首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interactions of various axial ligands with cytochrome P-450d wild type, proximal mutants (Lys453Glu, Ile460Ser), and putative distal mutants (Glu318Asp, Thr319Ala, Thr322Ala) expressed in yeast were studied with optical absorption spectroscopy. P-450d wild type and all five mutants were purified essentially as the high-spin form, but the putative distal mutants contained about 5% low-spin form. Bindings of metyrapone and 4-phenylimidazole to the wild type and all mutants formed nitrogen-bound low-spin forms. In contrast, binding of 2-phenylimidazole to the wild type and most of mutants formed oxygen-bond low-spin forms except for the mutant Glu318Asp in which the nitrogen-bound low-spin form was formed. By analogy with the distal structure of P-450cam, it was thus suggested that Glu318 of P-450d, which corresponds with Asp251 of P-450cam, somehow interacts with 2-phenylimidazole over the heme plane. Addition of 1-butanol and acetanilide, a substrate of P-450d, to the wild type and mutants caused the spin change to the low-spin form. The order of dissociation constants of these oxygen ligands to P-450d was wild type greater than proximal mutants greater than putative distal mutants. Spectral analyses showed that the binding of acetanilide is the same as that of another substrate, 7-ethoxycoumarin, in the putative distal mutants but is not the same in the wild type and proximal mutants. From these findings together with other spectral data, it was suggested that the region from Glu318 to Thr322 is located at the distal region of the heme in membrane-bound P-450d as suggested from the X-ray crystal structure of water-soluble P-450cam and amino acid alignments of P-450s.  相似文献   

2.
Catalytic activities toward benzphetamine and 7-ethoxycoumarin of 11 distal mutants, 9 proximal mutants, and 3 aromatic mutants of rat liver cytochrome P-450d were studied. A distal mutant Thr319Ala was not catalytically active toward benzphetamine, while this mutant retained activity toward 7-ethoxycoumarin. Distal mutants Gly316Glu, Thr319Ala, and Thr322Ala displayed higher activities (kcat/Km) toward 7-ethoxycoumarin that were 2.4-4.7-fold higher than that of the wild-type enzyme. Although kcat/Km values of four multiple distal mutants toward benzphetamine were less than half that of the wild type, activities of these mutants toward 7-ethoxycoumarin were almost the same as or higher than the wild-type activity toward this substrate. The distal double mutant Glu318Asp, Phe325Tyr showed 6-fold higher activity than the wild-type P-450d toward 7-ethoxycoumarin. Activities of the proximal mutants Lys453Glu and Arg455Gly toward both substrates were much lower (less than one-seventh) than the corresponding wild-type activities. Catalytic activities of three aromatic mutants, Phe425Leu, Pro427Leu, and Phe430Leu, toward benzphetamine were less than 7% of that of the wild type, while the activities of these aromatic mutants toward 7-ethoxycoumarin were more than 2.5 times higher than the wild-type activity toward this substrate. From these findings, in conjunction with a molecular model for P-450d, we suggest that (1) the relative importance to catalysis of various distal helix amino acids differs depending on the substrate and that these differences are associated with the size, shape, and flexibility of the substrate and (2) the proximal residue Lys453 appears to play a critical role in the catalytic activity of P-450d, perhaps by participating in forming an intermolecular electron-transfer complex.  相似文献   

