首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Incubation of rabbit tracheal explants with N-[(3)H]acetyl-d-glucosamine and N-acetyl-d-[1-(14)C]glucosamine led to labelling of a number of soluble macromolecular products separable from the medium, after papain digestion, by ion-exchange chromatography. 2. With N-acetyl-d-[1-(14)C]glucosamine in the incubation medium, a neutral glycoprotein, two acidic glycoprotein fractions, hyaluronic acid and a glycosaminoglycan fraction were obtained and all were radioactively labelled. Similar labelling occurred with N-fluoroacetyl-d-[1-(14)C]glucosamine or N-fluoro[(3)H]acetylglucosamine as precursor. 3. Maximal labelling was obtained at 96h after incubation of cultures. N-Fluoroacetyl-glucosamine under these conditions was incorporated into hyaluronate less efficiently than N-acetylglucosamine. 4. With N-fluoroacetyl-d-[1-(14)C]glucosamine as precursor, a hyaluronate component was separated that on enzymic degradation by glycosidases (hyaluronidase, beta-glucuronidase and N-acetyl-beta-hexosaminidase) yielded a (14)C-labelled oligosaccharide fraction together with N-acetyl-d-[1-(14)C]glucosamine and N-fluoroacetyl-d-[1-(14)C]glucosamine, consistent with some exchange of N-acetyl groups having occurred. 5. The results on enzymic degradation of labelled macromolecules by glycosidases suggest that the presence of incorporated N-fluoroacetyl side chains may render the hyaluronate analogue more resistant to hyaluronidase.  相似文献   

2.
1. Primary cultures of chondrocytes from the Swarm rat chondrosarcoma were labelled with either [3H]glucosamine or [14C]glucosamine, and hyaluronate synthesized by the cells was isolated from the cell layer. Parallel cultures were labelled with either [3H]serine or [3H]lysine, and identical fractions were isolated from the cell layer. Some cultures were dual-labelled. 2. In cultures labelled with [3H]serine for between 30 min and 24 h and extracted with 4.0 M-guanidine, a procedure that solubilizes predominantly extracellular macromolecules, small amounts of [3H]serine-labelled molecules were found associated with the hyaluronate fraction purified from the extract by dissociative CsCl-density-gradient centrifugation and dissociative Sepharose CL-2B chromatography. About 75% of the [3H]serine-labelled molecules in the fraction were specifically associated with hyaluronate, since they could be removed by prior treatment with proteinase-free Streptomyces hyaluronidase. The association of the [3H]serine-labelled molecules with hyaluronate was non-covalent, since they could be separated from it by further centrifugation in CsCl density gradients containing 4 M-guanidinium chloride and a zwitterionic detergent. 3. In other experiments the cultures were extracted with a sequential zwitterionic-detergent/guanidinium chloride procedure that completely solubilized the cell layer and enabled fractions containing newly synthesized cell-associated hyaluronate to be isolated. Zwitterionic detergent was present throughout. No [3H]lysine was incorporated into these fractions, irrespective of whether the cultures were pulsed concurrently with [3H]lysine and [14C]glucosamine or sequentially with [3H]lysine to prelabel the protein pool (24 h) followed by [14C]-glucosamine to label hyaluronate (1 h). 4. The results show that newly synthesized hyaluronate is not associated with covalently bound protein, and suggest that chain synthesis is initiated by a mechanism other than on to a core protein. Small amounts of [3H]serine-labelled molecules are, however, non-covalently associated with extracellular hyaluronate. Their identity is at present unknown, but they are probably of low molecular weight.  相似文献   

