首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
γ-Secretase is an enzyme complex that mediates both Notch signaling and β-amyloid precursor protein (APP) processing, resulting in the generation of Notch intracellular domain, APP intracellular domain, and the amyloid β peptide (Aβ), the latter playing a central role in Alzheimer disease (AD). By a hitherto undefined mechanism, the activity of γ-secretase gives rise to Aβ peptides of different lengths, where Aβ42 is considered to play a particular role in AD. In this study we have examined the role of the large hydrophilic loop (amino acids 320–374, encoded by exon 10) of presenilin 1 (PS1), the catalytic subunit of γ-secretase, for γ-secretase complex formation and activity on Notch and APP processing. Deletion of exon 10 resulted in impaired PS1 endoproteolysis, γ-secretase complex formation, and had a differential effect on Aβ-peptide production. Although the production of Aβ38, Aβ39, and Aβ40 was severely impaired, the effect on Aβ42 was affected to a lesser extent, implying that the production of the AD-related Aβ42 peptide is separate from the production of the Aβ38, Aβ39, and Aβ40 peptides. Interestingly, formation of the intracellular domains of both APP and Notch was intact, implying a differential cleavage activity between the ϵ/S3 and γ sites. The most C-terminal amino acids of the hydrophilic loop were important for regulating APP processing. In summary, the large hydrophilic loop of PS1 appears to differentially regulate the relative production of different Aβ peptides without affecting Notch processing, two parameters of significance when considering γ-secretase as a target for pharmaceutical intervention in AD.  相似文献   

2.

Background

The deposition and oligomerization of amyloid β (Aβ) peptide plays a key role in the pathogenesis of Alzheimer''s disease (AD). Aβ peptide arises from cleavage of the membrane-associated domain of the amyloid precursor protein (APP) by β and γ secretases. Several lines of evidence point to the soluble Aβ oligomer (AβO) as the primary neurotoxic species in the etiology of AD. Recently, we have demonstrated that a class of fluorene molecules specifically disrupts the AβO species.

Methodology/Principal Findings

To achieve a better understanding of the mechanism of action of this disruptive ability, we extend the application of electron paramagnetic resonance (EPR) spectroscopy of site-directed spin labels in the Aβ peptide to investigate the binding and influence of fluorene compounds on AβO structure and dynamics. In addition, we have synthesized a spin-labeled fluorene (SLF) containing a pyrroline nitroxide group that provides both increased cell protection against AβO toxicity and a route to directly observe the binding of the fluorene to the AβO assembly. We also evaluate the ability of fluorenes to target multiple pathological processes involved in the neurodegenerative cascade, such as their ability to block AβO toxicity, scavenge free radicals and diminish the formation of intracellular AβO species.

Conclusions

Fluorene modified with pyrroline nitroxide may be especially useful in counteracting Aβ peptide toxicity, because they posses both antioxidant properties and the ability to disrupt AβO species.  相似文献   

3.
Reitz C  Lee JH  Rogers RS  Mayeux R 《PloS one》2011,6(10):e24588

Objective

We previously reported that genetic variants in SORCS1 increase the risk of AD, that over-expression of SorCS1 reduces γ-secretase activity and Aβ levels, and that SorCS1 suppression increases γ-secretase processing of APP and Aβ levels. We now explored the effect of variation in SORCS1 on memory.

Methods

We explored associations between SORCS1-SNPs and memory retention in the NIA-LOAD case control dataset (162 cases,670 controls) and a cohort of Caribbean Hispanics (549 cases,544 controls) using single marker and haplotype analyses.

Results

Three SNPs in intron 1, were associated with memory retention in the NIA-LOAD dataset or the Caribbean Hispanic dataset (rs10884402(A allele:β = −0.15,p = 0.008), rs7078098(C allele:β = 0.18,p = 0.007) and rs950809(C allele:β = 0.17,p = 0.008)) and all three SNPs were significant in a meta-analysis of both datasets (0.002ConclusionsVariation in intron 1 in SORCS1 is associated with memory changes in AD.  相似文献   

