNA level showed a 5- and 4-fold increase, respectively, after 45 and 90 min of exercise, but returned to resting level at 120 and 150 min. Mitochondrial ROS production and membrane potential (Deltapsi) increased progressively until 120 min, followed by a decrease to the resting level at 150 min. MnSOD mRNA abundance showed a 2-fold increase at 120 min but MnSOD activity did not change with exercise. Training significantly increased mitochondrial ATP synthetase activity, ADP to oxygen consumption (P/O) ratio, respiratory control ratio, and MnSOD activity, whereas exercise-induced state 4 respiration, UCR, ROS production, and Deltapsi were attenuated in the trained rats. We conclude that (1) UCP2 mRNA expression and activity in rat heart can be upregulated during prolonged exercise, which may reduce cross-membrane Deltapsi and thus ROS production; and (2) endurance training can blunt exercise-induced UCP2 and UCR, and improve mitochondrial efficiency of oxidative phosphorylation due to increased removal of ROS.  相似文献   

2.
Modulation of oxidative stress in cancer cells plays an important role in the study of the resistance to anticancer therapies. Uncoupling protein 2 (UCP2) may play a dual role in cancer, acting as a protective mechanism in normal cells, while its overexpression in cancer cells could confer resistance to chemotherapy and a higher survival through downregulation of ROS production. Thus, our aim was to check whether the inhibition of UCP2 expression and function increases oxidative stress and could render breast cancer cells more sensitive to cisplatin (CDDP) or tamoxifen (TAM). For this purpose, we studied clonogenicity, mitochondrial membrane potential (ΔΨm), cell viability, ROS production, apoptosis, and autophagy in MCF-7 and T47D (only the last four determinations) breast cancer cells treated with CDDP or TAM, in combination or without a UCP2 knockdown (siRNA or genipin). Furthermore, survival curves were performed in order to check the impact of UCP2 expression in breast cancer patients. UCP2 inhibition and cytotoxic treatments produced a decrease in cell viability and clonogenicity, in addition to an increase in ΔΨm, ROS production, apoptosis, and autophagy. It is important to note that CDDP decreased UCP2 protein levels, so that the greatest effects produced by the UCP2 inhibition in combination with a cytotoxic treatment, with regard to treatment alone, were observed in TAM+UCP2siRNA-treated cells. Moreover, this UCP2 inhibition caused autophagic cell death, since apoptosis parameters barely increased after UCP2 knockdown. Finally, survival curves revealed that higher UCP2 expression corresponded with a poorer prognosis. In conclusion, UCP2 could be a therapeutic target in breast cancer, especially in those patients treated with tamoxifen.  相似文献   

3.
Mitochondria represent a major source of reactive oxygen species (ROS), particularly during resting or state 4 respiration wherein ATP is not generated. One proposed role for respiratory mitochondrial uncoupling proteins (UCPs) is to decrease mitochondrial membrane potential and thereby protect cells from damage due to ROS. This work was designed to examine superoxide production during state 4 (no ATP production) and state 3 (active ATP synthesis) respiration and to determine whether uncoupling reduced the specific production of this radical species, whether this occurred in endothelial mitochondria per se, and whether this could be modulated by UCPs. Superoxide formation by isolated bovine aortic endothelial cell (BAE) mitochondria, determined using electron paramagnetic resonance spectroscopy, was approximately fourfold greater during state 4 compared with state 3 respiration. UCP1 and UCP2 overexpression both increased the proton conductance of endothelial cell mitochondria, as rigorously determined by the kinetic relationship of respiration to inner membrane potential. However, despite uncoupling, neither UCP1 nor UCP2 altered superoxide formation. Antimycin, known to increase mitochondrial superoxide, was studied as a positive control and markedly enhanced the superoxide spin adduct in our mitochondrial preparations, whereas the signal was markedly impaired by the powerful chemical uncoupler p-(trifluoromethoxyl)-phenyl-hydrazone. In summary, we show that UCPs do have uncoupling properties when expressed in BAE mitochondria but that uncoupling by UCP1 or UCP2 does not prevent acute substrate-driven endothelial cell superoxide as effluxed from mitochondria respiring in vitro.  相似文献   