3.
Low-temperature (6-40 K) electron spin resonance (ESR) spectra of cytochrome P-450d (P-450d) and its 17 mutants have been measured. The spectra of the wild-type and all mutant P-450ds showed signals at around g = 8, 3.7 and 1.7, while they didn't show any signal at around g = 2 up to 40 K. It was thus suggested that all of these P-450ds essentially take the ferric high-spin form. The g values of the proximal mutants were closer to those of the wild-type than those of the distal and aromatic mutants, suggesting that mutations at the distal and aromatic sites influence the electronic state of the heme more profoundly than those of the proximal site. The distal multiple mutants whose distal sequences are the same as those of the low-spin type P-450s such as rat P-450c, mouse P1-450 and P3-450 showed only high-spin ESR signals. Thus the spin state of P-450ds (the wild-type and all mutants) may not be solely due to specific characteristics of the distal site, but to the unique nature of the whole heme environment of P-450d. It is also suggested that the amino acids at the distal region of P-450d may be located close to the heme, so that the water molecule cannot bind to the heme, thus taking the high-spin state. Both the aromatic mutants showed rather large deviations of the g values from those of wild-type P-450d, suggesting that the aromatic region somehow interacts with the heme.  相似文献   

4.
By site-directed mutagenesis, we made several cytochrome P-450d (P-450d) mutants as follows: Asn310Phe (D13), Ile312Leu (D14), Glu318Asp (D15), Val320Ile (D16), Phe325Thr (D19), Asn310Phe,Ile312Leu (M6), Glu318Asp,Val320Ile (M7), Phe325Thr, Glu318Asp (M3). This region (Asn-310-Phe-325) is supposed to be located in the distal helix above the heme plane in P-450d, being conjectured from the structure of P-450cam. We studied Soret spectral changes of those mutants by adding several axial ligands such as aniline, pyridine, metyrapone, 2-phenylimidazole and 4-phenylimidazole. Binding constants (Kb) of aniline and pyridine to the single and double mutants were higher than those to the wild type by 2-10-times. The double mutations did not additively increase the Kb values compared with those to the single mutants. In contrast, Kb value (1.0.10(5) M-1) of metyrapone to the double mutant M3 was much higher than that (2.0.10(3) M-1) of the wild type and those of the single mutants, D15 (4.5.10(4) M-1) and D19 (1.6.10(4) M-1). The increased affinity of metyrapone to the mutant M3 may be attributed to an interaction of the hydrophobic group of metyrapone with nearby hydrophobic group(s) produced cooperatively by the double mutation of P-450d. Kb values of 2-phenylimidazole and 4-phenylimidazole to the mutant M3 were also the highest among those of the mutants and the wild type. Therefore, it was suggested that this region (from Asn-310 to Phe-325) must be located at the distal region of the heme moiety and form, at least, a substrate-binding region of membrane-bound P-450d.  相似文献   

5.
The kinetic parameters of CO binding to genetically engineered cytochrome P-450d (P-450d) and two putative distal mutants, Glu318Asp and Thr322Ala, have been evaluated in the presence and absence of polycyclic hydrocarbons. The dissociation constant (Kd) of CO from wild-type P-450d was decreased by half (from 1.8 microM to approximately 0.9 microM) in the presence of phenanthrene or anthracene but was increased to 11 microM in the presence of 1,2:3,4-dibenzanthracene or 7,8-benzoflavone. These changed Kd values were not altered markedly by mutations at the putative distal site. In contrast, the recombination rate constants (kon) of CO to the Glu318Asp mutant in the presence of phenanthrene (15.5 X 10(5) M-1 s-1) and 7,8-benzoflavone (0.75 X 10(5) M-1 s-1) were much larger than those for the wild type. Similar but smaller increases of the kon values were observed for the Thr322Ala mutant. It was suggested that phenanthrene and anthracene distort the Fe-C-O bond and/or affect the access of CO to wild-type P-450d in an opposite way from 1,2:3,4-dibenzanthracene and 7,8-benzoflavone. Glu318 and Thr322 may be located so close to a CO binding channel in ferrous P-450d that mutations of these residues can open the sterically hindered CO channel caused by the hydrocarbons.  相似文献   