4.
Alzheimer''s disease (AD) is the most common neurodegenerative disorder leading to dementia. Neuritic plaque formation is one of the pathological hallmarks of Alzheimer''s disease. The central component of neuritic plaques is a small filamentous protein called amyloid β protein (Aβ)1, which is derived from sequential proteolytic cleavage of the beta-amyloid precursor protein (APP) by β-secretase and γ-secretase. The amyloid hypothesis entails that Aγ-containing plaques as the underlying toxic mechanism in AD pathology2. The postmortem analysis of the presence of neuritic plaque confirms the diagnosis of AD. To further our understanding of Aγ neurobiology in AD pathogenesis, various mouse strains expressing AD-related mutations in the human APP genes were generated. Depending on the severity of the disease, these mice will develop neuritic plaques at different ages. These mice serve as invaluable tools for studying the pathogenesis and drug development that could affect the APP processing pathway and neuritic plaque formation. In this protocol, we employ an immunohistochemical method for specific detection of neuritic plaques in AD model mice. We will specifically discuss the preparation from extracting the half brain, paraformaldehyde fixation, cryosectioning, and two methods to detect neurotic plaques in AD transgenic mice: immunohistochemical detection using the ABC and DAB method and fluorescent detection using thiofalvin S staining method.  相似文献   

5.
Alzheimer disease (AD) is a devastating neurodegenerative disease with complex and strong genetic inheritance. Four genes have been established to either cause familial early onset AD (APP, PSEN1, and PSEN2) or to increase susceptibility for late onset AD (APOE). To date ∼80% of the late onset AD genetic variance remains elusive. Recently our genome-wide association screen identified four novel late onset AD candidate genes. Ataxin 1 (ATXN1) is one of these four AD candidate genes and has been indicated to be the disease gene for spinocerebellar ataxia type 1, which is also a neurodegenerative disease. Mounting evidence suggests that the excessive accumulation of Aβ, the proteolytic product of β-amyloid precursor protein (APP), is the primary AD pathological event. In this study, we ask whether ATXN1 may lead to AD pathogenesis by affecting Aβ and APP processing utilizing RNA interference in a human neuronal cell model and mouse primary cortical neurons. We show that knock-down of ATXN1 significantly increases the levels of both Aβ40 and Aβ42. This effect could be rescued with concurrent overexpression of ATXN1. Moreover, overexpression of ATXN1 decreased Aβ levels. Regarding the underlying molecular mechanism, we show that the effect of ATXN1 expression on Aβ levels is modulated via β-secretase cleavage of APP. Taken together, ATXN1 functions as a genetic risk modifier that contributes to AD pathogenesis through a loss-of-function mechanism by regulating β-secretase cleavage of APP and Aβ levels.  相似文献   

6.
Monocytes emigrate from bone marrow, can infiltrate into brain, differentiate into microglia and clear amyloid β (Aβ) from the brain of mouse models of Alzheimer’s disease (AD). Here we show that these mechanisms specifically require CC-chemokine receptor 2 (CCR2) expression in bone marrow cells (BMCs). Disease progression was exacerbated in APPSwe/PS1 mice (transgenic mice expressing a chimeric amyloid precursor protein [APPSwe] and human presenilin 1 [PS1]) harboring CCR2-deficient BMCs. Indeed, transplantation of CCR2-deficient BMCs enhanced the mnesic deficit and increased the amount of soluble Aβ and expression of transforming growth factor (TGF)-β1 and TGF-β receptors. By contrast, transplantation of wild-type bone marrow stem cells restored memory capacities and diminished soluble Aβ accumulation in APPSwe/PS1 and APPSwe/PS1/CCR2−/− mice. Finally, gene therapy using a lentivirus-expressing CCR2 transgene in BMCs prevented cognitive decline in this mouse model of AD. Injection of CCR2 lentiviruses restored CCR2 expression and functions in monocytes. The presence of these cells in the brain of non-irradiated APPSwe/PS1/CCR2−/− mice supports the concept that they can be used as gene vehicles for AD. Decreased CCR2 expression in bone marrow–derived microglia may therefore play a major role in the etiology of this neurodegenerative disease.  相似文献   

7.

Background

Alzheimer''s disease (AD) is a neurodegenerative disorder that causes progressive memory and cognitive decline during middle to late adult life. The AD brain is characterized by deposition of amyloid β peptide (Aβ), which is produced from amyloid precursor protein by β- and γ-secretase (presenilin complex)-mediated sequential cleavage. Induced pluripotent stem (iPS) cells potentially provide an opportunity to generate a human cell-based model of AD that would be crucial for drug discovery as well as for investigating mechanisms of the disease.