3.
A microsomal preparation from chondroitin 4-sulfate-synthesizing cultured mouse mastocytoma cells was incubated with UDP-[3H]GalNAc, UDP-GlcA, and 3'-phosphoadenylylphosphosulfate (PAPS) for 30 s at 10 degrees C and with UDP-[14C]GlcA, UDP-GalNAc, and PAPS for 4 h at 37 degrees C for synthesis of 3H- and 14C-labeled chondroitin/chondroitin sulfate. The latter incubation provided more than 100 times as much product as did the short incubation at 10 degrees C. Upon chromatography of the isolated labeled glycosaminoglycans on a Sepharose CL-6B column, most of the [14C]glycosaminoglycan from the 4 h, 37 degrees C incubation was excluded from the column, indicating that this nascent glycosaminoglycan had been polymerized fully. In contrast, most of the [3H]glycosaminoglycan from the 30 s, 10 degrees C incubation was mostly retarded upon cochromatography on this same column, indicating that the nascent glycosaminoglycan was still growing in size. The labeled fractions representing chondroitin/chondroitin sulfate of varying sizes were analyzed for degree of sulfation by degradation with chondroitin ABC lyase followed by paper electrophoresis of the products. Results indicated that the [14C]chondroitin/chondroitin sulfate formed in the 4-h incubation was 60-70% sulfated. Incomplete chains of [3H]chondroitin/chondroitin sulfate formed in the 30-s incubation were also sulfated as much as 20-25%. As the size of the [3H]chondroitin/chondroitin sulfate increased, there was a concomitant increase in sulfation. These results demonstrate that in this microsomal system sulfation takes place while the nascent chondroitin glycosaminoglycan chains are still actively growing in length, although the sulfation lags somewhat behind the polymerization. This not only indicates a common membrane location for both polymerization and sulfation of chondroitin but also demonstrates that the sulfation of chondroitin by these mastocytoma cells may occur during the process of glycosaminoglycan polymerization rather than subsequent to completion of the glycosaminoglycan chains.  相似文献   

4.
The effect of hyaluronidase treatment on the incorporation of [3H]glucosamine into hyaluronate in human skin fibroblast cultures was investigated. Fourth passage cells in confluent cultures were treated with hyaluronidase from bovine tests, Streptomyces and leech in Dulbecco's minimum essential medium in the presence of 3% fetal calf serum. The medium was removed from the control (non-treated) and the treated cultures and the washed cell layers were incubated with [3H]glucosamine and [35S]sulfate. [3H]Hyaluronate was separated by DEAE Trisacyl chromatography and identified by specific enzymic assays. Hyaluronidase treatment induced an increase in the amount of labelled hyaluronate secreted into the medium and into the pericellular compartment. This amount reached a plateau with increasing enzyme concentration and with the time of treatment. Oligosaccharides derived from hyaluronate did not produce this effect. The maximal increase was about 3-fold, and was not inhibited by exogenous hyaluronate (25-100 micrograms/ml) or by oligosaccharides from hyaluronate. Cycloheximide (0.03 mM) inhibited hyaluronate synthesis by 18% or less in the control cells and by 50% in the hyaluronidase-pretreated fibroblasts. No significant difference was found in the hyaluronate synthase activity between control and treated cells, at 60 min following treatment, indicating the reversibility of the effect. The persistence of the stimulation required the presence of hyaluronidase. The treatment of cells with specific hyaluronidases (from Streptomyces and leech) or with testicular hyaluronidase did not modify the labelling of the sulfated glycosaminoglycans. The incorporation kinetics of the [3H]glucosamine into labeled hyaluronate and the increased amount of non-labelled hyaluronate determined by radiometric assay indicated a specific stimulation of hyaluronate synthesis in the hyaluronidase-pretreated fibroblast cultures.  相似文献   

