首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Archaea are important players in marine biogeochemical cycles, and their membrane lipids are useful biomarkers in environmental and geobiological studies. However, many archaeal groups remain uncultured and their lipid composition unknown. Here, we aim to expand the knowledge on archaeal lipid biomarkers and determine the potential sources of those lipids in the water column of the euxinic Black Sea. The archaeal community was evaluated by 16S rRNA gene amplicon sequencing and by quantitative PCR. The archaeal intact polar lipids (IPLs) were investigated by ultra‐high‐pressure liquid chromatography coupled to high‐resolution mass spectrometry. Our study revealed both a complex archaeal community and large changes with water depth in the IPL assemblages. In the oxic/upper suboxic waters (<105 m), the archaeal community was dominated by marine group (MG) I Thaumarchaeota, coinciding with a higher relative abundance of hexose phosphohexose crenarchaeol, a known marker for Thaumarchaeota. In the suboxic waters (80–110 m), MGI Nitrosopumilus sp. dominated and produced predominantly monohexose glycerol dibiphytanyl glycerol tetraethers (GDGTs) and hydroxy‐GDGTs. Two clades of MGII Euryarchaeota were present in the oxic and upper suboxic zones in much lower abundances, preventing the detection of their specific IPLs. In the deep sulfidic waters (>110 m), archaea belonging to the DPANN Woesearchaeota, Bathyarchaeota, and ANME‐1b clades dominated. Correlation analyses suggest that the IPLs GDGT‐0, GDGT‐1, and GDGT‐2 with two phosphatidylglycerol (PG) head groups and archaeol with a PG, phosphatidylethanolamine, and phosphatidylserine head groups were produced by ANME‐1b archaea. Bathyarchaeota represented 55% of the archaea in the deeper part of the euxinic zone and likely produces archaeol with phospho‐dihexose and hexose‐glucuronic acid head groups.  相似文献   

2.
We studied the carbon dioxide fixation activity in a stratified hypereutrophic karstic lagoon using a combination of fingerprinting techniques targeting bacterial and archaeal 16S rRNA genes, functional gene cloning [the acetyl-CoA carboxylase (accC)], and isotopic labelling ((14)C-bicarbonate) coupled to single-cell analyses [microautoradiography combined with catalyzed reported deposition-FISH (MAR-CARD-FISH)]. The microbial planktonic community was dominated by bacteria with maximal abundances of archaea just below the oxic/anoxic transition zone (7% of total cells). In situ incubations with radiolabelled bicarbonate showed maximal photoassimilation activity in the oxic epilimnion, whereas dark CO(2) fixation was consistently observed throughout the water column, with a maximum at the oxic/anoxic interface (8.6 mg C m(-3) h(-1)). The contributions of light and dark carbon fixation activities in the whole water column were 69% and 31% of the total C incorporated, respectively. MAR-CARD-FISH incubations corroborated these results and revealed that the highest fraction of bacterial and archaeal cells actively uptaking bicarbonate in the light was found at the surface. The bacterial community was mainly composed of green sulfur bacteria (Chlorobi) and members of the Betaproteobacteria and the Bacteroidetes. The archaeal assemblage was composed of phylotypes of the Miscellaneous Crenarchaeotic Group and a few methanogens. Clone libraries of the accC gene showed an absolute dominance of bacterial carboxylases. Our results suggest that the dark carbon fixation activity measured was mainly related to CO(2) incorporation by heterotrophs rather than to the activity of true chemoautotrophs.  相似文献   

