首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The method for the determination of bacterial antibodies to group B meningococci was worked out. The method was used for the determination of antibodies to group B meningococcal vaccine produced in the USSR. The dynamic study of antibodies to protein, polysaccharide and lipopolysaccharide antigens of group B meningococci was made by the method of the enzyme immunoassay (EIA), and the safety of the vaccine was studied by the determination of autoantibodies active against brain tissue antigens. The data thus obtained were indicative of the immunological activity of group B protein-polysaccharide vaccines, manifested by the capacity for stimulating bactericidal antibodies whose level increased 8- to 10-fold after the immunization of monkeys in 2 and 3 injections. Similarity in the dynamics of the formation of bacteriolysins and antibodies to protein antigen, as determined in EIA, was noted. The vaccine was found to stimulate no cytotoxic anticerebral antibodies in the glia migration test, which was indicative of the safety of group B meningococcal vaccine.  相似文献   

2.
The comparative study of two group B meningococcal vaccines manufactured in the USSR and in Cuba was made. The vaccine manufactured in the USSR contained the noncovalent compound of group B Neisseria meningitidis polysaccharide and outer membrane protein, and the Cuban vaccine contained group B N. meningitidis outer membrane proteins and group C N. meningitidis polysaccharide. The data obtained in this study indicated that both vaccines possessed immunological potency evaluated according to their capacity to stimulate the formation of bactericidal antibodies, whose level was found to increase eightfold after the immunization of monkeys in two injections. Besides, group B meningococcal vaccines did not induce the suppression of nonspecific protective activity characteristics of the body and did not stimulate the formation of autoantibodies to brain and liver tissues, which was indicative of the safety of these vaccines.  相似文献   

3.
Control of meningococcal meningitis with meningococcal vaccines.   总被引:1,自引:0,他引:1       下载免费PDF全文
The development of effective meinigococcal vaccines was based upon the finding that immunity to the meningococcus was directly correlated with serum bactericidal antibodies. Purified high molecular weight capsular polysaccharides of serogroups A and C meningococci stimulated the production of humoral antibodies which had group specific bactericidal activity. In controlled field trials in Army recruits, group C polysaccharide vaccines were highly effective in preventing group C disease. Following its use as a routine immunization in recruits in October 1971 group C meningococcal disease has been almost completely eliminated from Army training centers. Group A vaccine has been field tested in Egyptian school children with great success. Group B polysaccharide has failed to induce bactericidal antibodies in humans and, therefore, new research is underway to attempt to develop a cell wall protein antigen as a vaccine against group B disease.  相似文献   

4.
Abstract Since 1988, N. meningitidis , B:4:P1.15, ET-5 complex, has been responsible for an epidemic of meningococcal disease in Greater São Paulo, Brazil. Despite current trials to develop an effective vaccine against group B meningococci, children less than 2 years old have not been protected. It has been suggested that iron-regulated proteins (IRPs) should be considered as potential antigens for meningococcal vaccines. The vaccines under study consisted of outer-membrane vesicles depleted of lipooligosaccharide from three serogroup B strains and one serogroup C strain, IRPs, meningococcal group C polysaccharide and aluminum hydroxide. Four different protein and C polysaccharide concentrations were studied. The ELISA and bactericidal results showed a higher antibody response when 2 injections of 2.0 μg doses were administered. Despite higher IgG reactivity against antigen preparations containing IRPs seen in ELISA, the bactericidal activity was not increased if the target strain was grown in iron-restricted medium. The influence of addition of alkaline-detoxified lipooligosaccharide (dLOS) on immunogenicity of the vaccine was also investigated, and the dLOS provided for a more functionally specific antibody response.  相似文献   

5.
The class 1 outer membrane protein of Neisseria meningitidis B:15:P1.7, 16 was expressed in Bacillus subtilis in high yield as intracellular aggregates. These were easy to isolate and the protein (called BacP1) could be solubilized under denaturing conditions. Sera of mice immunized with thus-solubilized BacP1 contained high titres of antibodies that reacted with the class 1 protein of the meningococcal envelope in immunoblots but did not react with native meningococcal envelope in enzyme immunoassays (EIA) or with intact meningococci in bactericidal assays. However, when the BacP1 protein was complexed with heterologous (Salmonella) lipopolysaccharide, the ensuing sera reacted with meningococcal envelope preparations in both EIA and immunoblots, showed subtype-specific bactericidal activity, and were protective in an infant rat meningitis model.  相似文献   