5.
CD44 is an integral membrane glycoprotein of approximately 90 kDa which has been implicated in the binding of hyaluronate to the cell surface. The expression of CD44 in astrocytes was investigated by means of indirect immunofluorescence on cultured cells. The vast majority of these cells were found to express CD44. Western blot analysis of these cells revealed a highly polydisperse species having an M(r) corresponding to 74-86 kDa. In order to visualize hyaluronate-binding cells, living cultures were probed with fluorescein-conjugated hyaluronate (FI-HA). Some astrocytes were able to bind FI-HA, provided that they were first treated with hyaluronidase. Streptomyces hyaluronidase, which is hyaluronate-specific, was effective in exposing the hyaluronate-binding capacity of these cells. This leads one to conclude that hyaluronate is bound to the surface of these cells and that it masks their capacity to bind hyaluronate. Provided that they were first treated with hyaluronidase, the U-87 MG (glioblastoma-astrocytoma), U-373 MG (glioblastoma), and Hs 683 (glioma) cell lines were also able to bind FI-HA. The U-138 MG (glioblastoma) cell line was unable to bind FI-HA, with or without prior hyaluronidase treatment. A quantitative assay was developed with the use of [3H]hyaluronate ([3H]HA). This revealed the binding to be highly specific, inasmuch as the addition of unlabeled hyaluronate, but not other glycosaminoglycans, was effective in inhibiting the binding of the [3H]HA. An anti-CD44 monoclonal antibody, 50B4, was able to inhibit the binding of the [3H]HA to the U-373 MG cell line. In this cell line, then, CD44 functions as a hyaluronate receptor and one may infer that this is also the case in some astrocytes.  相似文献   

6.
Binding of hyaluronate to the surface of cultured cells   总被引:7,自引:0,他引:7       下载免费PDF全文
The binding of hyaluronate to SV-3T3 cells was measured by incubating a suspension of cells (released from the substratum with EDTA) with 3H-labeled hyaluronate and then applying the suspension to glass fiber filters which retained the cells and the bound hyaluronate. The extent of binding was a function of both the concentration of labeled hyaluronate and the cell number. Most of the binding took place within the first 2 min of the incubation and was not influenced by the presence or absence of divalent cations. The binding of labeled hyaluronate to SV-3T3 cells could be prevented by the addition of an excess of unlabeled hyaluronate. High molecular weight preparations of hyaluronate were more effective in preventing binding than low molecular weight preparations. The binding of [3H]hyaluronate was inhibited by high concentrations of oligosaccharide fragments of hyaluronate consisting of six sugars or more, and by chondroitin. The sulfated glycosaminoglycans (chondroitin-4-sulfate, chondroitin-6-sulfate, dermatan sulfate, heparin, and heparan sulfate) had little or no effect on the binding. The labeled hyaluronate bound to the cells could be totally removed by incubating the cells with testicular hyaluronidase, streptomyces hyaluronidase, or trypsin, indicating that the hyaluronate-binding sites are located on the cell surface.  相似文献   

7.
Hyaluronate degradation in 3T3 and simian virus-transformed 3T3 cells   总被引:4,自引:0,他引:4  
The cellular control of hyaluronate levels was examined in cultures of simian virus 40-transformed 3T3 (SV3T3) and 3T3 cells which are known to differ in their metabolism of hyaluronate. When [3H]hyaluronate was added to cultures of the two cell lines, four times more ligand was bound per mg of protein by the SV3T3 cells than by the 3T3 cells. Of the bound [3H] hyaluronate, 40% was degraded by the SV3T3 cells to oligosaccharides characteristic of the breakdown of hyaluronate, but only 2% was degraded by 3T3 cells. Hyaluronidase activity was found in the cell layer and medium of the SV3T3 cultures, but was not detectable in 3T3 cells. The SV3T3 enzyme was active only at acidic pH, but at neutral pH the secreted SV3T3 hyaluronidase was thermally more stable then the cell-associated enzyme. In contrast, both cell lines were found to contain similar amounts of beta-glucuronidase and beta-N-acetylglucosaminidase activity. We conclude that the elevated capacity of SV3T3 cells to degrade hyaluronate may be partially responsible for their lack of the hyaluronate-containing pericellular coat which is prominent around 3T3 cells.  相似文献   