4.
Genipin, a compound derived from Gardenis jasminoides Ellis fruits, was demonstrated to be the specific uncoupling protein 2 (UCP2) inhibitor. UCP2 is a mitochondrial carrier protein that creates proton leaks across the inner mitochondrial membrane, thus uncoupling oxidative phosphorylation from adenosine triphosphate (ATP) synthesis. Several studies revealed that UCP2 is broadly over-expressed in leukemia, colorectal, lung, ovarian, prostate, testicular, and bladder cancers. However, the effect of genipin still needs to be elucidated in neurological malignancies. In this study, we investigated the anticancer effect of genipin in U87MG and A172 cell lines. The anticancer effect of genipin on these cell lines was measured by microculture tetrazoliumtest (MTT), Trypan blue exclusion, and colony formation assays, in the presence of various concentrations of genipin at different time intervals. We assessed apoptosis and measure intracellular reactive oxygen species (ROS) by flow cytometry. Expression of UCP2 and some of the genes involved in apoptosis was analyzed by real-time quantitative polymerase chain reaction (PCR). Results of the MTT assay showed that genipin moderately reduced metabolic activity of both cell lines in dose- and time-dependent manner. Result of Trypan blue exclusion test indicated that the viable cell count decreased in the treated group in a concentration-dependent manner. Genipin also significantly decreased colony formation ability of these cells in a concentration-dependent manner. Result of morphological changes showed that there were significant differences in cell number and morphology in treated groups as compared with the untreated groups. Flow cytometric analysis of U87MG and A172 cells with annexin V/propidium iodide staining, 48 hours after treatment with genipin, displays 22.4% and 26.1% apoptotic population, respectively, in treated cells, in comparison to 7.42% and 9.31% apoptotic cells of untreated cells. After treatment, UCP2 and B-cell lymphoma 2 (BCL 2) genes are downregulated, and BCL 2 associated X protein, BCL 2 antagonist/killer, BCL 2 interacting killer, and Cytochrome c genes are upregulated. Genipin treatment increased mitochondrial ROS levels and also induced apoptosis through caspase-3 upregulation. In conclusion, the antiproliferative effects of genipin on the growth of both glioblastoma cell lines have been shown in all of these assays, and genipin profoundly induced apoptosis in both cell lines via the UCP2-related mitochondrial pathway through the induction of intracellular ROS.  相似文献   

5.
Cancer cells exhibit an endogenous constitutive oxidative stress higher than that of normal cells, which renders tumours vulnerable to further reactive oxygen species (ROS) production. Mitochondrial uncoupling protein 2 (UCP2) can mitigate oxidative stress by increasing the influx of protons into the mitochondrial matrix and reducing electron leakage and mitochondrial superoxide generation. Here, we demonstrate that chemical uncouplers or UCP2 over-expression strongly decrease mitochondrial superoxide induction by the anticancer drug gemcitabine (GEM) and protect cancer cells from GEM-induced apoptosis. Moreover, we show that GEM IC(50) values well correlate with the endogenous level of UCP2 mRNA, suggesting a critical role for mitochondrial uncoupling in GEM resistance. Interestingly, GEM treatment stimulates UCP2 mRNA expression suggesting that mitochondrial uncoupling could have a role also in the acquired resistance to GEM. Conversely, UCP2 inhibition by genipin or UCP2 mRNA silencing strongly enhances GEM-induced mitochondrial superoxide generation and apoptosis, synergistically inhibiting cancer cell proliferation. These events are significantly reduced by the addition of the radical scavenger N-acetyl-l-cysteine or MnSOD over-expression, demonstrating a critical role of the oxidative stress. Normal primary fibroblasts are much less sensitive to GEM/genipin combination. Our results demonstrate for the first time that UCP2 has a role in cancer cell resistance to GEM supporting the development of an anti-cancer therapy based on UCP2 inhibition associated to GEM treatment.  相似文献   

