首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Introduction

Synovial fibroblasts from rheumatoid arthritis show resistance to apoptotic stimuli, indicating they may be difficult to treat. To clearly understand these mechanisms of resistance, rheumatoid and osteoarthritis synovial fibroblasts (RASF and OASF) were exposed to endoplasmic reticulum (ER) stress such as thapsigargin, Ca2+-ATPase inhibitor.

Methods

Fibroblasts were assessed microscopically for cell viability by trypan blue exclusion and for autophagic cells by LC-3II formation. Caspase-3 activity was measured as aminomethyl-coumarin (AMC) liberated from AC-DEVD-AMC. Immunoblotting was performed to compare protein expression in OASF and RASF.

Results

ER stress caused cell death in OASF but not in RASF. Thapsigargin, a Ca2+-ATPase inhibitor, did not change the expression of GRP78, an ER chaperone in OASF and RASF, but induced another ER stress protein, CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP) differently, showing high levels in OASF and low levels in RASF. Thapsigargin increased the autophagy response in RASF, with autophagosome formation, beclin expression, and LC3-II conversion. Transfection with beclin siRNA inhibited autophagy and increased the susceptibility to ER stress-induced cell death. On the other hand, CHOP siRNA increased autophagy and improved cell survival, especially in RASF, indicating that CHOP is involved in regulation of autophagy and cell death, but that low expression of CHOP protects RASF from apoptosis.

Conclusions

Autophagy induction and CHOP under-expression increases cell resistance against ER stress-induced cell death in fibroblasts from rheumatoid arthritis patients.  相似文献   

3.

Background

The BH3-only protein Bid is an important component of death receptor-mediated caspase activation. Bid is cleaved by caspase-8 or -10 into t-Bid, which translocates to mitochondria and triggers the release of caspase-activating factors. Bid has also been reported to be cleaved by other proteases.

Methodology/Principal Findings

To test the hypothesis that Bid is a central mediator of stress-induced apoptosis, we investigated the effects of a small molecule Bid inhibitor on stress-induced apoptosis, and generated HeLa cells deficient for Bid. Stable knockdown of bid lead to a pronounced resistance to Fas/CD95- and TRAIL-induced caspase activation and apoptosis, and significantly increased clonogenic survival. While Bid-deficient cells were equally sensitive to ER stress-induced apoptosis, they showed moderate, but significantly reduced levels of apoptosis, as well as increased clonogenic survival in response to the genotoxic drugs Etoposide, Oxaliplatin, and Doxorubicin. Similar effects were observed using the Bid inhibitor BI6C9. Interestingly, Bid-deficient cells were dramatically protected from apoptosis when subtoxic concentrations of ER stressors, Etoposide or Oxaliplatin were combined with subtoxic TRAIL concentrations.

Conclusions/Significance

Our data demonstrate that Bid is central for death receptor-induced cell death and participates in anti-cancer drug-induced apoptosis in human cervical cancer HeLa cells. They also show that the synergistic effects of TRAIL in combination with either ER stressors or genotoxic anti-cancer drugs are nearly exclusively mediated via an increased activation of Bid-induced apoptosis signalling.  相似文献   

4.
Lim YJ  Choi JA  Choi HH  Cho SN  Kim HJ  Jo EK  Park JK  Song CH 《PloS one》2011,6(12):e28531

Background

Apoptosis is thought to play a role in host defenses against intracellular pathogens, including Mycobacterium tuberculosis (Mtb), by preventing the release of intracellular components and the spread of mycobacterial infection. This study aims to investigate the role of endoplasmic reticulum (ER) stress mediated apoptosis in mycobacteria infected macrophages.

Methodology/Principal Findings

Here, we demonstrate that ER stress-induced apoptosis is associated with Mtb H37Rv-induced cell death of Raw264.7 murine macrophages. We have shown that Mtb H37Rv induced apoptosis are involved in activation of caspase-12, which resides on the cytoplasmic district of the ER. Mtb infection increase levels of other ER stress indicators in a time-dependent manner. Phosphorylation of eIF2α was decreased gradually after Mtb H37Rv infection signifying that Mtb H37Rv infection may affect eIF2α phosphorylation in an attempt to survive within macrophages. Interestingly, the survival of mycobacteria in macrophages was enhanced by silencing CHOP expression. In contrast, survival rate of mycobacteria was reduced by phosphorylation of the eIF2α. Futhermore, the levels of ROS, NO or CHOP expression were significantly increased by live Mtb H37Rv compared to heat-killed Mtb H37Rv indicating that live Mtb H37Rv could induce ER stress response.

