首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
As part of an effort to develop stable and replicable unnatural base pairs, we have evaluated a large number of unnatural nucleotides with predominantly hydrophobic nucleobases. Despite its limited aromatic surface area, a nucleobase analog scaffold that has emerged as being especially promising is the simple phenyl ring. Modifications of this scaffold with methyl and fluoro groups have been shown to impact base pair stability and polymerase recognition, suggesting that nucleobase shape, hydrophobicity and electrostatics are important. To further explore the impact of heteroatom substitution within this nucleobase scaffold, we report the synthesis, stability and polymerase recognition of nucleoside analogs bearing single bromo- or cyano-derivatized phenyl rings. Both modifications are found to generally stabilize base pair formation to a greater extent than methyl or fluoro substitution. Moreover, polymerase recognition of the unnatural base pairs is found to be very sensitive to both the position and nature of the heteroatom substituent. The results help identify the determinants of base pair stability and efficient replication and should contribute to the effort to develop stable and replicable unnatural base pairs.  相似文献   

2.
Fapy.dA is produced in DNA as a result of oxidative stress. Recently, this lesion and its C-nucleoside analogues were incorporated in chemically synthesized oligonucleotides at defined sites. The interaction of DNA containing Fapy.dA or nonhydrolyzable analogues with Fpg and MutY is described. Fpg efficiently excises Fapy.dA (K(m) = 1.2 nM, k(cat) = 0.12 min(-1)) opposite T. The lesion is removed as efficiently from duplexes containing Fapy.dA:dA or Fapy.dA:dG base pairs. Multiple turnovers are observed for the repair of Fapy.dA mispairs in a short period of time, indicating that the enzyme does not remain bound to the product duplex. MutY does not incise dA from a duplex containing this nucleotide opposite Fapy.dA, nor does it exhibit an increased level of binding compared to DNA composed solely of native base pairs. MutY also does not incise Fapy.dA when the lesion is opposite dG. These data suggest that Fapy.dA could be deleterious to the genome. Fpg strongly binds duplexes containing the beta-C-nucleoside analogue of Fapy.dA (beta-C-Fapy.dA) opposite all native nucleotides (K(D) < 27 nM), as well as the alpha-C-nucleoside (alpha-C-Fapy.dA) opposite dC (K(D) = 7.1 +/- 1.5 nM). A duplex containing a beta-C-Fapy.dA:T base pair is an effective inhibitor (K(I) = 3.5 +/- 0.3 nM) of repair of Fapy.dA by Fpg, suggesting the C-nucleoside may have useful therapeutic properties.  相似文献   

3.
The DNA microarray technology is a well-established and widely used technology although it has several drawbacks. The accurate molecular recognition of the canonical nucleobases of probe and target is the basis for reliable results obtained from microarray hybridization experiments. However, the great flexibility of base pairs within the DNA molecule allows the formation of various secondary structures incorporating Watson-Crick base pairs as well as non-canonical base pair motifs, thus becoming a source of inaccuracy and inconsistence. The first part of this report provides an overview of unusual base pair motifs formed during molecular DNA interaction in solution highlighting selected secondary structures employing non-Watson-Crick base pairs. The same mispairing phenomena obtained in solution are expected to occur for immobilized probe molecules as well as for target oligonucleotides employed in microarray hybridization experiments the effect of base pairing and oligonucleotide composition on hybridization is considered. The incorporation of nucleoside derivatives as close shape mimics of the four canonical nucleosides into the probe and target oligonucleotides is discussed as a chemical tool to resolve unwanted mispairing. The second part focuses non-Watson-Crick base pairing during hybridization performed on microarrays. This is exemplified for the unusual stable dG.dA base pair.  相似文献   

4.
Efforts to expand the genetic alphabet are predicated upon a stable and replicable third base pair. Recent progress has resulted in the development of several candidates that are both stable in duplex DNA and replicated by DNA polymerases with various degrees of efficiency and fidelity. The candidate base pairs draw upon unnatural hydrogen-bonding topologies as well as upon shape complementarity and hydrophobic forces. This review provides a critical comparison of the third base pair candidates and discusses the further work required to expand the genetic alphabet.  相似文献   