Methodology/Principal Findings

We differentiated human iPS (hiPS) cells into neuronal cells expressing the forebrain marker, Foxg1, and the neocortical markers, Cux1, Satb2, Ctip2, and Tbr1. The iPS cell-derived neuronal cells also expressed amyloid precursor protein, β-secretase, and γ-secretase components, and were capable of secreting Aβ into the conditioned media. Aβ production was inhibited by β-secretase inhibitor, γ-secretase inhibitor (GSI), and an NSAID; however, there were different susceptibilities to all three drugs between early and late differentiation stages. At the early differentiation stage, GSI treatment caused a fast increase at lower dose (Aβ surge) and drastic decline of Aβ production.

Conclusions/Significance

These results indicate that the hiPS cell-derived neuronal cells express functional β- and γ-secretases involved in Aβ production; however, anti-Aβ drug screening using these hiPS cell-derived neuronal cells requires sufficient neuronal differentiation.  相似文献   

8.

Background

Mutations linked to early onset, familial forms of Alzheimer''s disease (FAD) are found most frequently in PSEN1, the gene encoding presenilin-1 (PS1). Together with nicastrin (NCT), anterior pharynx-defective protein 1 (APH1), and presenilin enhancer 2 (PEN2), the catalytic subunit PS1 constitutes the core of the γ-secretase complex and contributes to the proteolysis of the amyloid precursor protein (APP) into amyloid-beta (Aβ) peptides. Although there is a growing consensus that FAD-linked PS1 mutations affect Aβ production by enhancing the Aβ1–42/Aβ1–40 ratio, it remains unclear whether and how they affect the generation of APP intracellular domain (AICD). Moreover, controversy exists as to how PS1 mutations exert their effects in different experimental systems, by either increasing Aβ1–42 production, decreasing Aβ1–40 production, or both. Because it could be explained by the heterogeneity in the composition of γ-secretase, we purified to homogeneity complexes made of human NCT, APH1aL, PEN2, and the pathogenic PS1 mutants L166P, ΔE9, or P436Q.

Methodology/Principal Findings

We took advantage of a mouse embryonic fibroblast cell line lacking PS1 and PS2 to generate different stable cell lines overexpressing human γ-secretase complexes with different FAD-linked PS1 mutations. A multi-step affinity purification procedure was used to isolate semi-purified or highly purified γ-secretase complexes. The functional characterization of these complexes revealed that all PS1 FAD-linked mutations caused a loss of γ-secretase activity phenotype, in terms of Aβ1–40, Aβ1–42 and APP intracellular domain productions in vitro.

Conclusion/Significance

Our data support the view that PS1 mutations lead to a strong γ-secretase loss-of-function phenotype and an increased Aβ1–42/Aβ1–40 ratio, two mechanisms that are potentially involved in the pathogenesis of Alzheimer''s disease.  相似文献   

9.
The amyloid-β (Aβ) peptide, widely known as the causative molecule of Alzheimer disease (AD), is generated by the sequential cleavage of amyloid precursor protein (APP) by the aspartyl proteases BACE1/β-secretase and presenilin/γ-secretase. Inhibition of BACE1, therefore, is a promising strategy for preventing the progression of AD. However, β-secretase inhibitors (BSIs) exhibit unexpectedly low potency in cells expressing “Swedish mutant” APP (APPswe) and in the transgenic mouse Tg2576, an AD model overexpressing APPswe. The Swedish mutation dramatically accelerates β-cleavage of APP and hence the generation of Aβ; this acceleration has been assumed to underlie the poor inhibitory activity of BSI against APPswe processing. Here, we studied the mechanism by which the Swedish mutation causes this BSI potency decrease. Surprisingly, decreased BSI potency was not observed in an in vitro assay using purified BACE1 and substrates, indicating that the accelerated β-cleavage resulting from the Swedish mutation is not its underlying cause. By focusing on differences between the cell-based and in vitro assays, we have demonstrated here that the potency decrease is caused by the aberrant subcellular localization of APPswe processing and not by accelerated β-cleavage or the accumulation of the C-terminal fragment of β-cleaved APP. Because most patients with sporadic AD express wild type APP, our findings suggest that the wild type mouse is superior to the Tg2576 mouse as a model for determining the effective dose of BSI for AD patients. This work provides novel insights into the potency decrease of BSI and valuable suggestions for its development as a disease-modifying agent.  相似文献   