Conclusion/Significance

These findings indicate that eIF2α/CHOP pathway may influence intracellular survival of Mtb H37Rv in macrophages and only live Mtb H37Rv can induce ER stress response. The data support the ER stress pathway plays an important role in the pathogenesis and persistence of mycobacteria.  相似文献   

5.
WC Lin  YC Chuang  YS Chang  MD Lai  YN Teng  IJ Su  CC Wang  KH Lee  JH Hung 《PloS one》2012,7(7):e39120

Background

Induction of apoptosis by endoplasmic reticulum (ER) stress is implicated as the major factor in the development of multiple diseases. ER stress also appears to be a potentially useful major response to many chemotherapeutic drugs and environmental chemical compounds. A previous study has indicated that one major apoptotic regulator, p53, is significantly increased in response to ER stress, and participates in ER stress-induced apoptosis. However, the regulators of p53 expression during ER stress are still not fully understood.

Principal Findings

In this report, we demonstrate that induction of p53 expression is mediated through NF-κB signaling pathways during ER stress in MCF-7 cells. Tunicamycin or brefeldin A, two ER stress inducers, increased p53 expression in MCF-7 and Hela cells. We found p53 nuclear localization, activity, and phosphorylation at serine 15 on p53 increased during ER stress. Nuclear translocation of NF-κB and activity of NF-κB were also observed during ER stress. ER stress-induced p53 expression was significantly inhibited by coincubation with the NF-κB inhibitor, Bay 11-7082 and downregulation of NF-κB p65 expression. The role of p53 in mediating Brefeldin A-induced apoptosis was also investigated. Induction of p53 expression by Brefeldin A was correlated to Brefeldin A-induced apoptosis. Furthermore, downregulation of p53 expression by p53 siRNA significantly reduced Brefeldin A-induced apoptosis in MCF-7 cells.

Significance

Taken together, NF-κB activation and induction of p53 expression is essential for ER stress-induced cell death which is important for therapeutic effects of clinical cancer drugs. Our results may provide insight into the mechanism of cancer chemotherapy efficacy that is associated with induction of ER stress.  相似文献   

6.
Ullah N  Lee HY  Naseer MI  Ullah I  Suh JW  Kim MO 《PloS one》2011,6(12):e27093

Background

Exposure to the chemotherapeutic alkylating agent thiotepa during brain development leads to neurological complications arising from neurodegeneration and irreversible damage to the developing central nerve system (CNS). Administration of single dose of thiotepa in 7-d postnatal (P7) rat triggers activation of apoptotic cascade and widespread neuronal death. The present study was aimed to elucidate whether nicotinamide may prevent thiotepa-induced neurodegeneration in the developing rat brain.

Methodology/Principal Findings

Neuronal cell death induced by thiotepa was associated with the induction of Bax, release of cytochrome-c from mitochondria into the cytosol, activation of caspase-3 and cleavage of poly (ADP-ribose) polymerase (PARP-1). Post-treatment of developing rats with nicotinamide suppressed thiotepa-induced upregulation of Bax, reduced cytochrome-c release into the cytosol and reduced expression of activated caspase-3 and cleavage of PARP-1. Cresyl violet staining showed numerous dead cells in the cortex hippocampus and thalamus; post-treatment with nicotinamide reduced the number of dead cells in these brain regions. Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end-labeling (TUNEL) and immunohistochemical analysis of caspase-3 show that thiotepa-induced cell death is apoptotic and that it is inhibited by nicotinamide treatment.

Conclusion

Nicotinamide (Nic) treatment with thiotepa significantly improved neuronal survival and alleviated neuronal cell death in the developing rat. These data demonstrate that nicotinamide shows promise as a therapeutic and neuroprotective agent for the treatment of neurodegenerative disorders in newborns and infants.  相似文献   

7.

Background

Heat stress can be acutely cytotoxic, and heat stress-induced apoptosis is a prominent pathological feature of heat-related illnesses, although the precise mechanisms by which heat stress triggers apoptosis are poorly defined.

Methods

The percentages of viability and cell death were assessed by WST-1 and LDH release assays. Apoptosis was assayed by DNA fragmentation and caspase activity. Expression of cleaved PARP, Apaf-1, phospho-PERK, Phospho-eIF2a, ATF4, XBP-1s, ATF6, GRP78, phospho-IP3R, RYR and SERCA was estimated by Western blot. The effect of calcium overload was determined using flow cytometric analysis with the fluorescent probe Fluo-3/AM. The generation of ROS (O2 , H2O2, NO) was labeled by confocal laser scanning microscopy images of fluorescently and flow cytometry.