6.
《Inorganica chimica acta》1988,153(3):161-164
By site-directed mutagenesis near the axial ligand, Cys456, of cytochrome P-450d (P-450d), we obtained five stable P-450d mutants, i.e. mutant (B), Gly450Ser; mutant (E), Lys453Glu; mutant (G), Arg455Gly; mutant (L), Glu459Ala and mutant (M), Ile460Ser. Bindings of aniline and fluoroaniline to the wild type P-450d and these five P-450d mutants were studied with difference absorption spectra at the Soret region. The following results were obtained: (i) binding constants (Kb) of fluoroaniline to wild P-450d were higher than those to cytochrome P-450scc by more than one order; (ii) Kb value of para-fluoroaniline to the wild P-450d was higher than those of aniline, ortho- or meta-fluoroaniline by two orders; (iii) Kb values of para-fluoroaniline to five mutants were lower than that to the wild type by more than one order; (iv) Kb values of para-fluoroaniline to the mutants (E) and (G) were the lowest among those to the five mutants and were lower than that to the wild type by two orders; (v) Kb values of aniline, ortho- and meta-fluoroaniline to mutant (B) were one order higher than those to the wild and other four mutants. These results indicate that the binding of the external axial ligand to the heme iron of P-450d is remarkably influenced by mutations at the proximal site possibly due to change in the polarity of the distal site and/or alteration of the secondary protein structure at the distal site.  相似文献   

7.
A spectral analysis of cytochromes P-450 in Saccharomyces cerevisiae cells and in mutant strains accumulating the ergosterol biosynthesis intermediates was carried out. Glucose repression and semianaerobiosis were found to induce cytochrome P-450 synthesis. No differences in the cytochrome P-450 content in mutant nys 3, nys 4 and parent strains were observed. Mutants nys 5 accumulated large amounts of cytochrome P-450. Cytochrome P-420 was detected in wild type strains and in mutants nys 3 and nys 4. The cultivation time and aeration conditions were shown to be unimportant for the generation of cytochrome P-420.  相似文献   

8.
9.
Rational evolution of a medium chain-specific cytochrome P-450 BM-3 variant   总被引:3,自引:0,他引:3  
The single mutant F87A of cytochrome P-450 BM-3 from Bacillus megaterium was engineered by rational evolution to achieve improved hydroxylation activity for medium chain length substrates (C8-C10). Rational evolution combines rational design and directed evolution to overcome the drawbacks of these methods when applied individually. Based on the X-ray structure of the enzyme, eight mutation sites (P25, V26, R47, Y51, S72, A74, L188, and M354) were identified by modeling. Sublibraries created by site-specific randomization mutagenesis of each single site were screened using a spectroscopic assay based on omega-p-nitrophenoxycarboxylic acids (pNCA). The mutants showing activity for shorter chain length substrates were combined, and these combi-libraries were screened again for mutants with even better catalytic properties. Using this approach, a P-450 BM-3 variant with five mutations (V26T, R47F, A74G, L188K, and F87A) that efficiently hydrolyzes 8-pNCA was obtained. The catalytic efficiency of this mutant towards omega-p-nitrophenoxydecanoic acid (10-pNCA) and omega-p-nitrophenoxydodecanoic acid (12-pNCA) is comparable to that of the wild-type P-450 BM-3.  相似文献   