10.
The formation of fibrils and oligomers of amyloid beta (Aβ) with 42 amino acid residues (Aβ1–42) is the most important pathophysiological event associated with Alzheimer''s disease (AD). The formation of Aβ fibrils and oligomers requires a conformational change from an α-helix to a β-sheet conformation, which is encouraged by the formation of a salt bridge between Asp 23 or Glu 22 and Lys 28. Recently, Cu2+ and various drugs used for AD treatment, such as galanthamine (Reminyl®), have been reported to inhibit the formation of Aβ fibrils. However, the mechanism of this inhibition remains unclear. Therefore, the aim of this work was to explore how Cu2+ and galanthamine prevent the formation of Aβ1–42 fibrils using molecular dynamics (MD) simulations (20 ns) and in vitro studies using fluorescence and circular dichroism (CD) spectroscopies. The MD simulations revealed that Aβ1–42 acquires a characteristic U-shape before the α-helix to β-sheet conformational change. The formation of a salt bridge between Asp 23 and Lys 28 was also observed beginning at 5 ns. However, the MD simulations of Aβ1−42 in the presence of Cu2+ or galanthamine demonstrated that both ligands prevent the formation of the salt bridge by either binding to Glu 22 and Asp 23 (Cu2+) or to Lys 28 (galanthamine), which prevents Aβ1−42 from adopting the U-characteristic conformation that allows the amino acids to transition to a β-sheet conformation. The docking results revealed that the conformation obtained by the MD simulation of a monomer from the 1Z0Q structure can form similar interactions to those obtained from the 2BGE structure in the oligomers. The in vitro studies demonstrated that Aβ remains in an unfolded conformation when Cu2+ and galanthamine are used. Then, ligands that bind Asp 23 or Glu 22 and Lys 28 could therefore be used to prevent β turn formation and, consequently, the formation of Aβ fibrils.  相似文献   

11.
Kumar VB  Farr SA  Flood JF  Kamlesh V  Franko M  Banks WA  Morley JE 《Peptides》2000,21(12):1769-1775
β amyloid protein (Aβ) is a 40–43 amino acid peptide derived from amyloid precursor protein (APP). Aβ has been implicated as a cause of Alzheimer’s disease (AD). Mice with spontaneous or transgenic overexpression of APP show the histologic hallmarks of AD and have impairments in learning and memory. We tested whether antisense phosphorothiolated oligonucleotides (AO) directed at the Aβ region of the APP gene given with or without antibody directed at Aβ could reverse the elevated protein levels of APP and the behavioral impairments seen in SAMP8 mice, a strain which spontaneously overexpresses APP. We found that intracerebroventricular (ICV) administration of antibody with either of two AOs directed at the midregion of Aβ improved acquisition and retention in a footshock avoidance paradigm, whereas two AOs directed more toward the C-terminal, a random AO, and vehicle were without effect. Three injections of the more potent AO given without antibody reduced APP protein levels by 43–68% in the amygdala, septum, and hippocampus. These results show that AO directed at the Aβ region of APP can reduce APP levels in the brain and reverse deficits in learning and memory.  相似文献   

12.
Fibrillar aggregates of misfolded amyloid proteins are involved in a variety of diseases such as Alzheimer disease (AD), type 2 diabetes, Parkinson, Huntington and prion-related diseases. In the case of AD amyloid β (Aβ) peptides, the toxicity of amyloid oligomers and larger fibrillar aggregates is related to perturbing the biological function of the adjacent cellular membrane. We used atomistic molecular dynamics (MD) simulations of Aβ9–40 fibrillar oligomers modeled as protofilament segments, including lipid bilayers and explicit water molecules, to probe the first steps in the mechanism of Aβ-membrane interactions. Our study identified the electrostatic interaction between charged peptide residues and the lipid headgroups as the principal driving force that can modulate the further penetration of the C-termini of amyloid fibrils or fibrillar oligomers into the hydrophobic region of lipid membranes. These findings advance our understanding of the detailed molecular mechanisms and the effects related to Aβ-membrane interactions, and suggest a polymorphic structural character of amyloid ion channels embedded in lipid bilayers. While inter-peptide hydrogen bonds leading to the formation of β-strands may still play a stabilizing role in amyloid channel structures, these may also present a significant helical content in peptide regions (e.g., termini) that are subject to direct interactions with lipids rather than with neighboring Aβ peptides.  相似文献   

13.

