首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Group V secretory phospholipase A2 (sPLA2) rather than Group IIA sPLA2 is involved in short term, immediate arachidonic acid mobilization and prostaglandin E2 (PGE2) production in the macrophage-like cell line P388D1. When a new clone of these cells, P388D1/MAB, selected on the basis of high responsivity to lipopolysaccharide plus platelet-activating factor, was studied, delayed PGE2 production (6-24 h) in response to lipopolysaccharide alone occurred in parallel with the induction of Group V sPLA2 and cyclooxygenase-2 (COX-2). No changes in the level of cytosolic phospholipase A2 (cPLA2) or COX-1 were observed, and Group IIA sPLA2 was not detectable. Use of a potent and selective sPLA2 inhibitor, 3-(3-acetamide 1-benzyl-2-ethylindolyl-5-oxy)propanesulfonic acid (LY311727), and an antisense oligonucleotide specific for Group V sPLA2 revealed that delayed PGE2 was largely dependent on the induction of Group V sPLA2. Also, COX-2, not COX-1, was found to mediate delayed PGE2 production because the response was completely blocked by the specific COX-2 inhibitor NS-398. Delayed PGE2 production and Group V sPLA2 expression were also found to be blunted by the inhibitor methylarachidonyl fluorophosphonate. Because inhibition of Ca2+-independent PLA2 by an antisense technique did not have any effect on the arachidonic acid release, the data using methylarachidonyl fluorophosphonate suggest a key role for the cPLA2 in the response as well. Collectively, the results suggest a model whereby cPLA2 activation regulates Group V sPLA2 expression, which in turn is responsible for delayed PGE2 production via COX-2.  相似文献   

2.
We investigated the possible involvement of group VI Ca2+-independent phospholipase A2 (iPLA2) in arachidonic acid (AA) liberation in zymosan-stimulated macrophage-like P388D1 cells. Zymosan-induced AA liberation was markedly inhibited by methyl arachidonoyl fluorophosphonate, a dual inhibitor of group IV cytosolic phospholipase A2 (cPLA2) and iPLA2. We found that a relatively specific iPLA2 inhibitor, bromoenol lactone, significantly decreased the zymosan-induced AA liberation in parallel with the decrease in iPLA2 activity, without an effect on diacylglycerol formation. Consistent with this, attenuation of iPLA2 activity by a group VI iPLA2 antisense oligonucleotide resulted in a decrease in zymosan-induced prostaglandin D2 generation. These findings suggest that zymosan-induced AA liberation may be, at least in part, mediated by iPLA2. A protein kinase C (PKC) inhibitor diminished zymosan-induced AA liberation, while a PKC activator, phorbol 12-myristate 13-acetate (PMA), enhanced the liberation. Bromoenol lactone suppressed the PMA-enhanced AA liberation without any effect on PMA-induced PKC activation. Down-regulation of PKCalpha on prolonged exposure to PMA also decreased zymosan-induced AA liberation. Under these conditions, the remaining AA liberation was insensitive to bromoenol lactone. Furthermore, the PKC depletion suppressed increases in iPLA2 proteins and the activity in the membrane fraction of zymosan-stimulated cells. In contrast, the zymosan-induced increases in iPLA2 proteins and the activity in the fraction were facilitated by simultaneous addition of PMA. Although intracellular Ca2+ depletion prevented zymosan-induced AA liberation, the translocation of PKCalpha to membranes was also inhibited. Taken together, we propose that zymosan may stimulate iPLA2-mediated AA liberation, probably through a PKC-dependent mechanism.  相似文献   