6.
Synthetic peptides derived from the predicted loops 1 and 4 of meningococcal PorA, sero-subtype P1.7,16, were used to study the epitope specificity of murine and human PorA P1.7,16 bactericidal antibodies. The predicted loops 1 and 4 are surface exposed and carry in their apices the sero-subtype epitopes P1.7 (loop 1) or P1.16 (loop 4), respectively. Peptides were synthesized as mono- and multimeric peptides. Murine monoclonal and polyclonal antibodies were induced with meningococcal whole cell preparations. Polyclonal antibodies were evoked in volunteers after one immunization with 50 μg or 100 μg protein of a hexavalent meningococcal PorA vesicle vaccine. The induction of PorA antibodies was determined in ELISA using purified PorA P1.7,16. The epitope specificity of anti-PorA antibodies for both murine and human antibodies could be demonstrated by direct peptide ELISA using overlapping multimeric peptides almost spanning the entire loops 1 or 4 of the protein. The capacity of peptides to inhibit the bactericidal activity of murine and human antibodies was investigated using meningococcal strain H44/76 (B:15:P1.7,16) as a target strain. Bactericidal activities could be inhibited with both monomeric and multimeric peptides derived from epitopes P1.7 and P1.16.  相似文献   

7.
Group B meningococcal vaccine consisting of the natural complex of specific polysaccharide and outer membrane protein (OMP) has been shown to be moderately reactogenic, safe with respect to the effect of undermining tolerance to human brain tissue antigens and to produce no allergization of humans. The vaccine under study possesses antigenic activity: (a) immunization with this vaccine ensures the fourfold rise of the level of antibodies to the group-specific polysaccharide of group B meningococcus in about 80% of persons with the initially low level of antibodies, this percentage being retained during the whole period of observation, i. e. 85 days; (b) the vaccine enhances the level of antibodies to meningococcal OMP, determined in the enzyme immunoassay and the passive hemagglutination test; (c) these data are indicative of the expediency of immunizing the risk groups of persons with the initially low level of antibodies.  相似文献   

8.
Several different meningococcal outer membrane protein vaccines have been prepared and used in human safety and immunogenicity studies. The results of these studies have led to some general conclusions regarding the human antibody response to these vaccines. A review of these conclusions, however, indicates that a number of important questions and problems still need to be addressed. Two of these are the determination of the protective level of bactericidal antibody in human serum and the impact of phase variation of surface antigens on vaccine strategy. Bactericidal assays using intrinsic complement and high concentrations of serum suggest that the level of natural immunity to group B meningococci is quite high, but is increased by vaccination with outer membrane protein vaccine. Phase variation in meningococcal surface antigens including capsule, class 1 protein, class 5 protein, and lipopolysaccharide was demonstrated using colony blotting with monoclonal antibodies. Phase variation resulted in differences in susceptibility to the bactericidal activity of human sera.  相似文献   

9.
Purified H.8 (Lip) antigen was coupled to tresyl-activated Sepharose 4B and used in affinity columns to purify anti-Lip antibodies from convalescent patient sera and from immune rabbit sera. Affinity-purified anti-Lip antibodies isolated from two convalescent patient sera contained 1000 and 1280 ELISA units of antibody and included antibodies of IgG, IgA, and IgM isotypes. An anti-Lip mouse monoclonal ascites (2-1-CA2) had 28,400 ELISA units of antibody. Bactericidal assays were performed using three different case strains of Neisseria meningitidis group B, namely 44/76, 8532, and 8047. Neither preparation of purified human anti-Lip antibodies had detectable bactericidal activity against strains 44/76 and 8532, but one of the two had a titer of 1:4 against strain 8047. Anti-Lip antibodies that were purified from immune rabbit serum and contained 1600 ELISA units of anti-Lip antibodies also failed to show detectable bactericidal activity. The rabbits were immunized with purified Lip antigen and showed specific antibody levels of 2000-2200 units by ELISA, but even the unfractionated sera had little or no bactericidal activity against the test strains. The high titer mouse monoclonal ascites had no bactericidal activity against the test strains. The poor bactericidal activity associated with monoclonal and polyclonal antibodies to the Lip antigen suggest that in spite of other attractive properties it may not be useful as a meningococcal vaccine.  相似文献   