Results

In this study, we found that heat stress in HUVEC cells activated initiators of three major unfolded protein response (UPR) signaling transduction pathways: PERK-eIF2a-ATF4, IRE1-XBP-1S and ATF6 to protect against ER stress, although activation declined over time following cessation of heat stress. Furthermore, we show that intense heat stress may induce apoptosis in HUVEC cells through the calcium-mediated mitochondrial apoptotic pathway, as indicated by elevation of cytoplasmic Ca2+, expression of Apaf-1, activation of caspase-9 and caspase-3, PARP cleavage, and ultimately nucleosomal DNA fragmentation; Reactive oxygen species (ROS) appear to act upstream in this process. In addition, we provide evidence that IP3R upregulation may promote influx of Ca2+ into the cytoplasm after heat stress.

Conclusion

Our findings describe a novel mechanism for heat stress-induced apoptosis in HUVEC cells: following elevation of cytoplasm Ca2+, activation of the mitochondrial apoptotic pathway via the IP3R upregulation, with ROS acting as an upstream regulator of the process.  相似文献   

8.
Xu X  Gupta S  Hu W  McGrath BC  Cavener DR 《PloS one》2011,6(8):e23740

Background

The ER chaperone GRP78/BiP is a homolog of the Hsp70 family of heat shock proteins, yet GRP78/BiP is not induced by heat shock but instead by ER stress. However, previous studies had not considered more physiologically relevant temperature elevation associated with febrile hyperthermia. In this report we examine the response of GRP78/BiP and other components of the ER stress pathway in cells exposed to 40°C.

Methodology

AD293 cells were exposed to 43°C heat shock to confirm inhibition of the ER stress response genes. Five mammalian cell types, including AD293 cells, were then exposed to 40°C hyperthermia for various time periods and induction of the ER stress pathway was assessed.

Principal Findings

The inhibition of the ER stress pathway by heat shock (43°C) was confirmed. In contrast cells subjected to more mild temperature elevation (40°C) showed either a partial or full ER stress pathway induction as determined by downstream targets of the three arms of the ER stress pathway as well as a heat shock response. Cells deficient for Perk or Gcn2 exhibit great sensitivity to ER stress induction by hyperthermia.

Conclusions

The ER stress pathway is induced partially or fully as a consequence of hyperthermia in parallel with induction of Hsp70. These findings suggest that the ER and cytoplasm of cells contain parallel pathways to coordinately regulate adaptation to febrile hyperthermia associated with disease or infection.  相似文献   

9.

Background

Type 2 diabetes is characterized by pancreatic beta-cell dysfunction and is associated with low-grade inflammation. Recent observations suggest that apoptosis signal-regulating kinase 1 (ASK1) is involved in beta-cell death in response to different stressors. In this study, we tested whether ASK1 deficiency protects beta-cells from glucolipotoxic conditions and cytokines treatment or from glucose homeostasis alteration induced by endotoxemia.

Methodology/Principal Findings

Insulin secretion was neither affected upon shRNA-mediated downregulation of ASK1 in MIN6 cells nor in islets from ASK1-deficient mice. ASK1 silencing in MIN6 cells and deletion in islets did not prevent the deleterious effect of glucolipotoxic conditions or cytokines on insulin secretion. However, it protected MIN6 cells from death induced by ER stress or palmitate and islets from short term caspase activation in response to cytokines. Moreover, endotoxemia induced by LPS infusion increased insulin secretion during hyperglycemic clamps but the response was similar in wild-type and ASK1-deficient mice. Finally, insulin sensitivity in the presence of LPS was not affected by ASK1-deficiency.

Conclusions/Significance

Our study demonstrates that ASK1 is not involved in beta-cell function and dysfunction but controls stress-induced beta-cell death.  相似文献   

10.

Background

Despite the recent progress in screening and therapy, a majority of prostate cancer cases eventually attain hormone refractory and chemo-resistant attributes. Conventional chemotherapeutic strategies are effective at very high doses for only palliative management of these prostate cancers. Therefore chemo-sensitization of prostate cancer cells could be a promising strategy for increasing efficacy of the conventional chemotherapeutic agents in prostate cancer patients. Recent studies have indicated that the chemo-preventive natural agents restore the pro-apoptotic protein expression and induce endoplasmic reticulum stress (ER stress) leading to the inhibition of cellular proliferation and activation of the mitochondrial apoptosis in prostate cancer cells. Therefore reprogramming ER stress-mitochondrial dependent apoptosis could be a potential approach for management of hormone refractory chemoresistant prostate cancers. We aimed to study the effects of the natural naphthoquinone Shikonin in human prostate cancer cells.