3.
The release of free arachidonic acid from membrane phospholipids is believed to be the rate-controlling step in the production of the prostaglandins, leukotrienes, and related metabolites in inflammatory cells such as the macrophage. We have previously identified several different phospholipases in the macrophage-like cell line P388D1 potentially capable of controlling arachidonic acid release. Among them, a membrane-bound, alkaline pH optimum, Ca2+-dependent phospholipase A2 is of particular interest because of the likelihood that the regulatory enzyme has these properties. This phospholipase A2 has now been solubilized from the membrane fraction with octyl glucoside and partially purified. The first two steps in this purification are butanol extractions that yield a lyophilized, stable preparation of phospholipase A2 lacking other phospholipase activities. This phospholipase A2 shows considerably more activity when assayed in the presence of glycerol, regardless of whether the substrate, dipalmitoylphosphatidylcholine, is in the form of sonicated vesicles or mixed micelles with the nonionic surfactant Triton X-100. Glycerol (70%) increases both the Vmax and the Km with both substrate forms, giving a Vmax of about 15 nmol min-1 mg-1 and an apparent Km of about 60 microM for vesicles and a Vmax of about 100 nmol min-1 mg-1 and an apparent Km of about 1 mM for mixed micelles. Vmax/Km is slightly greater for vesicles than for mixed micelles. The lyophilized preparation of the enzyme is routinely purified about 60-fold and is suitable for evaluating phospholipase A2 inhibitors such as manoalide analogues. Subsequent steps in the purification are acetonitrile extraction followed by high performance liquid chromatography on an Aquapore BU-300 column and a Superose 12 column. This yields a 2500-fold purification of the membrane-bound phospholipase A2 with a 25% recovery and a specific activity of about 800 nmol min-1 mg-1 toward 100 microM dipalmitoylphosphatidylcholine in mixed micelles. When this material was subjected to analysis on a Superose 12 sizing column, the molecular mass of the active fraction was approximately 18,000 daltons.  相似文献   

4.
Previous studies have demonstrated that P388D(1) macrophages are able to mobilize arachidonic acid (AA) and synthesize prostaglandins in two temporally distinct phases. The first phase is triggered by platelet-activating factor within minutes, but needs the cells to be previously exposed to bacterial lipopolysaccharide (LPS) for periods up to 1 h. It is thus a primed immediate phase. The second, delayed phase occurs in response to LPS alone over long incubation periods spanning several hours. Strikingly, the effector enzymes involved in both of these phases are the same, namely the cytosolic group IV phospholipase A(2) (cPLA(2)), the secretory group V phospholipase A(2), and cyclooxygenase-2, although the regulatory mechanisms differ. Here we report that P388D(1) macrophages mobilize AA and produce prostaglandins in response to zymosan particles in a manner that is clearly different from the two described above. Zymosan triggers an immediate AA mobilization response from the macrophages that neither involves the group v phospholipase A(2) nor requires the cells to be primed by LPS. The group VI Ca(2+)-independent phospholipase A(2) is also not involved. Zymosan appears to signal exclusively through activation of the cPLA(2), which is coupled to the cyclooxygenase-2. These results define a secretory PLA(2)-independent pathway for AA mobilization in the P388D(1) macrophages, and demonstrate that, under certain experimental settings, stimulation of the cPLA(2) is sufficient to generate a prostaglandin biosynthetic response in the P388D(1) macrophages.  相似文献   

5.
Phospholipase activities of the P388D1 macrophage-like cell line   总被引:3,自引:0,他引:3  
The murine macrophage (M phi) cell line, P388D1, was employed as a source of M phi phospholipases in order to characterize the enzymatic properties and subcellular localization of these enzymes because of their importance for prostaglandin biosynthesis. Phospholipase activity was assessed with dipalmitoylphosphatidylcholine (DPPC) as substrate. Phospholipases were characterized with respect to divalent cation dependence, pH optima, and localization in subcellular compartments using linear sucrose gradients. By these criteria a number of different phospholipases were identified. Most importantly, a single Ca2+-dependent activity with a pH optimum of 8.8 was identified in membrane-rich fractions (plasma membrane, mitochondria, and endoplasmic reticulum) and could be clearly separated from the remaining activities, which are Ca2+ independent and exhibit pH optima of 7.5, 5.1, and 4.2. The phospholipases with acidic pH optima may be associated with subcellular components containing lysosomal enzymes and both phospholipase A1 and phospholipase A2 activities are observed. In contrast, the phospholipase activity with a pH optimum of 7.5 sediments with the cytosolic proteins and is inhibited by 5 mM Ca2+. No significant phospholipase C activity was detected in assays performed with or without added Ca2+ at pH's 4.2, 5.1, 7.5, or 8.8 using DPPC as substrate. However, the P388D1 cells do contain a lysophospholipase that is at least 20 times more active than the phospholipase A activities identified. Its presence must be taken into account in evaluating the positional specificities and properties of the macrophage phospholipases.  相似文献   

