首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The medulla bilateral neurons (MBNs) in the cricket brain directly connect two optic lobes and have been suggested to be involved in mutual coupling between the bilateral optic lobe circadian pacemakers. Single unit analysis with intracellular recording and staining with Lucifer Yellow was carried out to reveal morphology and physiology of the MBNs. Neurons having a receptive field in the rostral part of the compound eye showed greater response and a higher sensitivity to light than those having receptive fields in the ventro-caudal or dorsal portions. The MBN showed diurnal change in their responsiveness to light; the light-induced response in the night was about 1.3, 5 and 2 times of that in the day in MBN-1s, -3s and -4s, respectively. These results suggest that the MBNs mainly encode the temporal information by the magnitude of light-induced responses. The differences in magnitude of light-induced responses and of daily change in photo-responsiveness among MBNs may suggest that each group of MBNs plays different functional role in visual and/or circadian systems.  相似文献   

2.
Pigment-dispersing factor (PDF) is an octadeca-neuropeptide widely distributed in the insect brain and suggested to be involved in the insect circadian systems. We have examined its effects on the neuronal activity of the brain efferents in the optic stalk including medulla bilateral neurons (MBNs) in the cricket, Gryllus bimaculatus. The MBNs are visually responding interneurons connecting the bilateral medulla, which show a clear day/night change in their light responsiveness that is greater during the night. Microinjection of PDF into the optic lobe induced a significant increase in the spontaneous activity of the brain efferents and the photo-responsiveness of the MBNs during the day, while little change was induced during the night. The enhancing effects began to occur about 20 min after the injection and another 10 min was necessary to reach the maximal level. The effects of PDF were dose-dependent. When 22 nl of anti-Gryllus-PDF (1:200) IgG was injected into the medulla, the photo-responsiveness of the MBNs was suppressed in both the day and the night with greater magnitude during the night. No significant suppression was induced by injection of the same amount of IgG from normal rabbit serum. These results suggest that in the cricket optic lobe, PDF is released during the night and enhances MBNs' photo-responsiveness to set their night state.  相似文献   

3.
The photo-responsiveness of 2 groups of interneurons responding to light in the protocerebrum was investigated at 2 developmental stages, the last instar nymphs and adults, in the cricket Gryllus bimaculatus. The cricket is diurnally active during the nymphal stage but becomes nocturnal as an adult. In both adults and nymphs, light-induced responses of optic lobe light-responding interneurons that conduct light information from the optic medulla to the lobula and the cerebral lobe showed a circadian rhythm peaking during the subjective night. Amplitudes of the rhythms were not significantly different between adults and nymphs, but adults showed more stable day and night states than did nymphs. The medulla bilateral neurons that interconnect the bilateral medulla areas of the optic lobe also showed circadian rhythms in their light-induced responses in both adults and nymphs. The rhythm had a clear peak and a trough in adults, and its amplitude was significantly greater than that of nymphs. These results suggest that the 2 classes of interneurons are differentially controlled by the circadian clock. The difference might be related to their functional roles in the animal's circadian behavioral organization.  相似文献   

4.
The waveform and the free-running period of circadian rhythms in constant conditions are often modulated by preceding lighting conditions. We have examined the modulatory effect of variable length of light phase of a 24h light cycle on the ratio of activity (alpha) and rest phase (rho) as well as on the free-running period of the locomotor rhythm in the cricket Gryllus bimaculatus. When experienced the longer light phases, the alpha/rho-ratio was smaller and the free-running period was shorter. The magnitude of changes in alpha/rho-ratio was dependent on the number of cycles exposed, while the free-running period was changed by a single exposure, suggesting that there are separate regulatory mechanisms for the waveform and the free-running period. The neuronal activity of the optic lobe showed the alpha/rho-ratio changing with the preceding photoperiod. When different photoperiodic conditions were given to each of the two optic lobe pacemakers, the alpha/rho-ratio of a single pacemaker was rather intermediate between those of animals treated with either of the two conditions. These results suggest that the storage of the photoperiodic information occurs at least in part in the optic lobe pacemaker, and that the mutual interaction between the bilateral optic lobe pacemakers is involved in the photoperiodic modulation.  相似文献   

5.
6.
7.
We have developed a new set of 27 polymorphic markers for each of two cricket species, Gryllus bimaculatus and Gryllus campestris. Initially, 14 published G. bimaculatus loci were tested in G. campestris; however, only five loci were polymorphic. Therefore, we isolated an additional 50 new microsatellite loci from G. bimaculatus and tested these in both species. In a minimum of 20 individuals, 27 of the new loci were polymorphic in G. bimaculatus and 25 in G. campestris.  相似文献   