6.
Uncoupling protein 2 (UCP2) was reported to be involved in insulin-glucose homeostasis, based on well established event that inhibition of UCP2 stimulates insulin secretion in pancreatic β-cells. However, the role of UCP2 on insulin-stimulated glucose uptake in adipose tissue, which is an indispensable process in insulin-glucose homeostasis, remains unknown. In this study, UCP2 was inhibited by genipin in 3T3-L1 adipocytes, which increased mitochondrial membrane potential, intracellular ATP level and production of reactive oxygen species (ROS). Importantly, insulin-stimulated glucose uptake in 3T3-L1 adipocytes was largely impaired in the presence of genipin, and recovered by CCCP, a mitochondrial uncoupler. Furthermore, genipin leaded to suppression of insulin signal transduction through hyperactivation of c-Jun N-terminal kinase (JNK) and subsequent serine phosphorylation of insulin receptor substrate-1 (IRS-1). These results suggest that mitochondrial uncoupling in adipocytes positively regulates insulin-stimulated glucose uptake in adipocytes, and UCP2 may play an important role in insulin resistance.  相似文献   

7.
Reactive oxygen species (ROS), natural by-products of aerobic respiration, are important cell signaling molecules, which left unchecked can severely impair cellular functions and induce cell death. Hence, cells have developed a series of systems to keep ROS in the nontoxic range. Uncoupling proteins (UCPs) 1-3 are mitochondrial anion carrier proteins that are purported to play important roles in minimizing ROS emission from the electron transport chain. The function of UCP1 in this regard is highly contentious. However, UCPs 2 and 3 are generally thought to be activated by ROS or ROS by-products to induce proton leak, thus providing a negative feedback loop for mitochondrial ROS production. In our laboratory, we have not only confirmed that ROS activate UCP2 and UCP3, but also demonstrated that UCP2 and UCP3 are controlled by covalent modification by glutathione. Furthermore, the reversible glutathionylation is required to activate/inhibit UCP2 and UCP3, but not UCP1. Hence, our findings are consistent with the notion that UCPs 2 and 3 are acutely activated by ROS, which then directly modulate the glutathionylation status of the UCP to decrease ROS emission and participate in cell signaling mechanisms.  相似文献   

8.
Oxidative stress and mitochondrial dysfunction are associated with disease and aging. Oxidative stress results from overproduction of reactive oxygen species (ROS), often leading to peroxidation of membrane phospholipids and production of reactive aldehydes, particularly 4-hydroxy-2-nonenal. Mild uncoupling of oxidative phosphorylation protects by decreasing mitochondrial ROS production. We find that hydroxynonenal and structurally related compounds (such as trans-retinoic acid, trans-retinal and other 2-alkenals) specifically induce uncoupling of mitochondria through the uncoupling proteins UCP1, UCP2 and UCP3 and the adenine nucleotide translocase (ANT). Hydroxynonenal-induced uncoupling was inhibited by potent inhibitors of ANT (carboxyatractylate and bongkrekate) and UCP (GDP). The GDP-sensitive proton conductance induced by hydroxynonenal correlated with tissue expression of UCPs, appeared in yeast mitochondria expressing UCP1 and was absent in skeletal muscle mitochondria from UCP3 knockout mice. The carboxyatractylate-sensitive hydroxynonenal stimulation correlated with ANT content in mitochondria from Drosophila melanogaster expressing different amounts of ANT. Our findings indicate that hydroxynonenal is not merely toxic, but may be a biological signal to induce uncoupling through UCPs and ANT and thus decrease mitochondrial ROS production.  相似文献   