5.
Binding to DNA's of the non-intercalative ligands SN-6999 and SN-18071 has been studied by means of circular dichroism, UV absorption, thermal melting and for SN-6999 by viscosity measurements. Both antitumour drugs show a preference for dA.dT rich DNA's, but the base pair selectivity of SN-18071 is lower as indicated by some affinity to dG.dC containing duplex DNA. The dA.dT base pair specificity of SN-6999 is comparable to that of netropsin. It forms very stable complexes with dA.dT containing duplex DNA and competes with netropsin binding on DNA. The ligands SN-18071 and pentamidine are totally released from their complexes with poly(dA-dT).poly(dA-dT) by competitive netropsin binding. The results demonstrate that hydrogen bonding capacity of the ligand in addition to other factors strongly contribute to the base sequence specificity in the recognition process of the ligand with DNA. A binding model of SN-6999 with five dA.dT pairs in the minor groove of B-DNA is suggested.  相似文献   

6.
Minor adducts, derived from the covalent binding of anti-benzo[a]pyrene-7,8-dihydroxy-9,10-epoxide to cellular DNA, may play an important role in generating mutations and initiating cancer. We have applied a combined NMR-computational approach including intensity based refinement to determine the solution structure of the minor (+)-cis-anti-[BP]dA adduct positioned opposite dT in the d(C1-T2-C3-T4-C5-[BP]A6-C7-T8-T9-C10-C11). (d(G12-G13-A14-A15-G16-T17-G18-A19-G20+ ++-A21-G22) 11-mer duplex. The BP ring system is intercalated toward the 5'-side of the [BP]dA6 lesion site without disrupting the flanking Watson-Crick dC5.dG18 and [BP]dA6.dT17 base pairs. This structure of the (+)-cis-anti-[BP]dA.dT 11-mer duplex, containing a bay region benzo[a]pyrenyl [BP]dA adduct, is compared with the corresponding structure of the (+)-trans-anti-[BPh]dA.dT 11-mer duplex (Cosman et al., Biochemistry 32, 12488-12497, 1993), which contains a fjord region benzo[c]phenanthrenyl [BPh]dA adduct with the same R stereochemistry at the linkage site. The carcinogen intercalates toward the 5'-direction of the modified strand in both duplexes (the adduct is embedded within the same sequence context) with the buckling of the Watson-Crick [BP]dA6.dT17 base pair more pronounced in the (+)-cis-anti-[BP]dA.dT 11-mer duplex compared to its Watson-Crick [BPh]dA.dT17 base pair in the (+)-trans-anti-[BPh]dA.dT 11-mer duplex. The available structural studies of covalent polycyclic aromatic hydrocarbon (PAH) carcinogen-DNA adducts point toward the emergence of a general theme where distinct alignments are adopted by PAH adducts covalently linked to the N(6) of adenine when compared to the N(2) of guanine in DNA duplexes. The [BPh]dA and [BP]dA N(6)-adenine adducts intercalate their polycyclic aromatic rings into the helix without disruption of their modified base pairs. This may reflect the potential flexibility associated with the positioning of the covalent tether and the benzylic ring of the carcinogen in the sterically spacious major groove. By contrast, such an intercalation without modified base pair disruption option appears not to be available to [BP]dG N(2)-guanine adducts where the covalent tether and the benzylic ring are positioned in the more sterically crowded minor groove. In the case of [BP]dG adducts, the benzopyrenyl ring is either positioned in the minor groove without base pair disruption, or if intercalated into the helix, requires disruption of the modified base pair and displacement of the bases out of the helix.  相似文献   