Objective

Herpes simplex virus (HSV) reactivation has been identified as a possible risk factor for Alzheimer''s disease (AD) and plasma amyloid-beta (Aβ) levels might be considered as possible biomarkers of the risk of AD. The aim of our study was to investigate the association between anti-HSV antibodies and plasma Aβ levels.

Methods

The study sample consisted of 1222 subjects (73.9 y in mean) from the Three-City cohort. IgM and IgG anti-HSV antibodies were quantified using an ELISA kit, and plasma levels of Aβ1–40 and Aβ1–42 were measured using an xMAP-based assay technology. Cross-sectional analyses of the associations between anti-HSV antibodies and plasma Aβ levels were performed by multi-linear regression.

Results

After adjustment for study center, age, sex, education, and apolipoprotein E-e4 polymorphism, plasma Aβ1–42 and Aβ1–40 levels were specifically inversely associated with anti-HSV IgM levels (β = −20.7, P = 0.001 and β = −92.4, P = 0.007, respectively). In a sub-sample with information on CLU- and CR1-linked SNPs genotyping (n = 754), additional adjustment for CR1 or CLU markers did not modify these associations (adjustment for CR1 rs6656401, β = −25.6, P = 0.002 for Aβ1–42 and β = −132.7, P = 0.002 for Aβ1–40; adjustment for CLU rs2279590, β = −25.6, P = 0.002 for Aβ1–42 and β = −134.8, P = 0.002 for Aβ1–40). No association between the plasma Aβ1–42-to-Aβ1–40 ratio and anti-HSV IgM or IgG were evidenced.

Conclusion

High anti-HSV IgM levels, markers of HSV reactivation, are associated with lower plasma Aβ1–40 and Aβ1–42 levels, which suggest a possible involvement of the virus in the alterations of the APP processing and potentially in the pathogenesis of AD in human.  相似文献   

14.
Seladin-1 is a neuroprotective protein selectively down-regulated in brain regions affected in Alzheimer disease (AD). Seladin-1 protects cells against β-amyloid (Aβ) peptide 42- and oxidative stress-induced apoptosis activated by caspase-3, a key mediator of apoptosis. Here, we have employed RNA interference to assess the molecular effects of seladin-1 down-regulation on the β-secretase (BACE1) function and β-amyloid precursor protein (APP) processing in SH-SY5Y human neuroblastoma cells in both normal and apoptotic conditions. Our results show that ∼60% reduction in seladin-1 protein levels, resembling the decrease observed in AD brain, did not significantly affect APP processing or Aβ secretion in normal growth conditions. However, under apoptosis, seladin-1 small interfering RNA (siRNA)-transfected cells showed increased caspase-3 activity on average by 2-fold when compared with control siRNA-transfected cells. Increased caspase-3 activity coincided with a significant depletion of the BACE1-sorting protein, GGA3 (Golgi-localized γ-ear-containing ADP-ribosylation factor-binding protein), and subsequently augmented BACE1 protein levels and activity. Augmented BACE1 activity in turn correlated with the enhanced β-amyloidogenic processing of APP and ultimately increased Aβ production. These adverse changes associated with decreased cell viability in seladin-1 siRNA-transfected cells under apoptosis. No changes in GGA3 or BACE1 levels were found after seladin-1 knockdown in normal growth conditions. Collectively, our results suggest that under stress conditions, reduced seladin-1 expression results in enhanced GGA3 depletion, which further leads to augmented post-translational stabilization of BACE1 and increased β-amyloidogenic processing of APP. These mechanistic findings related to seladin-1 down-regulation are important in the context of AD as the oxidative stress-induced apoptosis plays a key role in the disease pathogenesis.  相似文献   

15.
Wang CY  Wang T  Zheng W  Zhao BL  Danscher G  Chen YH  Wang ZY 《PloS one》2010,5(12):e15349

Background

Abnormal zinc homeostasis is involved in β-amyloid (Aβ) plaque formation and, therefore, the zinc load is a contributing factor in Alzheimer''s disease (AD). However, the involvement of zinc in amyloid precursor protein (APP) processing and Aβ deposition has not been well established in AD animal models in vivo.