6.
P388D1 cells release arachidonic acid (AA) and produce prostaglandin E2 (PGE2) upon long-term stimulation with lipopolysaccharide (LPS). The cytosolic Group IVA (GIVA) phospholipase A2 (PLA2) has been implicated in this pathway. LPS stimulation also results in increased expression and secretion of a secretory PLA2, specifically GV PLA2. To test whether GV PLA2 contributes to PGE2 production and whether GIVA PLA2 activation increases the expression of GV PLA2, we utilized the specific GIVA PLA2 inhibitor pyrrophenone and second generation antisense oligonucleotides (AS-ONs) designed to specifically inhibit expression and activity of GV PLA2. Treatment of P388D1 cells with antisense caused a marked decrease in basal GV PLA2 mRNA and prevented the LPS-induced increase in GV PLA2 mRNA. LPS-stimulated cells release active GV PLA2 into the medium, which is inhibited to background levels by antisense treatment. However, LPS-induced PGE2 release by antisense-treated cells and by control cells are not significantly different. Collectively, the results suggest that the upregulation of GV PLA2 during long-term LPS stimulation is not required for PGE2 production by P388D1 cells. Experiments employing pyrrophenone suggested that GIVA PLA2 is the dominant player involved in AA release, but it appears not to be involved in the regulation of LPS-induced expression of GV PLA2 or cyclooxygenase-2.  相似文献   

7.
The interaction between interleukin IL-1 alpha and PGE2 on P388D1 cells has been investigated. Preincubation of murine macrophage-like cells, P388D1, with IL-1 alpha (0-73 pM) reduced the binding of PGE2 to these cells in a concentration-dependent manner. Scatchard analysis showed that IL-1 alpha decreased the PGE2 binding by lowering both the high and low affinity receptor binding capacities (from 0.31 +/- 0.02 to 0.12 +/- 0.01 fmol/10(6) cells for the high affinity receptor binding sites and from 2.41 +/- 0.12 to 1.51 +/- 0.21 fmol/10(6) cells for the low affinity receptor binding sites). However, the dissociation constants of the receptors of the IL-1 alpha-treated cells remained unchanged. Inhibition of PGE2 binding by IL-1 alpha did not involve changes in either protein phosphorylation or intracellular cyclic AMP levels. Our data clearly show that IL-1 alpha inhibits the binding of PGE2 to monocytes/macrophages and may thereby counter the immunosuppressive actions of PGE2.  相似文献   

8.
P388D(1) macrophages prelabeled with [(3)H]arachidonic acid (AA) respond to bacterial lipopolysaccharide (LPS) by mobilizing AA in a process that takes several hours and is mediated by the concerted actions of the group IV cytosolic phospholipase A(2) and the group V secretory phospholipase A(2) (sPLA(2)). Here we show that when the LPS-activated cells are prelabeled with [(3)H]oleic acid (OA), they also mobilize and release OA to the extracellular medium. The time and concentration dependence of the LPS effect on OA release fully resemble those of the AA release. Experiments in which both AA and OA release are measured simultaneously indicate that AA is released 3 times more efficiently than OA. Importantly, LPS-stimulated OA release is strongly inhibited by the selective sPLA(2) inhibitors 3-(3-acetamide-1-benzyl-2-ethylindolyl-5-oxy)propane sulfonic acid and carboxymethylcellulose-linked phosphatidylethanolamine. The addition of exogenous recombinant sPLA(2) to the cells also triggers OA release. These data implicate a functionally active sPLA(2) as being essential for the cells to release OA upon stimulation with LPS. OA release is also inhibited by methyl arachidonyl fluorophosphonate but not by bromoenol lactone, indicating that the group IV cytosolic phospholipase A(2) is also involved in the process. Together, these data reveal that OA release occurs during stimulation of the P388D(1) macrophages by LPS and that the regulatory features of the OA release are strikingly similar to those previously found for the AA release.  相似文献   