9.
W G Harker  D L Slade  F H Drake  R L Parr 《Biochemistry》1991,30(41):9953-9961
Mitoxantrone-resistant variants of the human HL-60 leukemia cell line are cross-resistant to several natural product and synthetic antineoplastic agents. The resistant cells (HL-60/MX2) retain sensitivity to the Vinca alkaloids vincristine and vinblastine, drugs that are typically associated with the classical multidrug resistance phenotype. Mitoxantrone accumulation and retention are equivalent in the sensitive and resistant cell types, suggesting that mitoxantrone resistance in HL-60/MX2 cells might be associated with an alteration in the type II DNA topoisomerases. We discovered that topoisomerase II catalytic activity in 1.0 M NaCl nuclear extracts from the HL-60/MX2 variant, as measured by the decatenation of Crithidia fasciculata kinetoplast DNA, was reduced 4- to 5-fold compared to that in the parental HL-60 cells. Total cellular topoisomerase II activity in HL-60/MX2 cells was only 50% lower than that in HL-60 cells, however, because the "cytosolic fraction" of the HL-60/MX2 nuclear preparation contained high levels of decatenating activity. Antisera to calf thymus topoisomerase II defined a distinctive immunoreactive pattern of topoisomerase II proteins in crude nuclear extracts from the HL-60/MX2 cells. Both alpha (170 kDa) and beta (180 kDa) forms of topoisomerase II were detected in the HL-60 cell extracts, but only the alpha form was detected in extracts from HL-60/MX2 cells. This finding was associated with the appearance of a new 160-kDa immunoreactive species in nuclear extracts from HL-60/MX2 but not HL-60 cells. Studies were designed to minimize the proteolytic degradation of the topoisomerase II enzymes by extraction of whole cells with hot SDS.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
An increase in the cytoplasmic-free Ca(2+) concentration mediates cellular responses to environmental signals that influence a range of processes, including gene expression, motility, secretion of hormones and neurotransmitters, changes in energy metabolism, and apoptosis. Mitochondria play important roles in cellular Ca(2+) homeostasis and signaling, but the roles of specific mitochondrial proteins in these processes are unknown. Uncoupling proteins (UCPs) are a family of proteins located in the inner mitochondrial membrane that can dissociate oxidative phosphorylation from respiration, thereby promoting heat production and decreasing oxyradical production. Here we show that UCP4, a neuronal UCP, influences store-operated Ca(2+) entry, a process in which depletion of endoplasmic reticulum Ca(2+) stores triggers Ca(2+) influx through plasma membrane "store-operated" channels. PC12 neural cells expressing human UCP4 exhibit reduced Ca(2+) entry in response to thapsigargin-induced endoplasmic reticulum Ca(2+) store depletion. The elevations of cytoplasmic and intramitochondrial Ca(2+) concentrations and mitochondrial oxidative stress induced by thapsigargin were attenuated in cells expressing UCP4. The stabilization of Ca(2+) homeostasis and preservation of mitochondrial function by UCP4 was correlated with reduced mitochondrial reactive oxygen species generation, oxidative stress, and Gadd153 up-regulation and increased resistance of the cells to death. Reduced Ca(2+)-dependent cytosolic phospholipase A2 activation and oxidative metabolism of arachidonic acid also contributed to the stabilization of mitochondrial function in cells expressing human UCP4. These findings demonstrate that UCP4 can regulate cellular Ca(2+) homeostasis, suggesting that UCPs may play roles in modulating Ca(2+) signaling in physiological and pathological conditions.  相似文献   