10.
Steroid 17 alpha-hydroxylase and 17,20-lyase activities reside within the same polypeptide chain (cytochrome P-450(17 alpha)), and consequently human 17 alpha-hydroxylase deficiencies are characterized by defects in either or both of these activities. Human mutants having these deficiencies represent an excellent source of material for investigation of P-450(17 alpha) structure-function relationships. The CYP17 gene from an individual having partial combined 17 alpha-hydroxylase/17,20-lyase deficiency has been characterized structurally and the homozygous mutation found to be the deletion of the phenylalanine codon (TTC) at either amino acid position 53 or 54 in exon 1. Reconstruction of this mutation into a human P-450(17 alpha) cDNA followed by expression in COS 1 cells led to production of the same amount of immunodetectable P-450(17 alpha) protein as found with expression of the normal human P-450(17 alpha) cDNA. However, 17 alpha-hydroxylase activity of this mutant protein measured in intact cells was less than 37% of that observed upon expression of the wild-type enzyme, whereas 17,20-lyase activity of the mutant was less than 8% of that observed with the normal enzyme. When estimated in intact cells, the Km for 17 alpha-hydroxylation of progesterone was increased by a factor of 2 in the mutant enzyme, whereas the Vmax was reduced by a factor of 3. In order to estimate the kinetic parameters for the 17,20-lyase reaction, microsomes were isolated from transfected COS 1 cells to enrich for this activity. Surprisingly, the specific activity of the mutant 17 alpha-hydroxylase in microsomes was 3-fold less than that observed in intact cells, indicating that the structure of mutant P-450(17 alpha) was dramatically altered upon disruption of COS 1 cells. Apparently the deletion of a single phenylalanine in the N-terminal region of P-450(17 alpha) alters its folding in such a way that both enzymatic activities are dramatically decreased, leading to the partial combined deficiency observed in this individual.  相似文献   

11.
Y Imai  M Nakamura 《FEBS letters》1988,234(2):313-315
Threonine-301 from rabbit liver cytochromes P-450 (laurate (omega-1)-hydroxylase and testosterone 16 alpha-hydroxylase) has been replaced by histidine via site-directed mutagenesis. In the oxidized state the mutant P-450s exhibited typical low-spin type absorption spectra of P-450 and their reduced CO complexes showed a Soret peak at 450 nm. However, no spectral change was induced on addition of substrates for their wild-type counterparts. The mutant P-450s were also completely devoid of the hydroxylase activity. These findings suggest that threonine-301, which is highly conserved in P-450s and located at the distal heme surface, plays an important role in substrate binding.  相似文献   

12.
The conversion of androgens to estrogens is catalyzed by an enzyme complex named aromatase, which consists of a form of cytochrome P-450, aromatase cytochrome P-450 (cytochrome P-450AROM), and the flavoprotein, NADPH-cytochrome P-450 reductase. As a first step toward investigation of the structure-function relationships of cytochrome P-450AROM, we have used computer modeling to align the amino acid sequence of cytochrome P-450AROM with that of cytochrome P-450CAM from Pseudomonas putida and thus create a substrate pocket using the heme-binding region and the I-helix of cytochrome P-450CAM as the template. Site-directed mutagenesis was then carried out at two sites: one at a region that aligns with the bend in the I-helix of cytochrome P-450CAM and the other at a glutamate (Glu302) just N-terminal of this bend, which is predicted to be in close proximity to the C2-position of the androstenedione substrate. To determine the importance of the former region, three mutants were constructed: A307G (Ala307----Gly), P308V (Pro308----Val), and GAGV, which changed -Ile305-Ala306-Ala307-Pro308- to -Gly-Ala-Gly-Val- (the corresponding sequence found in 17 alpha-hydroxylase cytochrome P-450). When these proteins were expressed in COS-1 cells, it was found that the activity of P308V was approximately one-third that of the wild type. These observations are consistent with the concept that Pro308 causes a bend in the I-helix of cytochrome P-450AROM, similar to that observed in cytochrome P-450CAM, which is believed to be important in forming the substrate-binding pocket. The next set of mutants were designed to determine the importance of Glu302 in catalysis. Four mutants were prepared in which Glu302 was changed either to Ala, Val, Gln, or Asp, and the activities of the expressed proteins were examined. It was found that mutations in which the carboxylic acid was replaced were essentially devoid of activity. On the other hand, changing Glu302 to Asp resulted in a two-thirds reduction in the apparent Vmax. These results support the role of a carboxylic acid residue at position 302 in the catalytic activity of cytochrome P-450AROM.  相似文献   