10.
Neisseria meningitidis is a major cause of meningitis and sepsis. Despite nearly 25 years of work, there is no promising vaccine candidate for prevention of disease caused by meningococcal B strains. This review summarizes newer approaches for eliciting protective meningococcal B immune responses, including the use of molecular mimetics of group B polysaccharide and conserved membrane proteins as immunogens. The capsular polysaccharide of this organism is conserved and serum antibody to this capsule confers protection against disease. However, the immunogenicity of meningococcal B polysaccharide-based vaccines is poor. Further, a portion of the antibody elicited has autoantibody activity. Recently, our laboratory produced a panel of murine monoclonal antibodies (Mabs) that react specifically with capsular polysaccharide epitopes on meningococcal B that are distinct from host polysialic acid. These Mabs elicit complement-mediated bactericidal activity and confer passive protection in animal models. The anti-capsular Mabs were used to identify molecular mimetics from phage display peptide libraries. The resulting peptides were antigenic mimetics as defined by binding to the Mabs used to select them but, to date, are poor immunogenic mimetics in failing to elicit anti-capsular antibodies.  相似文献   

11.
Outer membrane proteins (OMPs) were isolated from meningococcal strain H44/76 (B:15:P1.16) by detergent extraction of bacteria. A final product containing class 1 (P1.16), 3(15), 4 OMPs and 5% (w/w) lipooligosaccharide was obtained. Two experimental vaccines were prepared: OMP-detergent and OMP-C polysaccharide. The OMP-detergent vaccine tended to show a better bactericidal: ELISA ratio for the antibodies induced as compared to the OMP-C polysaccharide vaccine. The vaccine induced bactericidal antibodies appeared for the greater part to be directed against the class 1 OMP (P1.16). By comparison of cultures grown in Mueller Hinton Broth with and without 0,25% (w/v) glucose, it was found that monoclonal antibodies against the serotype OMP (class 2 or 3) were not bactericidal against meningococci grown in MHB without glucose. Antibodies against class 1 OMP and lipooligosaccharide were not influenced by this. A new major outer membrane protein (appr. 40kd) is described that may function as a cation-specific porin.  相似文献   

12.
The N-propionylated group B meningococcal polysaccharide mimics a unique bactericidal epitope on the surface of group B meningococci and Escherichia coli K1. This was confirmed when both the above organisms were able to absorb the bactericidal antibodies from a mouse-anti-N-propionylated group B meningococcal polysaccharide-tetanus toxoid conjugate serum. By using affinity columns it was possible to divide the conjugate antiserum into three distinct populations of both group B polysaccharide cross-reactive and non-cross-reactive antibodies, one of which contained most of the bactericidal activity. The cross-reactive (IgG1) antibodies were absorbed by an affinity column in which the group B polysaccharide was linked to the solid support by a long spacer arm, thereby isolating a population of non-cross-reactive (IgG1) antibodies. Surprisingly the above column also retained another population of non-cross-reactive (IgG2a) and (IgG2b) antibodies which contained most of the bactericidal activity. These latter antibodies were not absorbed by a similar group B polysaccharide-affinity column in which a short spacer arm was employed. Thus the above experiments not only effected a separation of highly bactericidal antibodies but also provided evidence that the long spacer arm is functional in the binding of the bactericidal antibodies to the affinity column. This indicates that the bactericidal epitope is mimicked by the group B polysaccharide in the presence of the long spacer arm, which supports the hypothesis that the epitope is polysaccharide-associated and is probably intermolecular in nature.  相似文献   

13.
Ab-initiated, complement-dependent killing contributes to host defenses against invasive meningococcal disease. Sera from nonimmunized individuals vary widely in their bactericidal activity against group B meningococci. We show that IgG isolated from select individuals can block killing of group B meningococci by human sera that are otherwise bactericidal. This IgG also reduced the bactericidal efficacy of Abs directed against the group B meningococcal protein vaccine candidates factor H-binding protein currently undergoing clinical trials and Neisserial surface protein A. Immunoblots revealed that the blocking IgG was directed against a meningococcal Ag called H.8. Killing of meningococci in reactions containing bactericidal mAbs and human blocking Abs was restored when binding of blocking Ab to meningococci was inhibited using either synthetic peptides corresponding to H.8 or a nonblocking mAb against H.8. Furthermore, genetic deletion of H.8 from target organisms abrogated blocking. The Fc region of the blocking IgG was required for blocking because F(ab')(2) fragments were ineffective. Blocking required IgG glycosylation because deglycosylation with peptide:N-glycanase eliminated blocking. C4b deposition mediated by an anti-factor H-binding protein mAb was reduced by intact blocking IgG, but not by peptide:N-glycanase-treated blocking IgG, suggesting that blocking resulted from inhibition of classical pathway of complement. In conclusion, we have identified H.8 as a meningococcal target for novel blocking Abs in human serum. Such blocking Abs may reduce the efficacy of select antigroup B meningococcal protein vaccines. We also propose that outer membrane vesicle-containing meningococcal vaccines may be more efficacious if purged of subversive immunogens such as H.8.  相似文献   