9.
We have found that chitosan, a polysaccharide present in fungal cell walls, is able to activate macrophages for enhanced mobilization of arachidonic acid in a dose- and time-dependent manner. Studies aimed at identifying the intracellular effector(s) implicated in chitosan-induced arachidonate release revealed the involvement of the cytosolic Group IV phospholipase A2 (PLA2), as judged by the inhibitory effect of methyl arachidonoyl fluorophosphonate but not of bromoenol lactone. Interestingly, priming of the macrophages with lipopolysaccharide renders the cells more sensitive to a subsequent stimulation with chitosan, and this enhancement is totally blocked by the secretory PLA2 inhibitor 3-(3-acetamide)-1-benzyl-2-ethylindolyl-5-oxy-propanesulfonic acid (LY311727). Collectively, the results of this work establish chitosan as a novel macrophage-activating factor that elicits AA mobilization in P388D1 macrophages by a mechanism involving the participation of two distinct phospholipases A2.  相似文献   

10.
The addition of histamine to macrophage-like P388D1 cells resulted in a dose-dependent increase in intracellular calcium [Ca2+]i measured by fura-2 in single cells. The maximum level of [Ca2+]i was obtained by addition of 1 x 10(-4) M histamine. The increase was primarily due to release from the intracellular store. The addition of an H1 specific antagonist pyrilamine before histamine treatment inhibited the increase reversibly, while an H2 specific antagonist cimetidine had no inhibitory effect. Histamine also resulted in a dose-dependent increase in cGMP but not in cAMP. These data suggest the existence of histamine H1 receptors in these cells and histamine may have some biological effect on the function of macrophages via [Ca2+]i and cGMP as the second messengers.  相似文献   

11.
Phospholipase D (PLD) has been suggested to mediate epidermal growth factor (EGF) signaling. However, the molecular mechanism of EGF-induced PLD activation has not yet been elucidated. We investigated the importance of the phosphorylation and compartmentalization of PLD1 in EGF signaling. EGF treatment of COS-7 cells transiently expressing PLD1 stimulated PLD1 activity and induced PLD1 phosphorylation. The EGF-induced phosphorylation of threonine147 was completely blocked and the activity of PLD1 attenuated by point mutations (S2A/T147A/S561A) of PLD1 phosphorylation sites. The expression of a dominant negative PKCalpha mutant by adenovirus-mediated gene transfer greatly inhibited the phosphorylation and activation of PLD1 induced by EGF in PLD1-transfected COS-7 cells. EGF-induced PLD1 phosphorylation occurred primarily in the caveolin-enriched membrane (CEM) fraction, and the kinetics of PLD1 phosphorylation in the CEM were strongly correlated with PLD1 phosphorylation in the total membrane. Interestingly, EGF-induced PLD1 phosphorylation and activation and the coimmunoprecipitation of PLD1 with caveolin-1 and the EGF receptor in the CEM were significantly attenuated in the palmitoylation-deficient C240S/C241S mutant, which did not localize to the CEM. Immunocytochemical analysis revealed that wild-type PLD1 colocalized with caveolin-1 and the EGF receptor and that phosphorylated PLD1 was localized exclusively in the plasma membrane, although some PLD1 was also detected in vesicular structures. Transfection of wild-type PLD1 but not of C240S/C241S mutant increased EGF-induced raf-1 translocation to the CEM and ERK phosphorylation. This study shows, for the first time, that EGF-induced PLD1 phosphorylation and activation occur in the CEM and that the correct localization of PLD1 to the CEM via palmitoylation is critical for EGF signaling.  相似文献   