Methodology/Principal Findings

In the present study, APP and presenilin 1 (PS1) double transgenic mice were treated with a high dose of zinc (20 mg/ml ZnSO4 in drinking water). This zinc treatment increased APP expression, enhanced amyloidogenic APP cleavage and Aβ deposition, and impaired spatial learning and memory in the transgenic mice. We further examined the effects of zinc overload on APP processing in SHSY-5Y cells overexpressing human APPsw. The zinc enhancement of APP expression and cleavage was further confirmed in vitro.

Conclusions/Significance

The present data indicate that excess zinc exposure could be a risk factor for AD pathological processes, and alteration of zinc homeostasis is a potential strategy for the prevention and treatment of AD.  相似文献   

16.
Immunotherapy targeting of amyloid β (Aβ) peptide in transgenic mouse models of Alzheimer disease (AD) has been widely demonstrated to resolve amyloid deposition as well as associated neuronal, glial, and inflammatory pathologies. These successes have provided the basis for ongoing clinical trials of immunotherapy for treatment of AD in humans. Acute as well as chronic Aβ-targeted immunotherapy has also been demonstrated to reverse Aβ-related behavioral deficits assessing memory in AD transgenic mouse models. We observe that three antibodies targeting the same linear epitope of Aβ, Aβ3–7, differ in their ability to reverse contextual fear deficits in Tg2576 mice in an acute testing paradigm. Reversal of contextual fear deficit by the antibodies does not correlate with in vitro recognition of Aβ in a consistent or correlative manner. To better define differences in antigen recognition at the atomic level, we determined crystal structures of Fab fragments in complex with Aβ. The conformation of the Aβ peptide recognized by all three antibodies was highly related and is also remarkably similar to that observed in independently reported Aβ:antibody crystal structures. Sequence and structural differences between the antibodies, particularly in CDR3 of the heavy chain variable region, are proposed to account for differing in vivo properties of the antibodies under study. These findings provide a structural basis for immunotherapeutic strategies targeting Aβ species postulated to underlie cognitive deficits in AD.  相似文献   

17.
Reflectance Fourier transform infrared (FT-IR) microspectroscopy was applied to study the prevention of β-sheet formation of amyloid β (Aβ)(1–40) peptide by co-incubation with a hexapeptide containing a KLVFF sequence (Aβ(15–20) fragment). Second-derivative spectral analysis was used to locate the position of the overlapping components of the amide I band of Aβ peptide and assigned them to different secondary components. The result indicates that each intact sample of Aβ(15–20) fragment or Aβ(1–40) peptide previously incubated in distilled water at 37 °C transformed their secondary structure from 1649 (1651) or 1653 cm−1 to 1624 cm−1, suggesting the transformation from -helix and/or random coil structures to β-sheet structure. By co-incubating both samples with different molar ratio in distilled water at 37 °C, the structural transformation was not found for Aβ(1–40) peptide after 24 h-incubation. But the β-sheet formation of Aβ(1–40) peptide after 48 h-incubation was evidenced from the appearance of the IR peak at 1626 cm−1 by adding a little amount of Aβ(15–20) fragment. There was no β-sheet formation of Aβ(1–40) peptide after addition with much amount of Aβ(15–20) fragment, however, suggesting the higher amount of Aβ(15–20) fragment used might inhibit the β-sheet formation of Aβ(1–40) peptide. The more Aβ(15–20) fragment used made the more stable structure of Aβ(1–40) peptide and the less β-sheet formation of Aβ(1–40) peptide. The study indicates that the reflectance FT-IR microspectroscopy can easily evidence the prevention of β-sheet formation of Aβ(1–40) peptide by a short amyloid fragment.  相似文献   