14.
The formulation of a broadly protective vaccine to prevent the serogroup B Neisseria meningitidis (MenB) disease is still an unmet medical need. We have previously reported the induction of bactericidal and protective antibodies against MenB after immunization of mice with a phage-displayed peptide named 4 L-5. This peptide mimics a capsular polysaccharide (CPS) epitope in MenB. With the aim of developing vaccine formulations that could be used in humans, we evaluate in this study various forms of presentation to the immune system of the 4 L-5 sequence, based on synthetic peptides. We synthesized the following: (i) a linear 4 L-5 peptide, (ii) a multiple antigen peptide containing four copies of the 4 L-5 sequence (named MAP), which was then dimerized, and the product named dimeric MAP, and (iii) a second multiple antigen peptide, in this case with two copies of the 4 L-5 sequence and a copy of a T-helper cell epitope of tetanus toxoid, which was then dimerized and the product named MAP-TT. The linear peptide, the MAP, and the dimeric MAP were conjugated to the carrier protein P64K by different conjugation methods. Plain antigens and antigens coupled to P64K were used to immunize BALB/c mice. Of those variants that gave immunogenic results, MAP-TT rendered the highest levels of specific antipeptide IgG antibodies and serum bactericidal activity. These results can find application in the development of meningococcal vaccine candidates and in peptide-based vaccines strategies.  相似文献   

15.
Molecular mimetic Ags are of considerable interest as vaccine candidates. Yet there are few examples of mimetic Ags that elicit protective Ab against a pathogen, and the functional activity of anti-mimetic Abs has not been studied in detail. As part of the Neisseria meningitidis serogroup B genome sequencing project, a large number of novel proteins were identified. Herein, we provide evidence that genome-derived Ag 33 (GNA33), a lipoprotein with homology to Escherichia coli murein transglycosylase, elicits protective Ab to meningococci as a result of mimicking an epitope on loop 4 of porin A (PorA) in strains with serosubtype P1.2. Epitope mapping of a bactericidal anti-GNA33 mAb using overlapping peptides shows that the mAb recognizes peptides from GNA33 and PorA that share a QTP sequence that is necessary but not sufficient for binding. By flow cytometry, mouse antisera prepared against rGNA33 and the anti-GNA33 mAb bind as well as an anti-PorA P1.2 mAb to the surface of eight of nine N. meningitidis serogroup B strains tested with the P1.2 serosubtype. Anti-GNA33 Abs also are bactericidal for most P1.2 strains and, for susceptible strains, the activity of an anti-GNA33 mAb is similar to that of an anticapsular mAb but less active than an anti-P1.2 mAb. Anti-GNA Abs also confer passive protection against bacteremia in infant rats challenged with P1.2 strains. Thus, GNA33 represents one of the most effective immunogenic mimetics yet described. These results demonstrate that molecular mimetics have potential as meningococcal vaccine candidates.  相似文献   

16.
This study reports the preliminary assessment of the safety and immunogenicity of the first serogroup C conjugate vaccine candidate that includes meningococcal P64k recombinant protein as the carrier (MenC/P64k). Twenty volunteers were recruited for a double-blind, randomized, controlled phase I clinical trial, receiving a single dose of MenC/P64k (study group) and a single dose of the commercial polysaccharide vaccine AC (control group). Only mild reactions were observed. No statistical differences were detected between the antipolysaccharide C IgG responses of both groups as well as between bactericidal serum titre (P > 0.05). The MenC/P64k vaccine was found to have a good safety profile, to be well tolerated and immunogenic.  相似文献   

17.
The results of clinico-immunological examination of 181 children, aged 1 month to 6 years, with generalized forms of meningococcal infection are presented. In children under observation antimeningococcal antibodies to group-specific meningococci of the main groups A, B and C were determined over the course of the disease by passive hemagglutination (PHA) test and enzyme immunoassay (EIA). The level and frequency of seroconversion were found to depend on the patient's age and the severity of the clinical course of meningococcal infection. Antibody level was found to increase simultaneously with respect to several meningococcal polysaccharides: A, B in 18.5% and A, B, C in 3.3% of cases. In the clinical interpretation of data obtained in the PHA test and EIA not only the patient's age, the form and duration of meningococcal infection, but also serotherapy should be taken into consideration, as the latter may distort the serological results.  相似文献   