11.
Uncoupling protein-3 (UCP3) expression has been shown to increase dramatically in response to muscular contraction, but the physiological significance of UCP3 upregulation is still elusive. In this study, UCP3 mRNA and protein expression were investigated along with mitochondrial respiratory function, reactive oxygen species (ROS) generation, and antioxidant defense in rat skeletal muscle during and after an acute bout of prolonged exercise. UCP3 mRNA expression was elevated sharply at 45 min of exercise, reaching 7- to 8-fold above resting level at 150 min. The increase in UCP3 protein content showed a latent response but was elevated approximately 1.9-fold at 120 min of exercise. Both UCP3 mRNA and UCP3 protein gradually returned to resting levels 24 h postexercise. Mitochondrial ROS production was progressively increased during exercise. However, ROS showed a dramatic drop at 150 min although their levels remained severalfold higher during the recovery. Mitochondrial State 4 respiration rate was increased by 46 and 58% (p < 0.05) at 90 and 120 min, respectively, but returned to resting rate at 150 min, when State 3 respiration and respiratory control index (RCI) were suppressed. ADP-to-oxygen consumption (P/O) ratio and ATP synthase activity were lowered at 3 h postexercise, whereas proton motive force and mitochondrial malondialdehyde content were unchanged. Manganese superoxide dismutase gene expression was not affected by exercise except for an increase in mRNA abundance at 3 h postexercise. These data demonstrate that UCP3 expression in rat skeletal muscle can be rapidly upregulated during prolonged exercise, possibly owing to increased ROS generation. Increased UCP3 may partially alleviate the proton gradient across the inner membrane, thereby reducing further ROS production by the electron transport chain. However, prolonged exercise caused a decrease in energy coupling efficiency in muscle mitochondria revealed by an increased respiration rate due to proton leak (State 4/State 3 ratio) and decreased RCI. We thus propose that the compromise of the oxidative phosphorylation efficiency due to UCP3 upregulation may serve an antioxidant function to protect the muscle mitochondria from exercise-induced oxidative stress  相似文献   

12.
Uncoupling protein 2 (UCP2) negatively regulates insulin secretion. UCP2 deficiency (by means of gene knockout) improves obesity- and high glucose-induced β cell dysfunction and consequently improves type 2 diabetes in mice. In the present study, we have discovered that the small molecule, genipin, rapidly inhibits UCP2-mediated proton leak. In isolated mitochondria, genipin inhibits UCP2-mediated proton leak. In pancreatic islet cells, genipin increases mitochondrial membrane potential, increases ATP levels, closes KATP channels, and stimulates insulin secretion. These actions of genipin occur in a UCP2-dependent manner. Importantly, acute addition of genipin to isolated islets reverses high glucose- and obesity-induced β cell dysfunction. Thus, genipin and/or chemically modified variants of genipin are useful research tools for studying biological processes thought to be controlled by UCP2. In addition, these agents represent lead compounds that comprise a starting point for the development of therapies aimed at treating β cell dysfunction.  相似文献   

13.
Mitochondrial uncoupling reduces reactive oxygen species (ROS) production and appears to be important for cellular signaling/protection, making it a focus for the treatment of metabolic and age-related diseases. Whereas the physiological role of uncoupling protein 1 (UCP1) of brown adipose tissue is established for thermogenesis, the function of UCP1 in the reduction of ROS in cold-exposed animals is currently under debate. Here, we investigated the role of UCP1 in mitochondrial ROS handling in the Lesser hedgehog tenrec (Echinops telfairi), a unique protoendothermic Malagasy mammal with recently identified brown adipose tissue (BAT). We show that the reduction of ROS by UCP1 activity also occurs in BAT mitochondria of the tenrec, suggesting that the antioxidative role of UCP1 is an ancient mammalian trait. Our analysis shows that the quantity of UCP1 displays strong control over mitochondrial hydrogen peroxide release, whereas other factors, such as mild cold, nonshivering thermogenesis, oxidative capacity, and mitochondrial respiration, do not correlate. Furthermore, hydrogen peroxide release from recoupled BAT mitochondria was positively associated with mitochondrial membrane potential. These findings led to a model of UCP1 controlling mitochondrial ROS release and, presumably, being controlled by high membrane potential, as proposed in the canonical model of “mild uncoupling”. Our study further promotes a conserved role for UCP1 in the prevention of oxidative stress, which was presumably established during evolution before UCP1 was physiologically integrated into nonshivering thermogenesis.  相似文献   