18.
The amyloid-β precursor protein (AβPP) is a ubiquitously expressed transmembrane protein whose cleavage product, the amyloid-β (Aβ) protein, is deposited in amyloid plaques in neurodegenerative conditions such as Alzheimer disease, Down syndrome, and head injury. We recently reported that this protein, normally associated with neurodegenerative conditions, is expressed by human embryonic stem cells (hESCs). We now report that the differential processing of AβPP via secretase enzymes regulates the proliferation and differentiation of hESCs. hESCs endogenously produce amyloid-β, which when added exogenously in soluble and fibrillar forms but not oligomeric forms markedly increased hESC proliferation. The inhibition of AβPP cleavage by β-secretase inhibitors significantly suppressed hESC proliferation and promoted nestin expression, an early marker of neural precursor cell (NPC) formation. The induction of NPC differentiation via the non-amyloidogenic pathway was confirmed by the addition of secreted AβPPα, which suppressed hESC proliferation and promoted the formation of NPCs. Together these data suggest that differential processing of AβPP is normally required for embryonic neurogenesis.The amyloid-β precursor protein (AβPP)5 is a ubiquitously expressed transmembrane protein whose cleavage product, the amyloid-β (Aβ) protein, is deposited in amyloid plaques in the aged brain, following head injury, and in the neurodegenerative conditions of Alzheimer disease (AD) and Down syndrome (DS). AβPP has structural similarity to growth factors (1) and modulates several important neurotrophic functions, including neuritogenesis, synaptogenesis, and synaptic plasticity (2). The function of AβPP during early embryogenesis and neurogenesis has not been well described.AβPP is processed by at least two pathways, the non-amyloidogenic and amyloidogenic pathways. Non-amyloidogenic processing of AβPP yields secreted AβPPα (sAβPPα), the secreted extracellular domain of AβPP that acts as a growth factor for many cell types and promotes neuritogenesis (3). Amyloidogenic processing of AβPP releases sAβPPβ, the AβPP intracellular domain, and Aβ proteins. The Aβ protein has both neurotoxic and neurotrophic properties (4) dependent on the differentiation state of the neuron; Aβ is neurotoxic to differentiating neurons via a mechanism involving differentiation-associated increases in the phosphorylation of the microtubule-associated protein tau (5) but neurotrophic to undifferentiated embryonic neurons. Evidence supporting a neurotrophic function for Aβ during development include its neurogenic activity toward rat neural stem cells (46). Consistent with these data, two studies have demonstrated increased hippocampal neurogenesis in young transgenic mice overexpressing human APPSw,Ind (7, 8).Recently we reported that human embryonic stem cells (hESCs) express AβPP and that both the stemness of the cells and the pregnancy-associated hormone human chorionic gonadotropin alter AβPP expression (9). These results suggest a functional role for AβPP during early human embryogenesis. To further investigate the function of AβPP and its cleavage products during early embryonic neurogenesis, we examined the expression and processing of this protein and its role in proliferation and differentiation of hESCs into neural precursor cells (NPCs). We found that amyloidogenic processing of AβPP promotes hESC proliferation whereas non-amyloidogenic processing induces hESC differentiation into NPCs. These data reveal an important function for AβPP during early human embryonic neurogenesis. Our data imply that any dysregulation in AβPP processing that leads to altered sAβPPα/Aβ production could result in aberrant neurogenesis as reported in the AD and DS brains.  相似文献   

19.
Neurodegenerative diseases such as Alzheimer (AD) and Parkinson (PD) are characterized by abnormal aggregation of misfolded β-sheet-rich proteins, including amyloid-β (Aβ)-derived peptides and tau in AD and α-synuclein in PD. Correct folding and assembly of these proteins are controlled by ubiquitously expressed molecular chaperones; however, our understanding of neuron-specific chaperones and their involvement in the pathogenesis of neurodegenerative diseases is limited. We here describe novel chaperone-like functions for the secretory protein 7B2, which is widely expressed in neuronal and endocrine tissues. In in vitro experiments, 7B2 efficiently prevented fibrillation and formation of Aβ1–42, Aβ1–40, and α-synuclein aggregates at a molar ratio of 1:10. In cell culture experiments, inclusion of recombinant 7B2, either in the medium of Neuro-2A cells or intracellularly via adenoviral 7B2 overexpression, blocked the neurocytotoxic effect of Aβ1–42 and significantly increased cell viability. Conversely, knockdown of 7B2 by RNAi increased Aβ1–42-induced cytotoxicity. In the brains of APP/PSEN1 mice, a model of AD amyloidosis, immunoreactive 7B2 co-localized with aggregation-prone proteins and their respective aggregates. Furthermore, in the hippocampus and substantia nigra of human AD- and PD-affected brains, 7B2 was highly co-localized with Aβ plaques and α-synuclein deposits, strongly suggesting physiological association. Our data provide insight into novel functions of 7B2 and establish this neural protein as an anti-aggregation chaperone associated with neurodegenerative disease.  相似文献   