8.
Polysomes were isolated from Aspergillus niger and were characterized on sucrose gradients in several ways. First, they were found to be susceptible to degradation by treatment with RNase or EDTA. Second, they were labeled after treating mycelia with short pulses of [3H]uridine or [3H]leucine prior to polysome isolation. Third, they were capable of stimulating incorporation of [3H]leucine into trichloroacetic acid-precipitable material in a chick reticulocyte cell-free protein-synthesizing system. When isolated [3H]leucine pulse-labeled polysomes were treated with either EDTA-RNase or puromycin, 80–90% of the radioactivity was released, indicating that only the nascent polypeptide chains were labeled. After exposing mycelia for 1 min to [14C]mannose, the polysomes were exclusively labeled, indicating that initial glycosylation takes place on nascent polypeptide chains. Preincubation of mycelia with 2-deoxyglucose followed by pulse-labeling with [3H]leucine and [14C]mannose showed that 2-deoxy-d-glucose inhibits both protein synthesis and glycosylation. However, similar preincubation with tunicamycin caused an 80% drop in [14C]mannose label in the polysomes, but only a 10–20% drop of [3H]leucine label, suggesting that glycosylation of nascent chains in A. niger involves an oligosaccharide-lipid intermediate, since it has been shown that tunicamycin inhibits the synthesis of such an intermediate. When isolated polysomes were placed into an in vitro glycosylating mixture containing Mn2+, GDP-[14C]mannose, and smooth membranes from A. niger nascent chains were labeled. This reaction was shown to be dependent on addition of polysomes to the mixture and was not inhibited by 2-deoxy-d-glucose or tunicamycin. Both in vivo and in vitro glycosylated nascent chains were found to have about the same size range, and so it is suggested that in vitro no new oligosaccharide chains were synthesized, but preexisting chains were extended.  相似文献   

9.
Nascent polysome-associated type I procollagen pro-alpha-chains isolated from chick embryo tendon fibroblasts were examined for their proteinase resistance. The distribution of chain sizes and their proteinase resistance were also determined following chain elongation in an in vitro readout system in the absence of chain initiation factors. Chains were labeled with [14C]proline in the cells and with [3H]proline in the readout system. Differences in the ratios of 14C to 3H in the double-labeled nascent chains before and after chymotryptic digestion, determined by slicing and counting polyacrylamide gels after electrophoresis, permitted analysis of the relative stabilities of in vivo and in vitro elongated portions of the chains. In confirmation of earlier work, the polysome-bound nascent procollagen contained chymotrypsin, chymotrypsin plus trypsin, and pepsin-resistant alpha-chain size components. The readout system data showed that the full length chains produced in the cell were more resistant to digestion than the fully elongated readout-completed chains. The protease resistance of the chains was taken to indicate the registration of the chains prior to the induction of helix formation during the isolation procedure. These data support the model in which chain selection and folding are facilitated by the organization of the attachment of the ribosomes to the endoplasmic reticulum surface.  相似文献   

10.
High-affinity, cell surface binding sites for hyaluronate were demonstrated on highly invasive human bladder carcinoma cells. These binding sites were shown to be specific for hyaluronate, saturable and exhibit a Km of 0.94 x 10(-9) M and a Bmax of 65 ng hyaluronate/10(6) cells. The binding of [3H]hyaluronate to a fixed cell-affinity column was competed with unlabeled hyaluronate and hyaluronate-hexasaccharide but not with hyaluronate-tetrasaccharide, chondroitin sulfate, heparin or non-sulfated dextran. Pre-treatment of cells with protease destroyed the binding activity whereas pretreatment with Streptomyces hyaluronidase to reveal occupied binding sites had no effect. No hyaluronate-binding activity was observed on normal human fibroblasts.  相似文献   