7.
Nuclear magnetic resonance (NMR) has been used to monitor the conformation and dynamics of the d(C1-G2-A3-T4-T5-A6-T6-A5-A4-T3-C2-G1) self-complementary dodecanucleotide duplex (henceforth called Pribnow 12-mer), which contains a TATAAT Pribnow box and a central core of eight dA X dT base pairs. The exchangeable imino and nonexchangeable base protons have been assigned from one-dimensional intra and inter base pair nuclear Overhauser effect (NOE) measurements. Premelting conformational changes are observed at all the dA X dT base pairs in the central octanucleotide core in the Pribnow 12-mer duplex with the duplex to strand transition occurring at 55 degrees C in 0.1 M phosphate solution. The magnitude of the NOE measurements between minor groove H-2 protons of adjacent adenosines demonstrates that the base pairs are propeller twisted with the same handedness as observed in the crystalline state. The thymidine imino proton hydrogen exchange at the dA X dT base pairs has been measured from saturation recovery measurements as a function of temperature. The exchange rates and activation barriers show small variations among the four different dA X dT base pairs in the Pribnow 12-mer duplex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
A parallel stranded linear DNA duplex incorporating dG.dC base pairs   总被引:3,自引:0,他引:3  
DNA oligonucleotides with appropriately designed complementary sequences can form a duplex in which the two strands are paired in a parallel orientation and not in the conventional antiparallel double helix of B-DNA. All parallel stranded (ps) molecules reported to date have consisted exclusively of dA.dT base pairs. We have substituted four dA.dT base pairs of a 25-nt parallel stranded linear duplex (ps-D1.D2) with dG.dC base pairs. The two strands still adopt a duplex structure with the characteristic spectroscopic properties of the ps conformation but with a reduced thermodynamic stability. Thus, the melting temperature of the ps duplex with four dG.dC base pairs (ps-D5.D6) is 10-16 degrees C lower and the van't Hoff enthalpy difference delta HvH for the helix-coil transition is reduced by 20% (in NaCl) and 10% (in MgCl2) compared to that of ps-D1.D2. Based on energy minimizations of a ps-[d(T5GA5).d(A5CT5)] duplex using force field calculations we propose a model for the conformation of a trans dG.dC base pair in a ps helix.  相似文献   

9.
Metal-dependent pairing of nucleobases represents an alternative DNA base pairing scheme. Our first-generation copper(II)-mediated pyridine-2,6-dicarboxylate (Dipic) and pyridine (Py) metallo-base pair has a stability comparable to the natural base pairs dA:dT and dC:dG but does not have the selectivity of the Watson Crick base pairs. In order to increase the selectivity of base pair formation, a second-generation metallo-base pair was generated consisting of a pyridine-2,6-dicarboxamide (Dipam) and a pyridine (Py) nucleobase. This new metallo-base pair is more stable than the natural base pairs dA:dT and dC:dG and highly selective against mispairing. In addition, incorporation of multiple metallo-base pairs into DNA results in the formation of stable duplexes demonstrating that hydrogen bonding base pairs can efficiently be replaced by metal-dependent base pairs at multiple sites in DNA.  相似文献   

10.
To develop unnatural base pairs that function in replication, we designed 4-propynylpyrrole-2-carbaldehyde (designated as Pa′) and synthesized the nucleoside derivatives of Pa′. The base pairing of Pa′ with the partner, 9-methylimidazo[(4,5)-b]pyridine (Q), was compared to that of pyrrole-2-carbaldehyde (Pa), which was previously developed as a specific pairing partner of Q. The thermal stability of a DNA duplex containing the Q–Pa′ pair and the incorporation efficiency of the Pa′ substrate (dPa′TP) into DNA opposite Q by the Klenow fragment of Escherichia coli DNA polymerase I were improved, in comparison with those of the Q–Pa pair. These improvements result from the increased hydrophobicity and stacking stability of Pa′ by the introduction of the propynyl group to Pa, providing valuable information for the further development of unnatural base pairs toward the expansion of the genetic alphabet.  相似文献   

11.
Locked nucleic acid (LNA) and 2'-O-methyl nucleotide (OMeN) are the most extensively studied nucleotide analogues. Although both LNA and OMeN are characterized by the C3'-endo sugar pucker conformation, which is dominant in A-form DNA and RNA nucleotides, they demonstrate different binding behaviours. Previous studies have focused attention on their properties of duplex stabilities, hybridization kinetics and resistance against nuclease digestion; however, their ability to discriminate mismatched hybridizations has been explored much less. In this study, LNA- and OMeN-modified oligonucleotide probes have been prepared and their effects on the DNA duplex stability have been examined: LNA modifications can enhance the duplex stability, whereas OMeN modifications reduce the duplex stability. Next, we studied how the LNA:DNA and OMeN:DNA mismatches reduced the duplex stability. Melting temperature measurement showed that different LNA:DNA or OMeN:DNA mismatches indeed influence the duplex stability differently. LNA purines can discriminate LNA:DNA mismatches more effectively than LNA pyrimidines as well as DNA nucleotides. Furthermore, we designed five LNA- and five OMeN-modified oligonucleotide probes to simulate realistic situations where target-probe duplexes contain a complementary LNA:DNA or OMeN:DNA base pairs and a DNA:DNA mismatch simultaneously. The measured collective effect showed that the duplex stability was enhanced by the complementary LNA:DNA base pair but decreased by the DNA:DNA mismatch in a position-dependent manner regardless of the chemical identity and position of the complementary LNA:DNA base pair. On the other hand, the OMeN-modified probes also showed that the duplex stability was reduced by both the OMeN modification and the OMeN:DNA mismatch in a position-dependent manner.  相似文献   