13.
P-450 human-2 is a human cytochrome P-450 that is immunochemically related to a constitutive male-specific cytochrome P-450 (P-450-male) and the phenobarbital-inducible P-450b/e in rat liver. By screening a human liver cDNA library in bacteriophage lambda gt11, we isolated a clone with an insert length of 1,847 bases (pHY13). The clone was sequenced and shown to code for a protein of 487 amino acids. The N-terminal 11-amino-acid sequence was in agreement with the protein sequence of P-450 human-2. The nucleotide sequence of pHY13 showed less than 50% similarity with those of human cytochrome P-450s, pHP-450(1), HLp, P-450NF, P1-450 4, and P3(450), but the nucleotide sequence of pHY13 is 80% similar to the reported sequence of rat cytochrome P-450, P-450(M-1). In addition, the coding sequence of pHY13 showed close similarity to that of MP-8, which was recently reported as the sequence corresponding to human cytochrome P-450MP, although no apparent similarity was observed in their 3' non-coding sequences except for the first 75 bases and the expected length of the complete sequences. These results, together with the immunochemical data, indicate that P-450 human-2 is closely related, but not identical, to P-450MP, and may belong to the category of developmentally regulated constitutive cytochrome P-450s.  相似文献   

14.
Genetically engineered cytochrome b5 has been used to quantitative binding interactions of this protein with cytochrome P-450cam and sperm whale metmyoglobin by static fluorescence titration. Two cytochrome b5 mutants were constructed by cassette mutagenesis to replace a surface threonine residue with cysteine at two crystallographically defined positions, 65 and 8, located 11 and 21 A, respectively, from the nearest heme edge. The T65C and T8C mutant proteins were labeled with the sulfhydryl selective fluorescent reagent, acrylodan, which provided a spectral probe for monitoring protein-protein association. The fluorescence emission spectra of the acrylodan-labeled T65C mutant exhibited an ionic strength-dependent, blue-shifted fluorescence enhancement upon binding met-myoglobin, cytochrome c, and cytochrome P-450cam, whereas the acrylodan-labeled T8C mutant fluorescence emission remained unchanged during all titrations. Dissociation constants of 1.3, 0.6, and 0.5 microM, pH 7.15, were measured for metmyoglobin, cytochrome P-450cam, and cytochrome c, respectively. A similar averaged binding surface for cytochrome P-450cam and cytochrome c is suggested by their closely related degree of fluorescence enhancement, degree of emission blue shift, and binding free energies. Myoglobin binds less tightly, enhances fluorescence to a greater extent, and exhibits a larger blue shift in acrylodan emission spectra suggesting a different averaged binding orientation relative to the acrylodan probe.  相似文献   

15.
The activity of purified bovine adrenocortical P-450(11)beta on the C18-steroid, 4-estrene-3,17-dione (19-norandrostenedione), is described. The major steroid products were separated by HPLC and identified by GC-MS, and 1H- and 13C-NMR as 11 beta-, 18- and 6 beta-hydroxylated derivatives of 19-norandrostenedione. The turnover numbers of the 11 beta-, 18- and 6 beta-hydroxylase reactions were 45, 7.5 and 1.9 (mol/min/mol of P-450(11)beta), respectively, with a common Km of 44 microM. All of these activities required the presence of the electron donating system consisting of NADPH, adrenal ferredoxin (adrenodoxin) and its reductase. These findings provide additional insights into the versatile catalytic roles of P-450(11)beta in the adrenal cortex, in which it may act on C18-19-nor-steroids in addition to its known activities on C21- and C19-steroids.  相似文献   