8.
Sensory responses of various descending brain neurons, their modulation during standing or walking, and the correlation of such modulations with stimulus category were investigated. Stimuli involving (1) static or moving grating, artificial calling songs with (2) the conspecific and (3) an ultrasound frequency, or (4) air puffs to the cerci were presented to crickets walking in an open loop paradigm. The morphology of different descending interneurons in the brain and thoracic ganglia is described, together with their respective response properties. Some cells were excited, others inhibited by, and only some were directionally sensitive to the optomotor stimulus. Responses to artificial calling songs with conspecific and ultrasound frequency differed in the way the syllables of the sounds were coded and in the representation of ipsi- and contralateral stimuli. The majority of cells tested responded to air puffs. Stimulus representation differed among individuals of morphological types, but was very similar among individual interneurons of the morphologically homogenous i5 group. Stimuli approximating predators (air puffs, ultrasound) were usually represented during walking and standing; however, most neurons only responded to the other stimuli only during walking. These results indicate that the same neurons show different responses, and may have different functions, under different behavioral conditions.  相似文献   

9.
The number and distribution of descending brain neurons have been investigated in the cricket. The results are based on retrograde labeling of these cells with either Lucifer yellow or Neurobiotin via whole or small split portions of the cervical connectives. Various groups of cells and single neurons have been identified, and the morphology of more than 40 cells is described. Nearly 200 descending brain neurons can be stained via one cervical connective. Their perikarya are concentrated in clusters that occur ipsi- and contralateral to the filled connective and that lie dorsal and ventral in the brain. Descending cells only arborize in the nonglomerular neuropils of the brain and never branch in the optic lobe. Cells descending ipsilaterally never arborize in the contralateral hemisphere, whereas contralateral descending neurons often branch in both hemispheres. Irrespective of soma position, cells can arborize in the ventral and/or dorsal neuropils of the brain. Neurons with somata in the protocerebrum often have branches in the deutocerebrum and vice versa. The main arborizations of the cells from the prominent ventral i5 group are found in the same part of the protocerebrum. In contrast, various cells arborize in the ventral posterior deutocerebrum, but their somata are not located in different clusters. Thus, neurons from the same cluster may, but need not necessarily, arborize in the same brain area.  相似文献   

10.
Adult crickets (Gryllus bimaculatus) were maintained under a 12-h light:12-h dark cycle (LD 12:12). After oviposition, their eggs were incubated under different lighting regimens at 23 degrees C, and temporal profiles of egg hatching were examined. When the eggs were incubated in LD 12:12 or in DL 12:12 with a phase difference of 12h from LD 12:12, throughout embryogenesis, 88% to 97% of hatching occurred within 3 h of the dark-light transition on days 17 and 18 of embryogenesis; the phases of the egg-hatching rhythms in the LD 12:12 and DL 12:12 groups differed by about 12 h. In eggs incubated in constant darkness (DD) throughout embryogenesis, a circadian (about 24 h) rhythm of hatching was found, and the phase of the rhythm was similar to that seen in eggs incubated in LD 12:12, but not DL 12:12, throughout embryogenesis. When eggs that had been incubated in DD after oviposition were transferred to DL 12:12 in the middle or later stages of embryogenesis and were returned to DD after three cycles of DL 12:12, the rhythm of hatching synchronized (entrained) to DL 12:12. However, when eggs in the earlier stages of embryogenesis were transferred from DD to DL 12:12 and returned to DD after three cycles, 52% to 94% of hatching did not entrain to DL 12:12. To determine whether photoperiodic conditions to which the parents had been exposed influenced the timing of egg hatching, adult crickets were maintained in DL 12:12, and their eggs were incubated in LD 12:12, DL 12:12, or DD throughout embryogenesis. The egg-hatching rhythm was also found in the eggs incubated under these three lighting regimens. In DD, the phase of the rhythm was similar to that seen in eggs incubated in DL 12:12, not LD 12:12, throughout embryogenesis. The results indicate that in the cricket, the timing of egg hatching is under circadian control and that the circadian rhythm of hatching entrains to 24-h light:dark cycles, but only if the light:dark cycles are imposed midway through embryogenesis. Therefore, by midembryogenesis, a circadian clock has been formed in the cricket, and this is entrainable to light:dark cycles. In addition, the photoperiodic conditions to which the parents (probably the mothers) have been exposed influence the timing of hatching, suggesting that maternal factors may regulate the timing of egg hatching.  相似文献   