Results

The results indicated that Shikonin induces apoptosis in prostate cancer cells through the dual induction of the endoplasmic reticulum stress and mitochondrial dysfunction. Shikonin induced ROS generation and activated ER stress and calpain activity. Moreover, addition of antioxidants attenuated these effects. Shikonin also induced the mitochondrial apoptotic pathway mediated through the enhanced expression of the pro-apoptotic Bax and inhibition of Bcl-2, disruption of the mitochondrial membrane potential (MMP) followed by the activation of caspase-9, caspase-3, and PARP cleavage.

Conclusion

The results suggest that shikonin could be useful in the therapeutic management of hormone refractory prostate cancers due to its modulation of the pro-apoptotic ER stress and mitochondrial apoptotic pathways.

Electronic supplementary material

The online version of this article (doi:10.1186/s12929-015-0127-1) contains supplementary material, which is available to authorized users.  相似文献   

11.
12.

Background

The precursor for advanced glycation end products, 3-deoxyglucosone (3DG) is highly upregulated in skin explants of diabetic cutaneous wounds, and has been shown to negatively impact dermal fibroblasts, which are crucial in wound remodeling. 3DG induces apoptosis however; the mechanisms involved in the apoptotic action of 3DG in the pathogenesis of diabetic chronic wounds are poorly understood. Therefore, we sought to delineate novel mechanisms involved with the 3DG-collagen induced apoptosis.

Methodology/Principal Findings

Using human dermal fibroblasts, we demonstrated that 3DG-modified collagen induces oxidative stress and caspase-3 activation. Oxidative stress was found to be dependent on the upregulation of NAD(P)H oxidase 4 (Nox4), a reactive oxygen species (ROS) Nox homologue, triggering endoplasmic reticulum (ER) stress, as assessed by the ER stress-induced apoptosis marker Growth Arrest and DNA Damage-inducible gene 153 (GADD153). We demonstrated that 3DG-collagen activated GADD153 via phosphorylation of p38 mitogen activated protein kinase (MAPK), and this was dependent on upstream ROS. Inhibition of ROS and/or p38 MAPK abrogated 3DG-collagen induced caspase-3 activation. Our investigations also demonstrated that 3DG-collagen-induced caspase-3 activation did not signal through the canonical receptor for advanced glycation end products (RAGE) but through integrin α1β1. To further verify the role of integrins, neutralization of integrins α1β1 prevented 3DG-collagen-induced upregulation of ROS, GADD153, and caspase-3 activation; suggesting that 3DG-collagen signaling to the fibroblast is dependent on integrins α1β1.

Conclusions/Significance

Taken together, these findings demonstrate for the first time that a RAGE independent mechanism is involved in 3DG-collagen-induced apoptosis. Moreover, the ER stress pathway through activation of Nox4 by integrins α1β1 plays a key role in 3DG-collagen-induced caspase-3 activation, which may play an important role in the pathogenesis of diabetic wounds.  相似文献   

13.

Introduction

Psychological stress may alter immune function by activating physiological stress pathways. Building on our previous study, in which we report that stress management training led to an altered self-reported and cortisol response to psychological stress in patients with rheumatoid arthritis (RA), we explored the effects of this stress management intervention on the immune response to a psychological stress task in patients with RA.

Methods

In this study, 74 patients with RA, who were randomly assigned to either a control group or a group that received short stress management training, performed the Trier Social Stress Test (TSST) 1 week after the intervention and at a 9-week follow-up. Stress-induced changes in levels of key cytokines involved in stress and inflammatory processes (for example, interleukin (IL)-6 and IL-8) were assessed.

Results

Basal and stress-induced cytokine levels were not significantly different in patients in the intervention and control groups one week after treatment, but stress-induced IL-8 levels were lower in patients in the intervention group than in the control group at the follow-up assessment.

Conclusions

In line with our previous findings of lower stress-induced cortisol levels at the follow-up of stress management intervention, this is the first study to show that relatively short stress management training might also alter stress-induced IL-8 levels in patients with RA. These results might help to determine the role of immunological mediators in stress and disease.

Trial registration

The Netherlands National Trial Register (NTR1193)  相似文献   

14.