11.
Hyaluronate synthase activity is localized exclusively in plasma-membrane fractions of cultured human skin fibroblasts. The enzyme activity of plasma membranes prepared from exponential-growth-phase cells was about 6.5 times that of stationary-growth-phase cells. Hyaluronate synthase from exponential-growth-phase cells exhibited lower Km and higher Vmax. values for both UDP-N-acetylglucosamine and UDP-glucuronic acid and higher rate of elongation of hyaluronate chains compared with the enzyme from stationary-growth-phase cells. Hyaluronate synthase exhibited an extremely short half-life, 2.2 h and 3.8 h respectively when cells were treated with cycloheximide and actinomycin D. The cell-growth-phase-dependent variations in hyaluronate synthase activity appear to be due to its high turnover rate as well as due to some post-translational modification of the enzyme protein as cells progress from early exponential to stationary growth phase. The isolated plasma membranes contained a protein (Mr approx. 450,000) that was selectively autophosphorylated from [gamma-32P]ATP in vitro in the presence of hyaluronate precursors in the reaction mixture and that also exhibited some hyaluronate-synthesis-related properties. The 32P-labelled protein isolated from plasma membranes of exponentially growing cells expressed an efficient UDP-[14C]glucuronic acid- and UDP-N-acetyl[3H]glucosamine-binding activity and was able to synthesize oligosaccharides (Mr 5000) of [14C]glucuronic acid and N-acetyl[3H]glucosamine residues. The corresponding protein of stationary-growth-phase cells, which expressed much higher nucleotide-sugar-precursor-binding activity, appeared to have lost its oligosaccharide-synthesizing activity.  相似文献   

12.
1. Isolation of free and membrane-bound ribosomes from embryonic chick sternal-cartilage cells labelled for 4min with [14C]proline and their subsequent analysis for hydroxy[14C]proline indicated that cartilage procollagen biosynthesis occurs on bound ribosomes. 2. Nascent procollagen polypeptides on bound ribosomes isolated from cells labelled with [14C]lysine were found to contain hydroxy[14C]lysine indicating that hydroxylation of lysine commences while the growing chains are still attached to the ribosomes. 3. Analysis of bound ribosomes labelled with either [14C]proline or [14C]lysine on sucrose density gradients indicated that cartilage procollagen is synthesized on large polyribosomes in the range 250-400S. 4. Microsomal preparations isolated from cells pulse-labelled for 4 min with [14C]proline were used to determine the direction of release of nascent procollagen polypeptides. Puromycin induced the vectorial release of nascent procollagen polypeptides into the microsomal vesicles suggesting that the first step in the secretion of procollagen polypeptides is their transfer from the ribosomes through the membrane of the endoplasmic reticulum into the cisternal space. 5. The procollagen polypeptides secreted by cartilage cells were shown to be linked by inter-chain disulphide bonds. 6. Examination of the state of aggregation of pro-alpha chains in subcellular fractions isolated from cartilage cells labelled with [14C]proline for various periods of time have provided data on the timing and location of inter-chain disulphide-bond formation. This process commences in the rough endoplasmic reticulum after the release of completed pro-alpha chains from membrane-bound ribosomes. Pro-alpha chains isolated from fractions of smooth endoplasmic reticulum were virtually all present as disulphide-bonded aggregates, suggesting that either disulphide bonding is completed in this cellular compartment, or that procollagen needs to be in a disulphide-bonded form to be transferred to this region of the endoplasmic reticulum. 7. Comparison of these results with previously published data on disulphide bonding in tendon cells suggest that the rate of inter-chain disulphide-bond formation is significantly slower in cartilage cells.  相似文献   