3.
The oxidation of methane in anoxic marine sediments is thought to be mediated by a consortium of methane-consuming archaea and sulfate-reducing bacteria. In this study, we compared results of rRNA gene (rDNA) surveys and lipid analyses of archaea and bacteria associated with methane seep sediments from several different sites on the Californian continental margin. Two distinct archaeal lineages (ANME-1 and ANME-2), peripherally related to the order Methanosarcinales, were consistently associated with methane seep marine sediments. The same sediments contained abundant (13)C-depleted archaeal lipids, indicating that one or both of these archaeal groups are members of anaerobic methane-oxidizing consortia. (13)C-depleted lipids and the signature 16S rDNAs for these archaeal groups were absent in nearby control sediments. Concurrent surveys of bacterial rDNAs revealed a predominance of delta-proteobacteria, in particular, close relatives of Desulfosarcina variabilis. Biomarker analyses of the same sediments showed bacterial fatty acids with strong (13)C depletion that are likely products of these sulfate-reducing bacteria. Consistent with these observations, whole-cell fluorescent in situ hybridization revealed aggregations of ANME-2 archaea and sulfate-reducing Desulfosarcina and Desulfococcus species. Additionally, the presence of abundant (13)C-depleted ether lipids, presumed to be of bacterial origin but unrelated to ether lipids of members of the order Desulfosarcinales, suggests the participation of additional bacterial groups in the methane-oxidizing process. Although the Desulfosarcinales and ANME-2 consortia appear to participate in the anaerobic oxidation of methane in marine sediments, our data suggest that other bacteria and archaea are also involved in methane oxidation in these environments.  相似文献   

4.
Abyssal marine sediments cover a large proportion of the ocean floor, but linkages between their microbial community structure and redox stratification have remained poorly constrained. This study compares the downcore gradients in microbial community composition to porewater oxygen and nitrate concentration profiles in an abyssal marine sediment column in the South Pacific Ocean. Archaeal 16S rRNA clone libraries showed a stratified archaeal community that changed from Marine Group I Archaea in the aerobic and nitrate-reducing upper sediment column towards deeply branching, uncultured crenarchaeotal and euryarchaeotal lineages in nitrate-depleted, anaerobic sediment horizons. Bacterial 16S rRNA clone libraries revealed a similar shift on the phylum and subphylum level within the bacteria, from a complex community of Alpha-, Gamma- and Deltaproteobacteria, Actinobacteria and Gemmatimonadetes in oxic surface sediments towards uncultured Chloroflexi and Planctomycetes in the anaerobic sediment column. The distinct stratification of largely uncultured bacterial and archaeal groups within the oxic and nitrate-reducing marine sediment column provides initial constraints for their microbial habitat preferences.  相似文献   

5.
The intact polar lipid (IPL) composition of twelve hydrothermal vent deposits from the Rainbow (RHF) and Lucky Strike hydrothermal fields (LSHF) has been investigated in order to assess its utility as a proxy for microbial community composition associated with deep‐sea hydrothermal locations. Gene‐based culture‐independent surveys of the microbial populations of the same vent deposits have shown that microbial populations are different in the two locations and appear to be controlled by the geochemical and geological processes that drive hydrothermal circulation. Large differences in the IPL composition between these two sites are evident. In the ultramafic‐hosted RHF, mainly archaeal‐IPLs were identified, including those known to be produced by hyperthermophilic Euryarchaeota. More specifically, polyglycosyl derivatives of archaeol and macrocyclic archaeol indicate the presence of hyperthermophilic methanogenic archaea in the vent deposits, which are related to members of the Methanocaldococcaceae or Methanococcaceae. In contrast, bacterial IPLs dominate IPL distributions from LSHF, suggesting that bacteria are more predominant at LSHF than at RHF. Bacterial Diacyl glycerol (DAG) IPLs containing phosphocholine, phosphoethanolamine or phosphoglycerol head groups were identified at both vent fields. In some vent deposits from LSHF ornithine lipids and IPLs containing phosphoaminopentanetetrol head groups were also observed. By comparison with previously characterized bacterial communities at the sites, it is likely the DAG‐IPLs observed derive from Epsilon‐ and Gammaproteobacteria. Variation in the relative amounts of archaeal versus bacterial IPLs appears to indicate differences in the microbial community between vent sites. Overall, IPL distributions appear to be consistent with gene‐based surveys.  相似文献   