12.
Two lysophospholipase activities (designated I and II) were identified in the macrophage-like cell line P388D1. Lysophospholipase I was purified (8,500-fold) to homogeneity by DEAE-Sephacel, Sephadex G-75, Blue-Sepharose, and chromatofocusing chromatography. Lysophospholipase II was separated from the lysophospholipase I in the Blue-Sepharose step. The apparent molecular mass of lysophospholipase I and II are 27,000 and 28,000 daltons, respectively, determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Their pI values were 4.4 and 6.1 respectively, as determined by isoelectric focusing. Lysophospholipase I exhibited a broad pH optimum between 7.5-9.0. The double-reciprocal plot of the substrate dependence curve of the purified lysophospholipase I showed a break around the critical micelle concentration of the substrate (1-palmitoyl-sn-glycerol-3-phosphorylcholine). The apparent Km, determined from substrate concentrations above 10 microM was 22 microM, and the apparent Vmax was 1.3 mumol min-1mg-1. The purified enzyme did not have phospholipase A1, phospholipase A2, acyltransferase, or lysophospholipase-transacylase activity. No activity was detected toward triacylglycerol, diacylglycerol, p-nitrophenol acetate, p-nitrophenol palmitate, or cholesterol ester. The enzyme did, however, hydrolyze monoacylglycerol although at a rate 20-fold less than lysophospholipid, 0.06 mumol min-1mg-1. The lysophospholipase I was inhibited by fatty acids but not by glycerol-3-phosphorylcholine, glycerol-3-phosphorylethanolamine, or glyc-fjerol-3-phosphorylserine. A synthetic manoalide analogue 3(cis,cis,-7,10)hexadecadienyl-4-hydroxy-2-butenolide inhibited the enzyme with half-inhibition (IC50) at about 160 microM. Triton X-100 decreased the enzymatic activity, although this apparent inhibition can be explained by a "surface dilution" effect. The pure lysophospholipase I was stable for at least 5 months at -20 degrees C in the presence of glycerol and beta-mercaptoethanol. Lysophospholipid also demonstrated a protective effect during the later stage of purification.  相似文献   

13.
Phospholipase D (PLD) activity is elevated in Ras-transformed NIH 3T3 cells. This difference in PLD activity between Ras-transformed and nontransformed parental cells disappeared in isolated membranes from these cells. In reconstitution experiments, heat-denatured cytosolic fractions from Ras-transformed, but not parental, NIH 3T3 cells elevated PLD activity in isolated membranes. This heat-resistant PLD-stimulating activity from the Ras-transformed cells was sensitive to proteases and passed through a 1-kDa MW cutoff membrane, suggesting that the factor is a peptide of less than 10 amino acids. The ability of this PLD-stimulating factor, designated PLD-SF, to elevate PLD activity in isolated membranes was restricted to the caveolin-enriched light membranes, where many signaling molecules are localized. PLD-SF was also elevated in v-Src- and v-Raf-transformed cells and in serum-stimulated NIH 3T3 cells. PLD-SF was detected in a variety of rat tissues but was highest in testes, where a large percentage of cells are dividing. A similar low molecular weight PLD-stimulating activity was found in actively dividing, but not stationary yeast, cells. The data here provide evidence for a highly conserved PLD-stimulating peptide that is elevated in response to mitogenic stimuli.  相似文献   

14.
The mode of PGE2-induced desensitization of the adenylate cyclase of a murine macrophage-like cell line, P388D1 was investigated. The exposure of cells to PGE2 for 60 min induced PGE2-specific desensitization of the adenylate cyclase system which still responded normally to other specific ligand such as isoproterenol, 5'-guanylimidodiphosphate (Gpp(NH)p), or forskolin. The exposure of the cells to PGE2 for 6 hr induced heterologous desensitization, as the responses of adenylate cyclase to PGE2 as well as to isoproterenol or Gpp(NH)p were significantly reduced. The lowest concentration of PGE2 to induce both early homologous and late heterologous desensitization was found to be about two-fold over the KD of the low affinity PGE2-binding sites of P388D1 cells. The early homologous desensitization appeared to be due in part to the reduction in number of PGE2 receptors from the cell surface. The late heterologous desensitization may involve functional and/or structural alteration of Gs proteins, in addition to the reduction of PGE2 receptors from the cell surface.  相似文献   