16.
NADPH-cytochrome P-450 reductase is the electron transfer partner for the cytochromes P-450, heme oxygenase, and squalene monooxygenase and is a component of the nitric-oxide synthases and methionine-synthase reductase. P-450 reductase shows very high selectivity for NADPH and uses NADH only poorly. Substitution of tryptophan 677 with alanine has been shown to yield a 3-fold increase in turnover with NADH, but profound inhibition by NADP(+) makes the enzyme unsuitable for in vivo applications. In the present study site-directed mutagenesis of amino acids in the 2'-phosphate-binding site of the NADPH domain, coupled with the W677A substitution, was used to generate a reductase that was able to use NADH efficiently without inhibition by NADP(+). Of 11 single, double, and triple mutant proteins, two (R597M/W677A and R597M/K602W/W677A) showed up to a 500-fold increase in catalytic efficiency (k(cat)/K(m)) with NADH. Inhibition by NADP(+) was reduced by up to 4 orders of magnitude relative to the W677A protein and was equal to or less than that of the wild-type reductase. Both proteins were 2-3-fold more active than wild-type reductase with NADH in reconstitution assays with cytochrome P-450 1A2 and with squalene monooxygenase. In a recombinant cytochrome P-450 2E1 Ames bacterial mutagenicity assay, the R597M/W677A protein increased the sensitivity to dimethylnitrosamine by approximately 2-fold, suggesting that the ability to use NADH afforded a significant advantage in this in vivo assay.  相似文献   

17.
Monoclonal antibodies developed to cytochrome P-450 1, some of which react with proteins in addition to P-450 1, were used to investigate the differential expression of P-450 1 dependent 21-hydroxylase activity in renal tissue of rabbits exhibiting differences in hepatic 21-hydroxylase activity. Using immunohistochemical techniques, the monoclonal antibodies, 2F5 and 3C3, localized protein in the S2 and S3 segments of the proximal tubule in the renal cortex. These two monoclonal antibodies, 2F5 and 3C3, reacted with a kidney protein that migrated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a relative electrophoretic mobility that did not correspond to known rabbit hepatic isozymes and was termed P-450 K. Antibodies specific for P-450 1 and 3b, 1F11 and 8-27, respectively, produced no staining in kidney. The protein recognized by the 2F5 and 3C3 antibodies is immunologically distinct from cytochrome P-450s 1, 2, and 3b. The rate of 21-hydroxylation of progesterone was shown to be approximately 100-fold less in kidney than liver microsomes where this pathway is largely catalyzed by P-450 1. The activity of the kidney microsomes was not inhibited by antibodies directed to P-450 1. In addition, the variation observed for the 21-hydroxylase activity in the hepatic microsomal fraction of outbred New Zealand white rabbits was not evident in kidney microsomes from these same animals. The 2F5 antibody was found, however, to be inhibitory (about 50%) of the 11-hydroxylation of lauric acid in kidney microsomes. This suggests that P-450 K participates in lauric acid 11-hydroxylase activity. The treatment of rabbits with phenobarbital, but not 2,3,7,8-tetrachlorodibenzo-p-dioxin, was found to induce the levels of P-450 K.  相似文献   

18.
Transient accumulation of a dihydroxylated steroid was found when 22R-hydroxycholest-4-en-3-one was used as the substrate for a reconstituted cholesterol side-chain cleavage system derived from bovine adrenocortical mitochondria. The indications were that the accumulated steroid was an intermediate in the cytochrome P-450scc-catalyzed reaction. The retention time of the accumulated intermediate was identical with that of authentic 20,22-dihydroxycholest-4-en-3-one on HPLC. When 22R-hydroxycholesterol and 22R-hydroxycholest-4-en-3-one were incubated simultaneously, the total amount of reaction products was essentially the same as that observed with 22R-hydroxycholest-4-en-3-one alone. Under the conditions employed, the apparent turnover number of cytochrome P-450scc for 22R-hydroxycholesterol was calculated to be 77 nmol/min/nmol P-450 from the amount of pregnenolone formed, whereas the apparent turnover number for 22R-hydroxycholest-4-en-3-one was 64 nmol/min/nmol P-450 with respect to the intermediate formation and 77 nmol/min/nmol P-450 with respect to the progesterone formation. The apparent turnover number for 20,22-dihydroxycholest-4-en-3-one was about 125 nmol/min/nmol P-450, which was not significantly different from that of 20,22-dihydroxycholesterol. The apparent Km for 22R-hydroxycholesterol was about 20 microM and those for 22R-hydroxycholest-4-en-3-one and 20,22-dihydroxycholest-4-en-3-one were 50 and 40 microM, respectively. Thus, 22R-hydroxycholest-4-en-3-one was efficiently metabolized to progesterone by way of 20,22-dihydroxycholest-4-en-3-one by cytochrome P-450scc.  相似文献   