6.
Fluorescent in situ hybridization (FISH) was used to analyze the abundance and phylogenetic composition of sulfate-reducing bacteria in the aerobic waters and in the oxic/anoxic transitional zone (chemocline) of the Black Sea, where biogenic formation of reduced sulfur compounds was detected by radioisotope techniques. Numerous sulfate-reducing bacteria of the genera Desulfotomaculum (30.5% of detected bacterial cells), Desulfovibrio (29.6%), and Desulfobacter (6.7%) were revealed in the aerobic zone at a depth of 30 m, while Desulfomicrobium-related bacteria (33.5%) were prevalent in the upper chemocline waters at 150-m depth. Active cells of sulfate-reducing bacteria were much more abundant in the samples collected in summer than in the winter samples from the deep-sea zone. The presence of physiologically active sulfate reducers in oxic and chemocline waters of the Black Sea correlates with the hydrochemical data on the presence of reduced sulfur compounds in the aerobic water column.  相似文献   

7.
The oxidation of methane in anoxic marine sediments is thought to be mediated by a consortium of methane-consuming archaea and sulfate-reducing bacteria. In this study, we compared results of rRNA gene (rDNA) surveys and lipid analyses of archaea and bacteria associated with methane seep sediments from several different sites on the Californian continental margin. Two distinct archaeal lineages (ANME-1 and ANME-2), peripherally related to the order Methanosarcinales, were consistently associated with methane seep marine sediments. The same sediments contained abundant 13C-depleted archaeal lipids, indicating that one or both of these archaeal groups are members of anaerobic methane-oxidizing consortia. 13C-depleted lipids and the signature 16S rDNAs for these archaeal groups were absent in nearby control sediments. Concurrent surveys of bacterial rDNAs revealed a predominance of δ-proteobacteria, in particular, close relatives of Desulfosarcina variabilis. Biomarker analyses of the same sediments showed bacterial fatty acids with strong 13C depletion that are likely products of these sulfate-reducing bacteria. Consistent with these observations, whole-cell fluorescent in situ hybridization revealed aggregations of ANME-2 archaea and sulfate-reducing Desulfosarcina and Desulfococcus species. Additionally, the presence of abundant 13C-depleted ether lipids, presumed to be of bacterial origin but unrelated to ether lipids of members of the order Desulfosarcinales, suggests the participation of additional bacterial groups in the methane-oxidizing process. Although the Desulfosarcinales and ANME-2 consortia appear to participate in the anaerobic oxidation of methane in marine sediments, our data suggest that other bacteria and archaea are also involved in methane oxidation in these environments.  相似文献   

8.
The anaerobic oxidation of methane (AOM) is a key process in the global methane cycle, and the majority of methane formed in marine sediments is oxidized in this way. Here we present results of an in vitro 13CH4 labeling study (delta13CH4, approximately 5,400 per thousand) in which microorganisms that perform AOM in a microbial mat from the Black Sea were used. During 316 days of incubation, the 13C uptake into the mat biomass increased steadily, and there were remarkable differences for individual bacterial and archaeal lipid compounds. The greatest shifts were observed for bacterial fatty acids (e.g., hexadec-11-enoic acid [16:1Delta11]; difference between the delta13C at the start and the end of the experiment [Deltadelta13C(start-end)], approximately 160 per thousand). In contrast, bacterial glycerol diethers exhibited only slight changes in delta13C (Deltadelta13C(start-end), approximately 10 per thousand). Differences were also found for individual archaeal lipids. Relatively high uptake of methane-derived carbon was observed for archaeol (Deltadelta13C(start-end), approximately 25 per thousand), a monounsaturated archaeol, and biphytanes, whereas for sn-2-hydroxyarchaeol there was considerably less change in the delta13C (Deltadelta13C(start-end), approximately 2 per thousand). Moreover, an increase in the uptake of 13C for compounds with a higher number of double bonds within a suite of polyunsaturated 2,6,10,15,19-pentamethyleicosenes indicated that in methanotrophic archaea there is a biosynthetic pathway similar to that proposed for methanogenic archaea. The presence of group-specific biomarkers (for ANME-1 and ANME-2 associations) and the observation that there were differences in 13C uptake into specific lipid compounds confirmed that multiple phylogenetically distinct microorganisms participate to various extents in biomass formation linked to AOM. However, the greater 13C uptake into the lipids of the sulfate-reducing bacteria (SRB) than into the lipids of archaea supports the hypothesis that there is autotrophic growth of SRB on small methane-derived carbon compounds supplied by the methane oxidizers.  相似文献   