Background

α-TEA (RRR-α-tocopherol ether-linked acetic acid analog), a derivative of RRR-α-tocopherol (vitamin E) exhibits anticancer actions in vitro and in vivo in variety of cancer types. The objective of this study was to obtain additional insights into the mechanisms involved in α-TEA induced apoptosis in human breast cancer cells.

Methodology/Principal Findings

α-TEA induces endoplasmic reticulum (ER) stress as indicated by increased expression of CCAAT/enhancer binding protein homologous protein (CHOP) as well as by enhanced expression or activation of specific markers of ER stress such as glucose regulated protein (GRP78), phosphorylated alpha subunit of eukaryotic initiation factor 2 (peIF-2α), and spliced XBP-1 mRNA. Knockdown studies using siRNAs to TRAIL, DR5, JNK and CHOP as well as chemical inhibitors of ER stress and caspase-8 showed that: i) α-TEA activation of DR5/caspase-8 induces an ER stress mediated JNK/CHOP/DR5 positive amplification loop; ii) α-TEA downregulation of c-FLIP (L) protein levels is mediated by JNK/CHOP/DR5 loop via a JNK dependent Itch E3 ligase ubiquitination that further serves to enhance the JNK/CHOP/DR5 amplification loop by preventing c-FLIP''s inhibition of caspase-8; and (iii) α-TEA downregulation of Bcl-2 is mediated by the ER stress dependent JNK/CHOP/DR5 signaling.

Conclusion

Taken together, ER stress plays an important role in α-TEA induced apoptosis by enhancing DR5/caspase-8 pro-apoptotic signaling and suppressing anti-apoptotic factors c-FLIP and Bcl-2 via ER stress mediated JNK/CHOP/DR5/caspase-8 signaling.  相似文献   

15.

Background

Macrophage death in advanced lesion has been confirmed to play an important role in plaque instability. However, the mechanism underlying lesion macrophage death still remains largely unknown.

Methods and Results

Immunohistochemistry showed that caspase-1 activated in advanced lesion and co-located with macrophages and TUNEL positive reaction. In in-vitro experiments showed that ox-LDL induced caspase-1 activation and this activation was required for ox-LDL induced macrophages lysis, IL-1β and IL-18 production as well as DNA fragmentation. Mechanism experiments showed that CD36 and NLRP3/caspase-1/pathway involved in ox-LDL induced macrophage pyroptosis.

Conclusion

Our study here identified a novel cell death, pyroptosis in ox-LDL induced human macrophage, which may be implicated in lesion macrophages death and play an important role in lesion instability.  相似文献   

16.

Background

Palmitate, a saturated fatty acid (FA), is known to induce toxicity and cell death in various types of cells. Resveratrol (RSV) is able to prevent pathogenesis and/or decelerate the progression of a variety of diseases. Several in vitro and in vivo studies have also shown a protective effect of RSV on fat accumulation induced by FAs. Additionally, endoplasmic reticulum (ER) stress has recently been linked to cellular adipogenic responses. To address the hypothesis that the RSV effect on excessive fat accumulation promoted by elevated saturated FAs could be partially mediated by a reduction of ER stress, we studied the RSV action on experimentally induced ER stress using palmitate in several cancer cell lines.

Principal Findings

We show that, unexpectedly, RSV promotes an amplification of palmitate toxicity and cell death and that this mechanism is likely due to a perturbation of palmitate accumulation in the triglyceride form and to a less important membrane fluidity variation. Additionally, RSV decreases radical oxygen species (ROS) generation in palmitate-treated cells but leads to enhanced X-box binding protein-1 (XBP1) splicing and C/EBP homologous protein (CHOP) expression. These molecular effects are induced simultaneously to caspase-3 cleavage, suggesting that RSV promotes palmitate lipoapoptosis primarily through an ER stress-dependent mechanism. Moreover, the lipotoxicity reversion induced by eicosapentaenoic acid (EPA) or by a liver X receptor (LXR) agonist reinforces the hypothesis that RSV-mediated inhibition of palmitate channeling into triglyceride pools could be a key factor in the aggravation of palmitate-induced cytotoxicity.

Conclusions

Our results suggest that RSV exerts its cytotoxic role in cancer cells exposed to a saturated FA context primarily by triglyceride accumulation inhibition, probably leading to an intracellular palmitate accumulation that triggers a lipid-mediated cell death. Additionally, this cell death is promoted by ER stress through a CHOP-mediated apoptotic process and may represent a potential anticancer strategy.  相似文献   

17.