19.
Previous studies of erythromycin biosynthesis have indicated that a cytochrome P-450 monooxygenase system is responsible for hydroxylation of 6-deoxyerythronolide B to erythronolide B as part of erythromycin biosynthesis in Saccharopolyspora erythraea (A. Shafiee and C. R. Hutchinson, Biochemistry 26:6204-6210 1987). The enzyme was previously purified to apparent homogeneity and found to have a catalytic turnover number of approximately 10(-3) min-1. More recently, disruption of a P-450-encoding sequence (eryF) in the region of ermE, the erythromycin resistance gene of S. erythraea, produced a 6-deoxyerythronolide B hydroxylation-deficient mutant (J. M. Weber, J. O. Leung, S. J. Swanson, K. B. Idler, and J. B. McAlpine, Science 252:114-116, 1991). In this study we purified the catalytically active cytochrome P-450 fraction from S. erythraea and found by using sodium dodecyl sulfate-polyacrylamide gel electrophoresis that it consists of a major and a minor P-450 species. The gene encoding the major species (orf405) was cloned from genomic DNA and found to be distinct from eryF. Both the orf405 and eryF genes were expressed in Escherichia coli, and the properties of the proteins were compared. Heterologously expressed EryF and Orf405 both reacted with antisera prepared against the 6-deoxyerythronolide B hydroxylase described by Shafiee and Hutchinson (1987), and the EryF polypeptide comigrated with the minor P-450 species from S. erythraea on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels. In comparisons of enzymatic activity, EryF hydroxylated a substrate with a turnover number of 53 min-1, whereas Orf405 showed no detectable activity with a 6-deoxyerythronolide B analog. Both enzymes showed weak activity in the O-dealkylation of 7-ethoxycoumarin. We conclude that the previously isolated 6-deoxyerythronolide B hydroxylase was a mixture of two P-450 enzymes and that only the minor form shows 6-deoxyerythronolide B hydroxylase activity.  相似文献   

20.
Interactions of phenyl isocyanide (PheNC) with purified engineered cytochrome P450d wild type and putative distal mutants, Glu318Asp and Glu318Ala, were studied with optical absorption spectra. The wild type and the mutant Glu318Asp were purified as the high-spin state, while the mutant Glu318Ala was purified as the oxygen-bound low-spin form. Thus, it is suggested that Glu318 is important to make the appropriate heme environment of P450d. Spectral dissociation constants (0.19-0.39 mM) of the ligand for the ferric mutants were lower than that (0.74 mM) of the wild type. These dissociation constants were changed by adding a substrate, 7-ethoxycoumarin. The reduced wild type-PheNC complex showed a Soret peak at 451 nm, while the reduced mutant-PheNC complexes showed two peaks at 451 and 423 nm. The 451-nm peak of the complexes decreased with the concomitant increase of a new peak at 433 nm at room temperature. Thus, it was suggested that P450d can take two conformationally different forms from the characteristic spectral features. The Soret spectral conversions which followed the first-order kinetics were analyzed by changing the temperature. The activation energy (69 kcal/mol) for the conversion for the wild type was higher than those (37-50 kcal/mol) for the mutants. The activation energy for the wild type further increased (by 55%) by adding the substrate, while those for the mutants were essentially unchanged by adding the substrate. We discuss the important role of Glu318 at the putative distal site of P450d in the packing or the conformational stability of the putative distal site of the P450d molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号