9.
A nodule-shaped microbial mat was found subsurface in sediments of a gas seep in the anoxic Black Sea. This mat was dominated by ANME-1 archaea and consumed methane and sulfate simultaneously. We propose that such subsurface mats represent the initial stage of previously investigated microbial reefs.  相似文献   

10.
Subsurface Microbial Methanotrophic Mats in the Black Sea   总被引:1,自引:1,他引:0       下载免费PDF全文
A nodule-shaped microbial mat was found subsurface in sediments of a gas seep in the anoxic Black Sea. This mat was dominated by ANME-1 archaea and consumed methane and sulfate simultaneously. We propose that such subsurface mats represent the initial stage of previously investigated microbial reefs.  相似文献   

11.
Recent studies have shown that archaea which were always thought to live under strict anoxic or extreme environmental conditions are also present in cold, oxygenated seawater, soils, the digestive tract of a holothurian deep-sea-deposit feeder, and a marine sponge. In this study, we show, by using PCR-mediated screening in other marine eukaryotes, that marine archaea are also present in the digestive tracts of flounder and grey mullet, two fish species common in the North Sea, in fecal samples of flounder, and in suspended particulate matter of the North Sea water column. No marine archaea could be detected in the digestive tracts of mussels or the fecal pellets of a copepod species. The archaeal 16S ribosomal DNA clone libraries of feces of flounder and the contents of the digestive tracts of grey mullet and flounder were dominated by group II marine archaea. The marine archaeal clones derived from flounder and grey mullet digestive tracts and feces formed a distinct cluster within the group II marine archaea, with 76.7 to 89.8% similarity to previously described group II clones. Fingerprinting of the archaeal community of flounder digestive tract contents and feces by terminal restriction fragment length polymorphism of archaeal 16S rRNA genes after restriction with HhaI showed a dominant fragment at 249 bp, which is likely to be derived from group II marine archaea. Clones of marine archaea that were closely related to the fish-associated marine archaea clones were obtained from suspended particulate matter of the water column at two stations in the North Sea. Terminal restriction fragment length polymorphism fingerprinting of the archaeal community present in suspended particulate matter showed the same fragment pattern as was found for the archaeal community of the flounder digestive tract contents and feces. These data demonstrate that marine archaea are present in the digestive tracts and feces of very common marine fish. It is possible that the marine archaea associated with the digestive tracts of marine fish are liberated into the water column through the feces and subsequently contribute to the marine archaeal community of suspended particulate matter.  相似文献   

12.
The anoxic sediments of the White Oak River estuary comprise a distinctive sulfate–methane transition zone (SMTZ) and natural enrichment of the archaea affiliated with the Miscellaneous Crenarchaeotal Group (MCG). Archaeal biphytanes were generally depleted in 13C, with δ13C values being less than –35‰, indicative of production by active sedimentary archaeal populations. Multivariate analysis of the downcore distributions of 63 lipid biomarkers identified three major groups of lipids that were enriched in the surface, SMTZ or subsurface depths. Intact polar lipids with phosphatidylglycerol headgroups and glycerol dibiphytanyl glycerol tetraethers containing one, two or three cyclopentane rings were enriched at the base of the SMTZ and likely represent the accumulated product of a small but active ANME‐1 community. The recently identified butanetriol dibiphytanyl glycerol tetraethers (BDGT), which increased relatively to other lipids with depth, were correlated with the relative abundance of MCG in archaeal 16S rRNA clone libraries, and were 13C depleted throughout the depth profile, suggesting BDGT lipids as putative biomarkers of an MCG community that may either be autotrophic or feeding on 13C‐depleted organic substrates transported by porewater.  相似文献   