11.
《Animal behaviour》1986,34(5):1463-1470
Females of the field cricket G. bimaculatus show multiple mating. Since such a strategy is likely to incur costs such as time and energy spent in orientation to calling males or increased susceptibility to predation, it must have certain selective advantages. This study shows that multiple mating is a potential mechanism of mate choice. Females removed the spermatophores of some males before complete insemination was achieved. Females also remained with large males in order to mate a second or third time. Since spermathecal morphology may limit last-male sperm precedence in this species, a function of multiple mating may be to dilute the sperm stored from previous matings with that of the current male, so increasing his representation in offspring production.  相似文献   

12.
13.
To identify the sensory organs that are sensitive to water stimuli in the cricket Gryllus bimaculatus, cuticular structures on the legs and the number of sensory neurons innervating them were studied. Some small hair sensilla on the legs were innervated by 2-5 sensory neurons. All such sensilla had a tiny pore at the tip of their hairs. The diameter of the pore was approximately 0.2 mum. These findings suggest that these are chemosensitive hairs (LCS: leg chemosensillum). Of the three pairs of legs, the anterior legs (forelegs) possessed the largest number of LCSs. Of the five leg segments (i.e., coxa, trochanter, femur, tibia and tarsus), the tarsus possessed the largest number of LCSs on each leg. Electrophysiological investigation by tip recording revealed that some of the LCSs contained water-receptor cells. Because the basitarsus possessed a larger number of LCSs than the other tarsomeres, the distribution of water-receptor-containing LCSs in the basitarsus of a foreleg was investigated morphologically and electrophysiologically. LCSs that contained water-receptor cells were mainly distributed on the ventral surface of the basitarsus. There were two types of water receptor that showed different response patterns to a stimulus, that is, phasic- and tonic-type water receptors. From the distribution of LCSs on the legs, the roles of these different types of water receptors in behavioral selection, that is, the initiation of swimming and the inhibition of flying, will be discussed.  相似文献   

14.
Transgenic insects have been artificially produced to study functions of interesting developmental genes, using insect transposons such as piggyBac. In the case of the cricket, however, transgenic animals have not yet been successfully artificially produced. In the present study, we examined whether the piggyBac transposon functions as a tool for gene delivery in embryos of Gryllus bimaculatus. We used either a piggyBac helper plasmid or a helper RNA synthesized in vitro as a transposase source. An excision assay revealed that the helper RNA was more effective in early Gryllus eggs to transpose a marker gene of eGFP than the helper plasmid containing the piggyBac transposase gene driven by the G. bimaculatus actin3/4 promoter. Further, only when the helper RNA was used, somatic transformation of the embryo with the eGFP gene was observed. These results suggest that the piggyBac system with the helper RNA may be effective for making transgenic crickets.  相似文献   

15.
In the cricket ear, sound acts on the external surface of the tympanum and also reaches the inner surface after travelling in at least three pathways in the tracheal system. We have determined the transmission gain of the three internal sound pathways; that is, the change of amplitude and phase angle from the entrances of the tracheal system to the inner surface of the tympanum. In addition, we have measured the diffraction and time of arrival of sound at the ear and at the three entrances at various directions of sound incidence. By combining these data we have calculated how the total driving force at the tympanum depends on the direction of sound. The results are in reasonable agreement with the directionality of the tympanal vibrations as determined with laser vibrometry.At the frequency of the calling song (4.7 kHz), the direction of the sound has little effect on the amplitudes of the sounds acting on the tympanum, but large effects on their phase angles, especially of the sound waves entering the tracheal system at the contralateral side of the body. The master parameter for causing the directionality of the ear in the forward direction is the sound wave entering the contralateral thoracic spiracle. The phase of this sound component may change by 130–140° with sound direction. The transmission of sound from the contralateral inputs is dominated by a very selective high-pass filter, and large changes in amplitude and phase are seen in the transmitted sounds when the sound frequency changes from 4 to 5 kHz. The directionality is therefore very dependent on sound frequency.The transmission gains vary considerably in different individuals, and much variation was also found in the directional patterns of the ears, especially in the effects of sounds from contralateral directions. However, the directional pattern in the frontal direction is quite robust (at least 5 dB difference between the 330° and 30° directions), so these variations have only little effect on how well the individual animals can approach singing conspecifics.Abbreviations CS contralateral spiracle - CT contralateral tympanum - IS ipsilateral spiracle - IT ipsilateral tympanum - P the vectorial sum of the sounds acting on the tympanum  相似文献   

16.
ABSTRACT. The precision of auditory lateralization was determined behaviourally for the cricket, Gryllus bimaculatus L. A forced-choice Y-maze test was devised in which the cricket, on entering the test arena, could not — in contrast to free phonotactic approaches — change its walking direction until after it had passed through a narrow wire-mesh tunnel. For a sound frequency of 4.7 kHz, matching the species' calling frequency, the minimum audible angle for correct side discrimination was 15°. For stimulus angles smaller than 15° from the longitudinal body axis, the crickets walked randomly to either side; stimulus angles greater than 25° resulted in all crickets turning correctly. These data reveal a sharply tuned lateral sensitivity for the auditory pathway of crickets, with an optimum at the species' calling frequency of 4.7 kHz (when compared with 3.5 and 6.0 kHz). The results for the forced-choice test are compared with the walking pattern during free phonotactic approaches, in order to determine the possible strategy underlying the acoustic orientation behaviour of the cricket.  相似文献   