12.
Sequencing by the recently reported hybridization technique requires the formation of DNA duplexes with similar stabilities. In this paper we describe a new strategy to obtain DNA duplexes with a thermal stability independent of their AT/GC ratio content. Melting data were acquired on 35 natural and 27 modified duplexes of a given length and of varying base compositions. Duplexes built with AT and/or G4EtC base pairs exhibit a thermal stability restrained to a lower range of temperature than that of the corresponding natural compounds (16 instead of 51 degrees C). The 16 degrees C difference in thermal stability observed between the least stable and the most stable duplex built with AT and/or G4EtC base pairs is mainly due to the sequence effect and not to their AT/G4EtC ratio content. Thus N -4-ethyl-2'-deoxycytidine (d4EtC) hybridizes specifically with natural deoxyguanosine leading to a G4EtC base pair whose stability is very close to that of the natural AT base pair. Oligonucleotide probes involving d4EtC can be easily prepared by chemical synthesis with phosphoramidite chemistry. Modified DNA targets were successfully amplified by random priming or PCR techniques using d4EtCTP, dATP, dGTP and dTTP in the presence of DNA polymerase. This new system might be very useful for DNA sequencing by hybridization.  相似文献   

13.
In contrast to shorter homologs which only form a single-stranded nucleic acid alpha-helix in acid solution at [Na+]</=0.02 M Na+, d(A-G)20,30 form in addition a parallel-stranded duplex with (A+.A+) and (G.G) base pairs and interstrand dA+...PO2-ionic and dA+NH2... O=P H-bonds. Under conditions where duplex prevails over alpha-helix, the contribution of the base-backbone interactions to stability varies directly with [H+] and inversely with [Na+], just as in poly(A+.A+). These duplexes are characterized by intense circular dichroism and a large cooperative thermally-induced hyperchromic transition that is dependent on oligomer concentration. Dimethylsulfate reactivity of the dG residues indicates G.G and therefore dA+.dA+rather than dA+.G base pairs. At much higher ionic strength (Na+>/=0.2 M) the protonated base-backbone interactions are so weakened that duplex stability becomes increasingly dependent upon H-bonded base pairing and stacking and almost independent of pH. Between pH 6 and 8 this duplex structure is devoid of protonated dA residues and shows positive dependence of T m on ionic strength similar to that of DNA.  相似文献   

14.
Two-dimensional proton NMR studies are reported on the complementary d(C-A-T-G-T-G-T-A-C).d(G-T-A-C-epsilon A-C-A-T-G) nonanucleotide duplex (designated epsilon dA.dT 9-mer duplex) containing 1,N6-ethenodeoxyadenosine (epsilon dA), a carcinogen-DNA adduct, positioned opposite thymidine in the center of the helix. Our NMR studies have focused on the conformation of the epsilon dA.dT 9-mer duplex at neutral pH with emphasis on defining the alignment at the dT5.epsilon dA14 lesion site. The through-space NOE distance connectivities establish that both dT5 and epsilon dA14 adopt anti glycosidic torsion angles, are directed into the interior of the helix, and stack with flanking Watson-Crick dG4.dC15 and dG6.dC13 pairs. Furthermore, the d(G4-T5-G6).d(C13-epsilon A14-C15) trinucleotide segment centered about the dT5.epsilon dA14 lesion site adopts a right-handed helical conformation in solution. Energy minimization computations were undertaken starting from six different alignments of dT5(anti) and epsilon dA14(anti) at the lesion site and were guided by distance constraints defined by lower and upper bounds estimated from NOESY data sets on the epsilon dA.dT 9-mer duplex. Two families of energy-minimized structures were identified with the dT5 displaced toward either the flanking dG4.dC15 or the dG6.dC13 base pair. These structures can be differentiated on the basis of the observed NOEs from the imino proton of dT5 to the imino proton of dG4 but not dG6 and to the amino protons of dC15 but not dC13 that were not included in the constraints data set used in energy minimization. Our NMR data are consistent with a nonplanar alignment of epsilon dA14(anti) and dT5(anti) with dT5 displaced toward the flanking dG4.dC15 base pair within the d(G4-T5-G6).d(C13-epsilon A14-C15) segment of the epsilon dA.dT 9-mer duplex.  相似文献   