15.
A murine macrophage-like cell line,J774,acquried,in response to LPS,an ability to kill tumor necrosisfactor(TNF)-insensitive target P815 mastocytoma cells,whereas another cell line,P388D1,did not.LPS-triggered signaling mechanisms between the two celllines were compared with an aim to inquire about thepossible nature of the above-mentioned difference.Theresults showed that two cell lines respond to LPS-treatment by parallel activation of both phospholipasesC and A_2(PLC and PLA_2)to approximately the sameextent.The maximum response of both enzymes of J774cells was noted within 10 min of the treatment,whereas that of P388D1 cells required more than 20min.The other properties of LPS-responsive enzymesstudied were similar between two cell lines,ineludingActivation of PLC and PLA_2 and PKC in macrophages by LPSCa~(2 )augmentation of enzyme activation,participationof guanine nucleotide binding (G) proteins in theinitial activation processes,and inhibition of enzymeactivation by the prior treatment of cells with choleraorpartussis toxins etc.Moreover,LPS-triggered activationof PLC and PLA2 was found to be followed by theincrease of PKC activities in both cell lines.In spite ofthese similarities,J774 cells possessed both basic andacidic forms of PKC activities,while P 388D1 cells ownedonly PKC of basic form.Nevertheless,the question whyJ774 cells,but not P388D1 cells,can acquire thetumoricidal actiyity,aganist P815 cells following LPS-treatment remains to be answered.  相似文献   

16.
P388D(1) cells exposed to bacterial lipopolysaccharide (LPS) mobilize arachidonic acid (AA) for prostaglandin synthesis in two temporally distinct pathways. The "immediate pathway" is triggered within minutes by receptor agonists such as platelet-activating factor (PAF) but only if the cells have previously been primed with LPS for 1 h. The "delayed pathway" occurs in response to LPS alone over the course of several hours. We have now investigated the subcellular localization of both the Group IV cytosolic phospholipase A(2) (cPLA(2)) and the Group V secreted PLA(2) (sPLA(2)) during these two temporally distinct routes of AA release. We have prepared cells overexpressing fusion proteins of sPLA(2)-GFP and cPLA(2)-RFP. In the resting cells, cPLA(2)-RFP was uniformly located throughout the cytoplasm, and short-term treatment with LPS did not induce translocation to perinuclear and/or Golgi membranes. However, such a translocation occurred almost immediately after the addition of PAF to the cells. Long-term exposure of the cells to LPS led to the translocation of cPLA(2)-RFP to intracellular membranes after 3 h, and correlates with a significant release of AA in a cPLA(2)-dependent manner. At the same time period that the delayed association of cPLA(2) with perinuclear membranes is detected, an intense fluorescence arising from the sPLA(2)-GFP was found around the nucleus in the sPLA(2)-GFP stably transfected cells. In parallel with these changes, significant AA release was detected from the sPLA(2)-GFP transfectants in a cPLA(2)-dependent manner, which may reflect cross-talk between sPLA(2) and cPLA(2). The subcellular localization of the Group VIA Ca(2+)-independent PLA(2) (iPLA(2)) was also investigated. Cells overexpressing iPLA(2)-GFP showed no fluorescence changes under any activation condition. However, the iPLA(2)-GFP-expressing cells showed relatively high basal AA release, confirming a role for iPLA(2) in basal deacylation reactions. These new data illustrate the subcellular localization changes that accompany the distinct roles that each of the three kinds of PLA(2) present in P388D(1) macrophages play in AA mobilization.  相似文献   