14.
The oxidative stress hypothesis of aging predicts that a reduction in the generation of mitochondrial reactive oxygen species (ROS) will decrease oxidative damage and extend life span. Increasing mitochondrial proton leak-dependent state 4 respiration by increasing mitochondrial uncoupling is an intervention postulated to decrease mitochondrial ROS production. When human UCP2 (hUCP2) is targeted to the mitochondria of adult fly neurons, we find an increase in state 4 respiration, a decrease in ROS production, a decrease in oxidative damage, heightened resistance to the free radical generator paraquat, and an extension in life span without compromising fertility or physical activity. Our results demonstrate that neuronal-specific expression of hUCP2 in adult flies decreases cellular oxidative damage and is sufficient to extend life span.  相似文献   

15.
To reside and multiply successfully within the host macrophages, Leishmania parasites impair the generation of reactive oxygen species (ROS), which are a major host defense mechanism against any invading pathogen. Mitochondrial uncoupling proteins are associated with mitochondrial ROS generation, which is the major contributor of total cellular ROS generation. In the present study we have demonstrated that Leishmania donovani infection is associated with strong upregulation of uncoupling protein 2 (UCP2), a negative regulator of mitochondrial ROS generation located at the inner membrane of mitochondria. Functional knockdown of macrophage UCP2 by small interfering RNA-mediated silencing was associated with increased mitochondrial ROS generation, lower parasite survival, and induction of marked proinflammatory cytokine response. Induction of proinflammatory cytokine response in UCP2 knocked-down cells was a direct consequence of p38 and ERK1/2 MAPK activation, which resulted from ROS-mediated inhibition of protein tyrosine phosphatases (PTPs). Administration of ROS quencher, N-acetyl-l-cysteine, abrogated PTP inhibition in UCP2 knocked-down infected cells, implying a role of ROS in inactivating PTP. Short hairpin RNA-mediated in vivo silencing of UCP2 resulted in decreased Src homology 2 domain-containing tyrosine phosphatase 1 and PTP-1B activity and host-protective proinflammatory cytokine response resulting in effective parasite clearance. To our knowledge, this study, for the first time, reveals the induction of host UCP2 expression during Leishmania infection to downregulate mitochondrial ROS generation, thereby possibly preventing ROS-mediated PTP inactivation to suppress macrophage defense mechanisms.  相似文献   

16.
Doxorubicin (Dox) is widely used to treat a variety of tumors. However, resistance to this drug is common, making successful treatment more difficult. Previously, we introduced a novel phytosphingosine derivative, N,N-dimethyl phytosphingosine (DMPS), as a potent anticancer therapeutic agent in human leukemia cells. This study was performed to investigate whether DMPS can sensitize HL-60/MX2, a multidrug-resistant variant of HL-60, to Dox-induced apoptosis. Low concentrations of DMPS sensitized HL-60/MX2 cells to Dox-induced apoptosis. Combined Dox + DMPS treatment-induced apoptosis was accompanied by the activation of caspase-8 and caspase-3 as well as PARP cleavage. Cytochrome c and AIF release were also observed in Dox + DMPS-treated HL60/MX2 cells. Pretreatment with z-VAD-fmk markedly prevented caspase-3 activation and moderately suppressed apoptosis, suggesting that Dox + DMPS-induced apoptosis is somewhat (not completely) dependent on caspase. Cytochrome c and AIF release were not affected by pretreatment with z-VAD-fmk. The ROS scavenger NAC efficiently suppressed not only ROS generation, but also caspase-3-mediated PARP cleavage, apoptosis, and release of cytochrome c and AIF, indicating a role of ROS in combined Dox + DMPS treatment-induced apoptotic death signaling. Taken together, these observations suggest that DMPS may be used as a therapeutic agent for overcoming drug-resistance in cancer cells by enhancing drug-induced apoptosis.  相似文献   