15.
Monte Carlo simulations [(N, V, T)-ensemble] were performed for the hydration shell of poly(dA-dT).poly(dA-dT) in canonical B form and for the hydration shell of poly(dA).poly(dT) in canonical B conformation and in a conformation with narrow minor groove, highly inclined bases, but with a nearly zero-inclined base pair plane (B' conformation). We introduced helical periodic boundary conditions with a rather small unit cell and a limited number of water molecules to reduce the dimensionality of the configuration space. The coordinates of local maxima of water density and the properties of one- and two-membered water bridges between polar groups of the DNA were obtained. The AT-alternating duplex hydration mirrors the dyad symmetry of polar group distribution. At the dApdT step, a water bridge between the two carbonyl oxygens O2 of thymines is formed as in the central base-pair step of Dickerson's dodecamer. In the major groove, 5-membered water chains along the tetranucleotide pattern d(TATA).d(TATA) are observed. The hydration geometry of poly(dA).poly(dT) in canonical B conformation is distinguished by autonomous primary hydration of the base-pair edges in both grooves. When this polymer adopts a conformation with highly inclined bases and narrow minor groove, the water density distribution in the minor groove is in excellent agreement with Dickerson's spine model. One local maximum per base pair of the first layer is located near the dyad axis between adjacent base pairs, and one local maximum per base pair in the second shell lies near the dyad axis of the base pair itself. The water bridge between the two strands formed within the first layer was observed with high probability. But the water molecules of the second layer do not have a statistically favored orientation necessary for bridging first layer waters. In the major groove, the hydration geometry of the (A.T) base-pair edge resembles the main features of the AT-pair hydration derived from other sequences for the canonical B form. The preference of the B' conformation for oligo(dA).oligo(dT) tracts may express the tendency to common hydration of base-pair edges of successive base pairs in the grooves of B-type DNA. The mean potential energy of hydration of canonical B-DNA was estimated to be -60 to -80 kJ/mole nucleotides in dependence on the (G.C) contents. Because of the small system size, this estimation is preliminary.  相似文献   

16.
Two single-stranded DNAs consisting of complementary base pairs except for one mismatching base pair (MM1) can form double-stranded DNA by molecular recognition. This type of duplex is not as stable as that formed by MM0. In order to add to a better understanding of the physical mechanism of the hybridization and dissociation processes at sensor (chip) surfaces, we studied the kinetics of the MM1 hybridization by surface plasmon fluorescence spectroscopy. Target DNA strands labelled with a fluorescent molecule Cy5 at the 5′ end and hybridizing with the surface-attached probe DNA can be excited by the strong optical field of a surface plasmon resonance mode. The emitted fluorescence can be detected with high sensitivity. The affinity of a duplex was found to depend on the chemical nature, i.e. G–G, G–T etc., and on the position of the mismatching base pair along the 15mer duplex.  相似文献   

17.
Abstract

DNA oligonucleotides with appropriately designed complementary sequences can form a duplex in which the two strands are paired in a parallel orientation and not in the conventional antiparallel double helix of B-DNA. All parallel stranded (ps) molecules reported to date have consisted exclusively of dA · dT base pairs. We have substituted four dA · dT base pairs of a 25-nt parallel stranded linear duplex (ps-D1 · D2) with dG · dC base pairs. The two strands still adopt a duplex structure with the characteristic spectroscopic properties of the ps conformation but with a reduced thermodynamic stability. Thus, the melting temperature of the ps duplex with four dG · dC base pairs (ps-D5 · D6) is 10-16°C lower and the van't Hoff enthalpy difference ΔvH for the helix-coil transition is reduced by 20% (in NaCl) and 10% (in MgCl2) compared to that of ps-Dl · D2. Based on energy minimizations of a ps-[d(T5GA5) · d(A5CT5)] duplex using force field calculations we propose a model for the conformation of a trans dG · dC base pair in a ps helix.  相似文献   