17.
Activation of the cytosolic Group IV phospholipase A(2) (cPLA(2)) by agonists has been correlated with the direct phosphorylation of the enzyme by members of the mitogen-activated protein kinase (MAPK) cascade. Phosphorylation of the cPLA(2) increases the specific activity of the enzyme, thereby stimulating the arachidonic acid release. We show here, however, that conditions that lead to full phosphorylation of the cPLA(2) do not lead to enhanced AA release. As the above observations were made under both Ca(2+)-dependent and Ca(2+)-independent conditions, they emphasize that the current paradigm for activation of the cPLA(2) in cells involving both phosphorylation and Ca(2+) is incomplete and that other factors should be taken into account.  相似文献   

18.
The mechanisms of Fc gamma R-mediated phagocytosis of immune complexes were investigated by the use of a murine macrophage-like cell line (P388D1) and murine peritoneal resident macrophages. About 40 to 80% of P388D1 cells phagocytosed SRBC coated with IgG2a subclass anti-SRBC mAb (EA2a) within 60 min, whereas only 10 to 20% of the cells phagocytosed EA2b during the same period. The treatment of P388D1 cells with inhibitors of phospholipase A2 (p-bromophenacylbromide, EGTA, or dexamethasone) or of cyclooxygenase (indomethacin or aspirin) significantly promoted the Fc gamma 2bR-mediated phagocytosis of EA2b, but did not affect the Fc gamma 2aR-mediated phagocytosis of EA2a. These results suggest that the activation of phospholipase A2 activity associated with Fc gamma 2bR may lead to the inhibition of phagocytosis of EA2b. This inhibition appeared to be due to the blockade of the interaction of Fc gamma 2bR with various cytoskeletal components, because the association of Fc gamma 2bR and these cytoskeletal components, which could be eliminated by cytochalasin D, was found to be increased by the inhibition of phospholipase A2 activity.  相似文献   

19.
In the present study, we compare changes in host cell plasma membrane potential (V(m)), K(+) fluxes, and NO production during K(+) channel blockade with those changes that occur during infection with Leishmania major. Infection of P388D.1 cells with L. major promastigotes or treatment with K(+) channel blockers (either 1mM 4-AP, 10mM TEA, or 200 microM quinine) suppressed NO production. Inhibition of NO production correlated with depolarization of the P388D.1 cell V(m). Infection of P388D.1 cells with L. major increased the unidirectional influx of rubidium (86Rb), a tracer for K(+) flux, that was comparable to that induced by K(+) channel blockade by 1mM 4-AP. The similar effects of K(+) channel blockers and L. major on NO production, K(+) influx, and V(m) suggest that K(+) channel activity and the maintenance of V(m) is important for NO production in these cells. We suggest that intracellular parasites employ a strategy to inhibit NO production by disrupting V(m) during the invasion/infection process by altering host cell K(+) channel activity.  相似文献   

20.
The adhesive properties of the mouse P388D1 macrophage-like line were explored. Cells were deposited in glass capillary tubes, and the kinetics of adhesion and spreading were studied. Binding involved the cell metabolism since it was decreased by cold, azide, or a divalent cation chelator. Glass-adherent cells were subjected to calibrated laminar shear flows with a highly viscous dextran solution. A tangential force of about 5 X 10(-3) dyn/cell was required to achieve substantial detachment. The duration of application of the shearing force strongly influenced cell-substrate separation when this was varied from 1-10 s. Further, this treatment resulted in marked cell deformation, with the appearance of an elongated shape. Hence, cell-substrate separation is a progressive process, and binding strength is expected to be influenced by cell deformability. The minimum time required for adhesion was also investigated by making cells adhere under flow conditions. The maximum flow rate compatible with adhesion was about 1000-fold lower than that required to detach glass-bound cells. A simple model was devised to provide a quantitative interpretation for the experimental results of kinetic studies. It is concluded that cell-to-glass adhesion required a cell-substrate contact longer than a few seconds. This first step of adhesion was rapidly followed by a large (about 1000-fold) increase of adhesion strength. It is therefore emphasized that adhesion is heavily dependent on the duration of cell-to-cell encounter, as well as the force used to remove so-called unbound cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号