18.
Immunization with the polypeptide fragment of group A streptococcal protein M conjugated with the copolymer of acrylic acid and N-vinylpyrrolidone in complete Freund's adjuvant has been found to lead to a sharp increase in the level of antibodies to the type-specific determinants of protein M, detected in the enzyme immunoassay (EIA). The possibility of the application of such sera to preliminary typing of streptococci in EIA with the use of whole microbial cells as antigens has been shown. The data on high activity of the sera thus obtained in the bactericidal test with streptococci of the homologous type are presented. Recommendations on the use of sera obtained by the above method for highly precise typing of the virulent cultures of group A streptococci in the bactericidal test are given.  相似文献   

19.
There has been a decrease in the prevalence of disease in the United States due to meningococcal serotypes 2a and 2b containing class 2 proteins with a concomitant increase in nonserotypable strains containing class 3 major outer membrane proteins. A new disease associated strain was identified using monoclonal antibodies as B:4:P1.15. Serotype 4 strains have been heretofore solated almost only from carriers. This B:4:P1.15 strain predominated among group B disease isolates in Cuba from the late 1970s to the present and among Miami, Florida isolates recovered in 1981 and 1982. To determine whether protein vaccines for new strains or serotypes could be prepared using our present methods, a combined vaccine was prepared from a group B strain (B:8:P1.15) recovered during a recent outbreak in Virginia, and a serotype 2b strain, plus group C polysaccharide. The vaccine was prepared with aluminum hydroxide, or with trehalose dimycolate plus monophosphoryl lipid A, or without adjuvant. Four weeks after immunization antibody levels were much higher in mice that received vaccine containing adjuvant.  相似文献   

20.

Background:

The multicomponent serogroup B meningococcal (4CMenB) vaccine was recently licensed for use in Europe. There are currently no data on the persistence of bactericidal antibodies induced by use of this vaccine in infants. Our objective was to evaluate serogroup B–specific bactericidal antibodies in children aged 40–44 months previously vaccinated at 2, 4, 6 and 12 months of age.

Methods:

Participants given 4 doses of 4CMenB as infants received a fifth dose of the vaccine at 40–44 months of age. Age-matched participants who were MenB vaccine–naive received 4CMenB and formed the control group. We evaluated human complement serum bactericidal activity (hSBA) titres at baseline and 1 month after each dose of 4CMenB.

Results:

Before a booster dose at enrolment, 41%–76% of 17 participants previously vaccinated with 4CMenB in infancy had hSBA titres of 4 or greater against 4 reference strains. Before vaccination in the control group (n = 40) these proportions were similar for strains 44/76-SL (63%) and M10713 (68%) but low for strains NZ98/254 (0%) and 5/99 (3%). A booster dose in the 4CMenB-primed participants generated greater increases in hSBA titres than in controls.

Interpretation:

As has been observed with other meningococcal vaccines, bactericidal antibodies waned after vaccination with 4CMenB administered according to an approved infant vaccination schedule of 2, 4, 6 and 12 months of age, but there was an anamnestic response to a booster dose at 40–44 months of age. If 4CMenB were introduced into routine vaccination schedules, assessment of the need for a booster dose would require data on the impact of these declining titres on vaccine effectiveness. ClinicalTrials.gov, no. NCT01027351A vaccine against serogroup B meningococcus has recently been licensed for use in Europe1 and is being considered for licensure in Canada. This vaccine, known as multicomponent serogroup B meningococcal (4CMenB) vaccine, consists of 3 recombinant proteins: factor H binding protein (fHbp), Neisseria adhesin A (NadA) and Neisseria heparin binding antigen (NHBA) combined with detoxified outer membrane vesicles from the strain responsible for an epidemic of serogroup B meningococcal disease in New Zealand (NZ98/254). Clinical trials of 4CMenB have shown it to be immunogenic against reference strains selected to speciScally express one of the vaccine antigens.26 On the basis of these trials, the approved schedule for infants aged 2 to 5 months is 3 doses given at least 1 month apart, with a booster dose given at 12 to 23 months of age.7 The persistence of vaccine-induced antibodies throughout childhood following this booster dose is unknown, but it is particularly relevant because the incidence of invasive serogroup B meningococcal disease in children aged 1 to 4 years is second only to the incidence in children less than 1 year of age.8In this study, we assessed the persistence of these bactericidal antibodies in children aged 40–44 months who had previously received either 4CMenB or a vaccine containing the recombinant proteins alone (recombinant protein serogroup B meningococcal [rMenB] vaccine) at 2, 4, 6 and 12 months of age.3 We also assessed the immunogenicity and reactogenicity of a booster dose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号