13.
The nature of endogenous acceptor molecules implicated in the membrane-directed synthesis of the polysialic acid (polySia) capsule in Escherichia coli K1 serotypes is not known. The capsule contains at least 200 sialic acid (Sia) residues that are elongated by the addition of new Sia residues to the nonreducing termini of growing nascent chains (Rohr, T. E., and Troy, F. A. (1980) J. Biol. Chem. 255, 2332-2342). Presumably, chain growth starts when activated Sia residues are transferred to acceptors that are not already sialylated. In the present study, we used an acapsular mutant defective in synthesis of CMP-NeuAc to label acceptors with [14C]NeuAc and an anti-polySia-specific antibody (H.46) to identify the molecules to which the polySia was attached. [14C]Sia-labeled acceptors were solubilized with 2% Triton X-100, immunoprecipitated with H.46, and partially depolymerized with poly-alpha-2,8-endo-N-acetylneuraminidase. Approximately 5% of the [14C]Sia incorporated remained attached to endogenous acceptors. Double-labeling experiments were used to show that the non-Sia moiety of the acceptor was labeled in vivo with [14C]leucine and elongated in vitro with CMP-[3H]NeuAc. Concomitant with desialylation of the [3H]polySia-[14C]Leu acceptor was the appearance of a new [14C]Leu-labeled protein at 20 kDa. After strong acid hydrolysis, the 20-kDa labeled protein was shown to contain [14C]Leu. The acceptor molecules were not labeled metabolically with D-[3H]GlcN, 35SO4, or 32PO4, indicating that they do not appear to contain lipopolysaccharide, peptidoglycan, phosphatidic acid, or phospholipid. Based on these results, we conclude that the endogenous acceptor molecule is a membrane protein of about 20 kDa. The nature of attachment of polySia to acceptor is unknown. There are only 400-500 acceptor molecules/cell, which is about 100-fold fewer than the 50,000 polySia chains/cell. This suggests that each acceptor molecule may participate in the shuttling of about 100 polySia chains/cell. We hypothesize that the acceptor protein may function to translocate polySia chains from their site of synthesis on the cytoplasmic surface of the inner membrane to the periplasm.  相似文献   

14.
[3H]Proline-labeled nascent procollagen chains were isolated from chick tendon polysome preparations as peptidyl-tRNA complexes by ion exchange chromatography. Proline hydroxylation of the nascent chains was at least 40% complete, based on radioactive hydroxyproline/proline ratios. These data provide the first direct evidence that hydroxylation of procollagen proline residues does occur on nascent chains. The electrophoretic profiles of [3H]proline-labeled nascent chains and of unlabeled nascent chains visualized by Western blotting with 35S-labeled monoclonal antibodies to the alpha 1(I) N-propeptide or the C-propeptides indicate that there are pauses in the translation of procollagen alpha-chains in the intact cells. Approximately 25% of the radioactivity associated with [3H]proline-labeled polysomes was in fully elongated but underhydroxylated (relative to secreted procollagen) pro-alpha-chains. The association of these completely elongated but only partially modified procollagen chains with the polysome complex may facilitate the carboxyl-terminal interactions which lead to triple helix formation.  相似文献   

15.
Two sets of parent and virus-transformed cell lines (3T3 vs SV-3T3; BHK vs PY-BHK) were compared with respect to the extent of divalentcation independent aggregation which previously has been shown to depend upon the interaction of endogenous hyaluronate with specific receptors on the cell surface. When measured under conditions of physiological ionic strength, a significant amount of hyaluronidase-inhibitable aggregation was found in the virus-transformed cell lines (SV-3T3 and PY-BHK) but not in their parent counterparts (3T3 and BHK). However, when the same experiment was performed in a high ionic strength solution (0.5 M NaCl), the hyaluronidase inhibitable aggregation was detected in all of the cell lines. The differences in the aggregation between the various cell lines was also reflected in the binding of [3H]hyaluronate. In physiological saline, the virus-transformed cells bound greater amounts of hyaluronate (higher Bmax) with a greater affinity (lower kd) than did their untransformed counterparts. Increasing the ionic strength to 0.5 M NaCl increased the binding of [3H]hyaluronate by each cell line; however, the relative differences between the cell lines remained. These results indicate that variations in the ability of the cells to bind hyaluronate can partially account for the differences between the parent and the virus-transformed cells with respect to their ability to aggregate.  相似文献   

