首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
In the human transferrin gene promoter, PRI and DRI are positive cis-acting elements interacting respectively with two families of proteins, Tf-LF1 and Tf-LF2. In this paper, we report the purification from rat liver nuclei, of one of these factors, PYBP, as well as the cloning and the sequencing of its cDNA. PYBP is a DNA-binding protein, purified as a 58 kDa doublet which binds only to single strand pyrimidine-rich DNA present for example in PRI and DRI. The protein binds also to a similar polypyrimidine tract present in one of the two strands of a DNA regulatory element of the rat tyrosine aminotransferase gene enhancer. PYBP gene is transcribed ubiquitously as a roughly 2.8 kb RNA which is likely to be subject to an alternative splicing. PYBP is highly homologous to a mouse nuclear protein, as well as to PTB, its human version, which interacts specifically with the pyrimidine tracts of introns. Primary structure information and predicted secondary structure elements of the protein indicate that PYBP contains four sequence repeats. Each of these repeats appears to exhibit the typical RNA recognition motif found in several proteins interacting with RNA or single strand DNA. Finally several hypotheses concerning the biological function of PYBP are presented.  相似文献   

2.
3.
4.
A novel regulatory element which contributes to the regulation of quantitative, tissue-specific differences in gene expression has been found between -771 and -676 bp upstream of the major histocompatibility complex (MHC) class I gene, PD1. Molecular dissection of this element reveals the presence of two overlapping functional activities: an enhancer and a silencer. Distinct nuclear factors bind to the overlapping enhancer and silencer DNA sequence elements within the regulatory domain. The levels of factors binding the silencer DNA sequence in different cell types are inversely related to levels of class I expression; in contrast, factors binding the enhancer DNA sequence can be detected in all cells. In cultured cell lines, inhibition of protein synthesis leads to the rapid loss of silencer complexes, with a concomitant increase in both enhancer complexes and MHC class I RNA. From these data, we conclude that a labile silencer factor competes with a constitutively expressed, stable enhancer factor for overlapping DNA-binding sites; the relative abundance of the silencer factor contributes to establishing steady-state levels of MHC class I gene expression.  相似文献   

5.
Isolation and characterization of a human U3 small nucleolar RNA gene   总被引:11,自引:0,他引:11  
U3 RNA is an abundant, capped, small nucleolar RNA, implicated in the processing of preribosomal RNA. In this study, a DNA clone coding for U3 RNA (clone U3-1) was isolated from a human genomic library and characterized. The DNA sequence was identical to that of human U3 RNA isolated from HeLa cells. The flanking regions showed homology to the enhancer, promoter, and 3'-processing signal found in U1 and U2 snRNA genes. Further, the recently identified "U3 box" (GATTGGCTGCN10TATGTTAATTATGG) of rat U3 genes (Stroke and Weiner, (1985) J. Mol. Biol. 184, 183-193), was also found in the human U3 gene. This gene was transcribed in Xenopus oocytes; it is the first cloned true human U3 gene.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
MyoD is a skeletal muscle-specific protein that is able to induce myogenesis in a wide variety of cell types. In this report, we show that MyoD is a DNA binding protein capable of specific interaction with two regions of the mouse muscle creatine kinase gene upstream enhancer, both of which are required for full muscle-specific enhancer activity. MyoD shares antigenicity and DNA binding specificity with MEF1, a myocyte-specific DNA binding factor. The contiguous basic and myc homology regions of MyoD that are necessary and sufficient for specific DNA interaction are the same regions of the protein required to convert 10T1/2 fibroblasts into muscle. These findings suggest that the biological activity of MyoD is mediated via its capacity for specific DNA interaction.  相似文献   

14.
15.
Two clones were isolated in a three-hybrid screen of a rat fetal brain P5 cDNA library with an intronic splicing enhancer of the amyloid precursor protein (APP) gene as RNA bait. These clones represent the rat homologues of the previously described genes CUG-binding protein (CUG-BP) and Siah-binding protein (Siah-BP). Both interact in a sequence-specific manner with the RNA bait used for library screening as well as with the CUG repeat. In contrast, no interactions were observed in the three-hybrid assay with other baits tested. In two-hybrid assays, Siah-BP interacts with U2AF65 as well as with itself. EWS, an RGG-type RNA-binding protein associated with Ewing sarcoma, was identified as an interacting partner for the CUG-BP homologue in a two-hybrid assay for protein-protein interactions performed with various factors involved in RNA metabolism. Splicing assays performed by RT-PCR from cells cotransfected with certain cDNAs and an APP minigene, used as a reporter, indicate exclusion of exon 8 if the CUG-BP homologue is present. We conclude that clone AF169013 and its counterpart in human CUG-BP could be the trans-acting factors that interact with the splicing enhancer downstream of exon 8, and in this way influence alternative splicing of the APP minigene.  相似文献   

16.
The rat mast cell protease gene, RMCP II, is specifically expressed in the mucosal subclass of rat mast cells. We show here that the 5'-flanking region of this gene contains a mast cell-specific enhancer that directs preferential expression of a linked reporter gene (human growth hormone) transfected into rat basophilic leukemia cells. A DNA fragment containing the enhancer sequence is capable of binding specifically to mast cell nuclear trans-acting factors. The sequence of this enhancer element contains a region of homology to a consensus core sequence present in the enhancer region of the pancreatic protease genes.  相似文献   

17.
A procedure for the simultaneous banding of cellular DNA, RNA, and protein by centrifugation in cesium trifluoroacetate (CsTFA) gradients is described. Starting with homogenates of Day 11 rat embryos, this procedure was used to separate total DNA, RNA, and protein. Under the conditions used DNA banded at a peak density of 1.63 g/ml, RNA at a peak density of 1.83 g/ml, and protein at a peak density of 1.40 g/ml. Nucleic acids isolated from CsTFA gradients were judged to be protein free. RNA isolated by this method is apparently free of DNA contamination; however, DNA isolated by this method does contain some RNA (less than 5% contamination).  相似文献   

18.
19.
SR proteins are essential splicing factors required for constitutive splicing and function as key regulators of alternative RNA splicing. We have shown that SR proteins purified from late adenovirus-infected cells (SR-Ad) are functionally inactivated as splicing enhancer or splicing repressor proteins by a virus-induced partial de-phosphorylation. Here, we show that SR proteins purified from late vaccinia-virus-infected cells (SR-VV) are also hypo-phosphorylated and functionally inactivated as splicing regulatory proteins. We further show that incubating SR-Ad proteins under conditions that restore the phospho-epitopes to the SR proteins results in the restoration of their activity as splicing enhancer and splicing repressor proteins. Interestingly, re-phosphorylation of SR-VV proteins only partially restored the splicing enhancer or splicing repressor phenotype to the SR proteins. Collectively, our results suggest that viral control of SR protein activity may be a common strategy used by DNA viruses to take control of the host cell RNA splicing machinery.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号