17.
Pigment-dispersing factor (PDF) is a neuropeptide playing important roles in insect circadian systems. In this study, we morphologically and physiologically characterized PDF-immunoreactive neurons in the optic lobe and the brain of the cricket Gryllus bimaculatus. PDF-immunoreactivity was detected in cells located in the proximal medulla (PDFMe cells) and those in the dorsal and ventral regions of the outer chiasma (PDFLa cells). The PDFMe cells had varicose processes spread over the frontal surface of the medulla and the PDFLa cells had varicose mesh-like innervations in almost whole lamina, suggesting their modulatory role in the optic lobe. Some of PDFMe cells had a hairpin-shaped axonal process running toward the lamina then turning back to project into the brain where they terminated at various protocerebral areas. The PDFMe cells had a low frequency spontaneous spike activity that was higher during the night and was often slightly increased by light pulses. Six pairs of PDF-immunoreactive neurons were also found in the frontal ganglion. Competitive ELISA with anti-PDF antibodies revealed daily cycling of PDF both in the optic lobe and cerebral lobe with an increase during the night that persisted in constant darkness. The physiological role of PDF is discussed based on these results.  相似文献   

18.
We report the isolation and expression patterns of aristaless (al), a paired-type homeobox gene, of Gryllus bimaculatus (Gb), a hemimetabola model insect. Gryllus al (Gbal) is expressed in the most distal region of developing labrum, antenna, mandible, maxilla, labium, leg, cercus, and hindgut. Gbal is also expressed in the proximal region, corresponding to the presumptive coxopodite, of the developing antenna, mandible, maxilla, labium, and leg, but not in the developing labrum, cercus, and hindgut. During development of the leg, expression of Gbal changes dynamically with the progress in leg segmentation: Gbal is expressed in order in the presumptive pretarsus, coxa, femur, tibia and tarsus before appearance of morphological segmentation.  相似文献   

19.
The activity of four types of sound-sensitive descending brain neurons in the cricket Gryllus bimaculatus was recorded intracellularly while animals were standing or walking on an open-loop trackball system. In a neuron with a contralaterally descending axon, the male calling song elicited responses that copied the pulse pattern of the song during standing and walking. The accuracy of pulse copying increased during walking. Neurons with ipsilaterally descending axons responded weakly to sound only during standing. The responses were mainly to the first pulse of each chirp, whereas the complete pulse pattern of a chirp was not copied. During walking the auditory responses were suppressed in these neurons. The spiking activity of all four neuron types was significantly correlated to forward walking velocity, indicating their relevance for walking. Additionally, injection of depolarizing current elicited walking and/or steering in three of four neuron types described. In none of the neurons was the spiking activity both sufficient and necessary to elicit and maintain walking behaviour. Some neurons showed arborisations in the lateral accessory lobes, pointing to the relevance of this brain region for cricket audition and descending motor control.  相似文献   

20.
Isolated porcine pial veins in the presence of active muscle tone have been shown to exhibit rhythmic contractions (RC) that are inhibited by serotonin (5-HT) in a concentration-dependent manner. The 5-HT inhibition of RC is mediated by an as yet unidentified 5-HT receptor subtype located on the vascular smooth muscle. 5-carboxamidotryptamine, which is a potent but nonselective agonist at 5-HT(7) receptors, has been shown to be the most potent inhibitor of RC in porcine pial veins. Therefore, the present study was designed to determine if the 5-HT-mediated inhibition of RC in pial veins is mediated by 5-HT(7) receptors and if 5-HT(7) receptor mRNA is expressed in endothelium-denuded pial veins; the study was done with the use of an in vitro tissue bath and RT-PCR techniques. Our findings indicated that 5-HT inhibition of RC in porcine pial veins was prevented by 5-HT(7)-receptor antagonists (clozapine, pimozide, and LY-215840) in a concentration-dependent manner. Furthermore, a strong PCR signal for the 5-HT(7) receptor was consistently detected in endothelium-denuded pial veins. Sequence analysis of the amplified products confirmed their high degree of homology with the porcine and/or human 5-HT(7)-receptor gene. Taken together, these data suggest that the 5-HT-induced inhibition of RC in porcine pial veins is at least in part mediated by 5-HT(7) receptors located on the venous smooth muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号