16.
Although 2-O-sulfated L-iduronic acid (IdoA) residues have been known to occur in heparin, 2-O-sulfated D-glucuronic acid (GlcA) residues have been reported only recently (Bienkowski, M. J., and Conrad, H. E. (1985) J. Biol. Chem. 250, 356-365). Disaccharides prepared by cleavage of heparin and N-deacetylated chondroitin 6-sulfate with nitrous acid were used to demonstrate a new sulfatase that catalyzed the removal of the 2-O-sulfate substituents from GlcA but not IdoA residues. The deamination products were labeled by NaB3H4 reduction to give disaccharides from heparin and chondroitin sulfate which had reducing terminal 2,5-anhydro-D-mannitol ([3H]AManR) and 2,5-anhydro-D-talitol ([3H]ATalR) residues, respectively. IdoA(2-SO4)-[3H]AManR(6-SO4) from heparin and GlcA(2-SO4)-[3H]ATalR(6-SO4) from chondroitin sulfate were purified for use as substrates. GlcA(2-SO4)-[3H]AManR(6-SO4) was prepared by epimerization of IdoA(2-SO4)-[3H]AManR(6-SO4) with hydrazine at 100 degrees C. Lysosomal enzyme preparations from chick embryo chondrocytes and from two normal human fibroblast cell lines catalyzed the removal of the 2-O-SO4 substituent from the uronic acid residues of IdoA(2-SO4)-[3H]AManR(6-SO4), GlcA(2-SO4)-[3H] AManR(6-SO4), and GlcA(2-SO4)-[3H]ATalR(6-SO4). In contrast, a lysosomal enzyme preparation from a human fibroblast cell line deficient in idurono-2-sulfatase (Hunter's-syndrome), which had no activity on the IdoA(2-SO4)-[3H]AManR(6-SO4), converted GlcA(2-SO4)-[3H]AManR(6-SO4) to a mixture of GlcA-[3H] AManR(6-SO4) and [3H]AManR(6-SO4). This enzyme also converted GlcA(2-SO4)-[3H]ATalR(6-SO4) to a mixture of GlcA-[3H]ATalR(6-SO4) and [3H]ATalR(6-SO4). Digestion of both GlcA(2-SO4)-[3H]AManR(6-SO4) and GlcA(2-SO4)-[3H]ATalR(6-SO4) was inhibited by 35SO2-4 and was arrested at the monosulfated disaccharide stage by 1,4-saccharolactone. The glucurono-2-sulfatase exhibited a pH optimum of 4. The results indicate that there exists a separate sulfatase for the removal of sulfate substituents from C-2 of GlcA residues in glycosaminoglycans.  相似文献   

17.
Fluorescent morphological probe for hyaluronate   总被引:3,自引:0,他引:3       下载免费PDF全文
Hyaluronate levels change dramatically during morphogenesis of various tissues and organs. Morphological detection of the exact temporal and spatial distribution patterns of hyaluronate may help to elucidate its role in morphogenesis. Since no specific direct method for visualizing hyaluronate with the light or electron microscope is currently available, we have developed a morphological probe by exploiting the high-affinity interaction of cartilage proteoglycan with hyaluronate. The core protein of this proteoglycan consists of a region that binds specifically to hyaluronate with a high association constant, and a region to which the majority of sulfated polysaccharide chains are covalently attached. The polysaccharide chains were removed by treatment with chondroitinase ABC, and the core protein, labeled with rhodamine, was used as the probe. This fluorescent probe binds reversibly and specifically to [3H]hyaluronate in a binding assay using ammonium sulfate precipitation of the core protein. The probe has been used to visualize the cell surface hyaluronate of rat fibrosarcoma cells, 3T3 cells, and SV-40 transformed 3T3 cells, three cell types with significantly different amounts of cell surface-associated hyaluronate.  相似文献   