20.
Accumulation of the amyloid β (Aβ) peptide derived from the proteolytic processing of amyloid precursor protein (APP) is the defining pathological hallmark of Alzheimer disease. We previously demonstrated that the C-terminal 37 amino acids of lipoprotein receptor-related protein (LRP) robustly promoted Aβ generation independent of FE65 and specifically interacted with Ran-binding protein 9 (RanBP9). In this study we found that RanBP9 strongly increased BACE1 cleavage of APP and Aβ generation. This pro-amyloidogenic activity of RanBP9 did not depend on the KPI domain or the Swedish APP mutation. In cells expressing wild type APP, RanBP9 reduced cell surface APP and accelerated APP internalization, consistent with enhanced β-secretase processing in the endocytic pathway. The N-terminal half of RanBP9 containing SPRY-LisH domains not only interacted with LRP but also with APP and BACE1. Overexpression of RanBP9 resulted in the enhancement of APP interactions with LRP and BACE1 and increased lipid raft association of APP. Importantly, knockdown of endogenous RanBP9 significantly reduced Aβ generation in Chinese hamster ovary cells and in primary neurons, demonstrating its physiological role in BACE1 cleavage of APP. These findings not only implicate RanBP9 as a novel and potent regulator of APP processing but also as a potential therapeutic target for Alzheimer disease.The major defining pathological hallmark of Alzheimer disease (AD)2 is the accumulation of amyloid β protein (Aβ), a neurotoxic peptide derived from β- and γ-secretase cleavages of the amyloid precursor protein (APP). The vast majority of APP is constitutively cleaved in the middle of the Aβ sequence by α-secretase (ADAM10/TACE/ADAM17) in the non-amyloidogenic pathway, thereby abrogating the generation of an intact Aβ peptide. Alternatively, a small proportion of APP is cleaved in the amyloidogenic pathway, leading to the secretion of Aβ peptides (37–42 amino acids) via two proteolytic enzymes, β- and γ-secretase, known as BACE1 and presenilin, respectively (1).The proteolytic processing of APP to generate Aβ requires the trafficking of APP such that APP and BACE1 are brought together in close proximity for β-secretase cleavage to occur. We and others have shown that the low density lipoprotein receptor-related protein (LRP), a multifunctional endocytosis receptor (2), binds to APP and alters its trafficking to promote Aβ generation. The loss of LRP substantially reduces Aβ release, a phenotype that is reversed when full-length (LRP-FL) or truncated LRP is transfected in LRP-deficient cells (3, 4). Specifically, LRP-CT lacking the extracellular ligand binding regions but containing the transmembrane domain and the cytoplasmic tail is capable of rescuing amyloidogenic processing of APP and Aβ release in LRP deficient cells (3). Moreover, the LRP soluble tail (LRP-ST) lacking the transmembrane domain and only containing the cytoplasmic tail of LRP is sufficient to enhance Aβ secretion (5). This activity of LRP-ST is achieved by promoting APP/BACE1 interaction (6), although the precise mechanism is unknown. Although we had hypothesized that one or more NPXY domains in LRP-ST might underlie the pro-amyloidogenic processing of APP, we recently found that the 37 C-terminal residues of LRP (LRP-C37) lacking the NPXY motif was sufficient to robustly promote Aβ production independent of FE65 (7). Because LRP-C37 likely acts by recruiting other proteins, we used the LRP-C37 region as bait in a yeast two-hybrid screen, resulting in the identification of 4 new LRP-binding proteins (7). Among these, we focused on Ran-binding protein 9 (RanBP9) in this study, which we found to play a critical role in the trafficking and processing of APP. RanBP9, also known as RanBPM, acts as a multi-modular scaffolding protein, bridging interactions between the cytoplasmic domains of a variety of membrane receptors and intracellular signaling targets. These include Axl and Sky (8), MET receptor protein-tyrosine kinase (9), and β2-integrin LFA-1 (10). Similarly, RanBP9 interacts with Plexin-A receptors to strongly inhibit axonal outgrowth (11) and functions to regulate cell morphology and adhesion (12, 13). Here we show that RanBP9 robustly promotes BACE1 processing of APP and Aβ generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号