18.
J E Patten  A G So  K M Downey 《Biochemistry》1984,23(8):1613-1618
The influence of the stability of base pairs formed by nearest-neighbor nucleotides on misincorporation frequency has been studied with the large fragment of DNA polymerase I, the alternating DNA copolymers, poly(dI-dC) and poly-(dG-dC), as template-primers, and dGTP, dITP, and dCTP as substrates. We have utilized the difference in thermodynamic stability between the doubly H-bonded I X C base pair and triply H-bonded G X C base pair to examine the effects of base-pair stability of both the "preceding" and the "following" nucleotides on the frequency of insertion of a mismatched nucleotide, as well as on its stable incorporation into polynucleotide. The present studies demonstrate that the stability of the base pairs formed by nearest-neighbor nucleotides affects the frequency of incorporation of noncomplementary nucleotides. Misincorporation frequency is increased when the nearest-neighbor nucleotides form more stable base pairs with the corresponding nucleotides in the template and is decreased when they form less stable base pairs. The stability of the base pair formed by a nucleotide either preceding (5' to) or following (3' to) a misincorporated nucleotide influences misincorporation frequency, but by different mechanisms. The stability of base pairs formed by preceding nucleotides affects the rate of insertion of mismatched nucleotide but does not protect the mismatched nucleotide from removal by the 3' to 5' exonuclease activity. In contrast, the stability of a base pair formed by a following nucleotide determines whether a misincorporated nucleotide is extended or excised by affecting the ability of the enzyme to edit errors of incorporation.  相似文献   

19.
Tuma J  Paulini R  Rojas Stütz JA  Richert C 《Biochemistry》2004,43(50):15680-15687
The exposed terminal base pairs of DNA duplexes are nonclassical binding sites for small molecules. Instead, small molecules usually prefer intercalation or minor groove binding. Here we report the solution structure of the DNA duplex (TMS-TGCGCA)(2), where TMS denotes trimethoxystilbene carboxamides that are 5'-tethered to the DNA. The stilbenes, for which intercalation is conformationally accessible, stack on the terminal T:A base pairs of an undisturbed B-form duplex. Two conformations, differing by the orientation of the stilbene relative to the terminal base pair, are observed, indicating that the flip rate is slow for the pi-stacked aromatic ring system. The trimethoxystilbene is known to greatly increase base pairing fidelity at the terminus. Here we show that it gauges the size of the T:A base pair by embracing the 2'-methylene group of the terminal dA residue of the unmodified terminus with its methoxy "arms", but that it does not engage the entire base pair in pi-stacking. Mismatched base pairs with their altered geometry will not allow for the same embracing interaction. On the basis of the current structure, a trimethoxychrysene carboxamide is proposed as a ligand with increased pi-stacking surface and possible applications as improved fidelity-enhancing element.  相似文献   

20.
The infrared spectra of three different 25-mer parallel-stranded DNAs (ps-DNA) have been studied. We have used ps-DNAs containing either exclusively dA x dT base pairs or substitution with four dG x dC base pairs and have them compared with their antiparallel-stranded (aps) reference duplexes in a conventional B-DNA conformation. Significant differences have been found in the region of the thymine C = O stretching vibrations. The parallel-stranded duplexes showed characteristic marker bands for the C2 = O2 and C4 = O4 carbonyl stretching vibrations of thymine at 1685 cm-1 and 1668 cm-1, respectively, as compared to values of 1696 cm-1 and 1663 cm-1 for the antiparallel-stranded reference duplexes. The results confirm previous studies indicating that the secondary structure in parallel-stranded DNA is established by reversed Watson--Crick base pairing of dA x dT with hydrogen bonds between N6H...O2 and N1...HN3. The duplex structure of the ps-DNA is much more sensitive to dehydration than that of the aps-DNA. Interaction with three drugs known to bind in the minor groove of aps-DNA--netropsin, distamycin A and Hoechst 33258--induces shifts of the C = O stretching vibrations of ps-DNA even at low ratio of drug per DNA base pair. These results suggest a conformational change of the ps-DNA to optimize the DNA-drug interaction. As demonstrated by excimer fluorescence of strands labeled with pyrene at the 5'-end, the drugs induce dissociation of the ps-DNA duplex with subsequent formation of imperfectly matched aps-DNA to allow the more favorable drug binding to aps-DNA. Similarly, attempts to form a triple helix of the type d(T)n.d(A)n.d(T)n with ps-DNA failed and resulted in the dissociation of the ps-DNA duplex and reformation of a triple helix based upon an aps-DNA duplex core d(T)10.d(A)10.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号