18.
The synthesis of procollagen hydroxyproline and hydroxylysine was examined in matrix-free cells which were isolated from embryonic tendon by controlled enzymic digestion and then incubated in suspension. After the cells were labeled with [14C]proline for 2 min, or about one-third the synthesis time for a Pro-α chain, [14C]hydroxyproline was found in short peptides considerably smaller than the Pro-α chains of procollagen. The results, therefore, confirmed previous reports indicating that the hydroxylation of proline can begin on nascent chains. In similar experiments in which the cells were labeled with [14C]lysine, [14C]hydroxylysine was found in short, newly synthesized peptides, providing the first evidence that the hydroxylation of lysine can also begin on nascent peptides. However, further experiments demonstrated that the synthesis of hydroxyproline and hydroxylysine continues until some time after assembly of the polypeptide chains is completed.  相似文献   

19.
Bovine vitreous-humour sodium hyaluronate was purified by precipitation with cetylpyridinium chloride, CsCl-density-gradient sedimentation and gel-permeation chromatography. The number of reducing end groups in two similarly prepared hyaluronate samples was determined by reaction with K14CN, and measurements of intrinsic viscosity were performed to determine whether this reaction caused degradation of the hyaluronate. The intrinsic viscosity of one hyaluronate sample was 192ml/g, compared with a value of 187ml/g after reaction with [14C]cyanide, which indicates that the labelling reaction did not cause depolymerization of the hyaluronate. The Mr calculated from these viscosity values is approx. 60000. Fractionation of the [14C]cyanide-labelled hyaluronate by gel chromatography showed that it was composed of a polydisperse population of molecules with calculated chain lengths, based on the ratio of [14C]cyanide to uronic acid, ranging in molecular weight from 9000 to 264000, with an average Mr of 63200. On the basis of these measurements it is concluded that reaction with [14C]cyanide does not cause degradation of bovine vitreous-humour hyaluronate polysaccharide chains and that reaction with [14C]cyanide can be used to determine the molecular weight of this hyaluronate.  相似文献   

20.
Oversulfated chondroitin sulfate E (CS-E) derived from squid cartilage exhibits intriguing biological activities, which appear to reflect the biological activities of mammalian CS chains containing the so-called E disaccharide unit [GlcAbeta1-3GalNAc(4,6-O-disulfate)]. Previously, we isolated novel tetra- and hexasaccharides containing a rare GlcA(3-O-sulfate) at the nonreducing end after digestion of squid cartilage CS-E with testicular hyaluronidase. In this study, squid cartilage CS-E was extensively digested with chondroitinase AC-II, which yielded five highly sulfated novel tetrasaccharides and two odd-numbered oligosaccharides (tri- and pentasaccharides) containing D-Glc. Their structures were determined by fast atom bombardment mass spectrometry and (1)H NMR spectroscopy. The results revealed an internal GlcA(3-O-sulfate) residue for all the novel tetrasaccharide sequences, which rendered the oligosaccharides resistant to the enzyme. The results suggest that GlcA(3-O-sulfate) units are not clustered but rather interspersed in the CS-E polysaccahride chains, being preferentially located in the highly sulfated sequences. The predominant structure on the nearest nonreducing side of a GlcA(3-O-sulfate) residue was GalNAc(4-O-sulfate) (80%), whereas that on the reducing side was GalNAc(4,6-O-disulfate) (59%). The structural variety in the vicinity of the GlcA(3-O-sulfate) residue might represent the substrate specificity of the unidentified chondroitin GlcA 3-O-sulfotransferase. The results also revealed a trisaccharide and a pentasaccahride sequence, both of which contained a beta-d-Glc branch at the C6 position of the constituent GalNAc residue. Approximately 5 mol % of all disaccharide units were substituted by Glc in the CS-E preparation used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号