17.
It has been reported that genipin, the aglycone of geniposide, induces apoptotic cell death in human hepatoma cells via a NADPH oxidase-reactive oxygen species (ROS)-c-Jun NH(2)-terminal kinase (JNK)-dependent activation of mitochondrial pathway. This continuing work aimed to define that mixed lineage kinase 3 (MLK3) is a key mediator, which connect between ROS and JNK in genipin-induced cell death signaling. In PC3 human prostate cancer cells, genipin stimulated MLK3 activity in concentration- and time-dependent manner. The PC3 cells stably transfected with dominant-negative form of MLK3 was less susceptible to population of the sub-G1 apoptotic cells, activation of caspase, collapse of mitochondrial membrane potential, and release of cytochrome c triggered by genipin, suggesting a crucial role of MLK3 in genipin signaling to apoptotic cell death. Diphenyleneiodonium (DPI), a specific inhibitor of NADPH oxidase, markedly inhibited ROS generation and MLK3 phosphorylation in the genipin-treated cells. Pretreatment with SP0600125, a specific inhibitor of JNK but neither U0126, a specific inhibitor of MEK1/2 nor PD169316, a specific inhibitor of p38 suppressed genipin-induced apoptotic cell death. Notably, both the phosphorylation of JNK and induction of c-Jun induced by genipin were markedly inhibited in PC3-EGFP-MLK3 (K144R) cells expressing a dominant-negative MLK3 mutant. Taken together, our observations suggest genipin signaling to apoptosis of PC3 cells is mediated via activation of ROS-dependent MLK3, which leads to downstream activation of JNK.  相似文献   

18.
Mitochondrial UCPs: new insights into regulation and impact   总被引:6,自引:0,他引:6  
Uncoupling proteins (UCPs) are mitochondrial inner membrane proteins sustaining an inducible proton conductance. They weaken the proton electrochemical gradient built up by the mitochondrial respiratory chain. Brown fat UCP1 sustains a free fatty acid (FA)-induced purine nucleotide (PN)-inhibited proton conductance. Inhibition of the proton conductance by PN has been considered as a diagnostic of UCP activity. However, conflicting results have been obtained in isolated mitochondria for UCP homologues (i.e., UCP2, UCP3, plant UCP, and protist UCP) where the FFA-activated proton conductance is poorly sensitive to PN under resting respiration conditions. Our recent work clearly indicates that the membranous coenzyme Q, through its redox state, represents a regulator of the inhibition by PN of FFA-activated UCP1 homologues under phosphorylating respiration conditions. Several physiological roles of UCPs have been suggested, including a control of the cellular energy balance as well as the preventive action against oxidative stress. In this paper, we discuss new information emerging from comparative proteomics about the impact of UCPs on mitochondrial physiology, when recombinant UCP1 is expressed in yeast and when UCP2 is over-expressed in hepatic mitochondria during steatosis.  相似文献   

19.
20.
Uncoupling protein 2 (UCP2) is suggested to be a regulator of reactive oxygen species production in mitochondria. We performed a detailed study of brain injury, including regional and cellular distribution of UCP2 mRNA, as well as measures of oxidative stress markers following permanent middle cerebral artery occlusion in UCP2 knockout (KO) and wild-type (WT) mice. Three days post ischemia, there was a massive induction of UCP2 mRNA confined to microglia in the peri-infarct area of WT mice. KO mice were less sensitive to ischemia as assessed by reduced brain infarct size, decreased densities of deoxyuridine triphosphate nick end-labelling (TUNEL)-labelled cells in the peri-infact area and lower levels of lipid peroxidation compared with WT mice. This resistance may be related to the substantial increase of basal manganese superoxide dismutase levels in neurons of KO mice. Importantly, we found a specific decrease of mitochondrial glutathione (GSH) levels in UCP2 expressing microglia of WT, but not in KO mice after ischemia. This specific association between UCP2 and mitochondrial GSH levels regulation was further confirmed using lipopolysaccharide models of peripheral inflammation, and in purified peritoneal macrophages. Moreover, our data imply that UCP2 is not directly involved in the regulation of ROS production but acts by regulating mitochondrial GSH levels in microglia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号