Background

Our previous research indicated that apoptosis induced atrophy in the hippocampus of post-traumatic stress disorder (PTSD) rats. Endoplasmic reticulum (ER) stress-induced apoptosis has been implicated in the development of several disorder diseases. The aim of this study was to investigate whether endoplasmic reticulum-related pathway is involved in single-prolonged stress (SPS) induces apoptosis in the hippocampus of PTSD rats by examining the expression levels of three important indicators in the ER-related apoptotic pathway: Glucose-regulated protein (GRP) 78, caspase-12 and Ca2+/CaM/CaMkinaseIIα (CaMkIIα).

Methods

Wistar rats were sacrificed at 1, 4 and 7 days after SPS. SPS is a reliable animal model of PTSD. The apoptotic cells in the hippocampus were assessed by TUNEL method and transmission electron microscopy (TEM). Free intracellular Ca2+ concentration was measured. GRP78 expression was examined by immunohistochemistry, western blotting and RT-PCR. mRNA of caspase-12 and CaM/CaMkIIα were determined by RT-PCR.

Results

Our results showed that apoptotic cells were increased in the SPS rats. TEM analysis revealed characteristic morphological changes of apoptosis in these cells. We observed that GRP78 was significantly up-regulated during early PTSD, and then recovered at 7 days after SPS. By RT-PCR, we observed that the change in caspase-12 expression level was similar to that in GRP78. Moreover, the free intracellular Ca2+ concentration was significantly higher at 1 day after SPS and decreased in 7 days. CaM expression increased significantly, while CaMKIIα expression decreased significantly in the hippocampus at 1 day after SPS.

Conclusion

SPS induced change in the expression levels of GRP78, caspase-12 and Ca2+/CaM/CaMkIIα in the hippocampus of PTSD rats indicated that the endoplasmic reticulum pathway may be involved in PTSD-induced apoptosis.  相似文献   

18.
19.

Background

Experimental stress has been shown to have analgesic as well as allodynic effect in animals. Despite the obvious negative influence of stress in clinical pain conditions, stress-induced alteration of pain sensitivity has not been tested in humans so far. Therefore, we tested changes of pain sensitivity using an experimental stressor in ten female healthy subjects and 13 female patients with fibromyalgia.

Methods

Multiple sensory aspects of pain were evaluated in all participants with the help of the quantitative sensory testing protocol before (60 min) and after (10 and 90 min) inducing psychological stress with a standardized psychosocial stress test (“Trier Social Stress Test”).

Results

Both healthy subjects and patients with fibromyalgia showed stress-induced enhancement of pain sensitivity in response to thermal stimuli. However, only patients showed increased sensitivity in response to pressure pain.

Conclusions

Our results provide evidence for stress-induced allodynia/hyperalgesia in humans for the first time and suggest differential underlying mechanisms determining response to stressors in healthy subjects and patients suffering from chronic pain. Possible mechanisms of the interplay of stress and mediating factors (e.g. cytokines, cortisol) on pain sensitivity are mentioned. Future studies should help understand better how stress impacts on chronic pain conditions.  相似文献   

20.

Background

Episodic cessation of airflow during sleep in patients with sleep apnea syndrome results in intermittent hypoxia (IH). Our aim was to investigate the effects of IH on cerebellar granule cells and to identify the mechanism of IH-induced cell death.

Methods

Cerebellar granule cells were freshly prepared from neonatal Sprague-Dawley rats. IH was created by culturing the cerebellar granule cells in the incubators with oscillating O2 concentration at 20% and 5% every 30 min for 1-4 days. The results of this study are based on image analysis using a confocal microscope and associated software. Cellular oxidative stress increased with increase in IH. In addition, the occurrence of cell death (apoptosis and necrosis) increased as the duration of IH increased, but decreased in the presence of an iron chelator (phenanthroline) or poly (ADP-ribose) polymerase (PARP) inhibitors [3-aminobenzamide (3-AB) and DPQ]. The fluorescence of caspase-3 remained the same regardless of the duration of IH, and Western blots did not detect activation of caspase-3. However, IH increased the ratio of apoptosis-inducing factor (AIF) translocation to the nucleus, while PARP inhibitors (3-AB) reduced this ratio.

Results

According to our findings, IH increased oxidative stress and subsequently leading to cell death. This effect was at least partially mediated by PARP activation, resulting in ATP depletion, calpain activation leading to AIF translocation to the nucleus.

Conclusions

We suggest that IH induces cell death in rat primary cerebellar granule cells by stimulating oxidative stress PARP-mediated calpain and AIF activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号