13.
Bacteria and archaea represent the vast majority of biodiversity on Earth. The ways that dynamic ecological and evolutionary processes interact in the microbial world are, however, poorly known. Here, we have explored community patterns of planktonic freshwater bacteria inhabiting stratified lakes with oxic/anoxic interfaces and euxinic (anoxic and sulfurous) water masses. The interface separates a well-oxygenated upper water mass (epilimnion) from a lower anoxic water compartment (hypolimnion). We assessed whether or not the vertical zonation of lakes promoted endemism in deeper layers by analyzing bacterial 16S rRNA gene sequences from the water column of worldwide distributed stratified lakes and applying a community ecology approach. Community similarity based on the phylogenetic relatedness showed that bacterial assemblages from the same water layer were more similar across lakes than to communities from different layer within lakes and that anoxic hypolimnia presented greater β-diversity than oxic epilimnia. Higher β-diversity values are attributable to low dispersal and small connectivity between community patches. In addition, surface waters had significant spatial but non-significant environmental components controlling phylogenetic β-diversity patterns, respectively. Conversely, the bottom layers were significantly correlated with environment but not with geographic distance. Thus, we observed different ecological mechanisms simultaneously acting on the same water body. Overall, bacterial endemicity is probably more common than previously thought, particularly in isolated and environmentally heterogeneous freshwater habitats. We argue for a microbial diversity conservation perspective still lacking in the global and local biodiversity preservation policies.  相似文献   

14.
Ether Lipids of Planktonic Archaea in the Marine Water Column   总被引:5,自引:3,他引:2       下载免费PDF全文
Acyclic and cyclic biphytanes derived from the membrane ether lipids of archaea were found in water column particulate and sedimentary organic matter from several oxic and anoxic marine environments. Compound-specific isotope analyses of the carbon skeletons suggest that planktonic archaea utilize an isotopically heavy carbon source such as algal carbohydrates and proteins or dissolved bicarbonate. Due to their high preservation potential, these lipids provide a fossil record of planktonic archaea and suggest that they have thrived in marine environments for more than 50 million years.  相似文献   

15.
Inputs of CH(4) from sediments, including methane seeps on the continental margin and methane-rich mud volcanoes on the abyssal plain, make the Black Sea the world's largest surface water reservoir of dissolved methane and drive a high rate of aerobic and anaerobic oxidation of methane in the water column. Here we present the first combined organic geochemical and molecular ecology data on a water column profile of the western Black Sea. We show that aerobic methanotrophs type I are responsible for methane oxidation in the oxic water column and ANME-1- and ANME-2-related organisms for anaerobic methane oxidation. The occurrence of methanotrophs type I cells in the anoxic zone suggests that inactive cells settle to deeper waters. Molecular and biomarker results suggest that a clear distinction between the occurrence of ANME-1- and ANME-2-related lineages exists, i.e. ANME-1-related organisms are responsible for anaerobic methane oxidation below 600 m water depth, whereas ANME-2-related organisms are responsible for this process in the anoxic water column above approximately 600 m water depth.  相似文献   

16.
The Clipperton lagoon in the North Pacific Ocean has been isolated from the surrounding sea for c. 160 years. It has a stratified water column that comprises an oxic and brackish upper water layer (mixolimnion) and a deep sulfuric anoxic saline layer (monimolimnion), separated by a steep pycnocline. Here, we test whether the Clipperton lagoon with its distinctive physico-chemical features, geographic isolation, recent water column stratification, and large nutrient input harbors original microbial communities. The combination of capillary electrophoresis single-strand polymorphism (CE-SSCP) fingerprinting and sequencing of cloned bacterial and archaeal 16S rRNA genes, and functional genes for methanogenesis (mcrA), methanotrophy (pmoA), and sulfate reduction (dsrAB), revealed that microbial communities and pathways were highly stratified down the water column. The mixolimnion contained ubiquitous freshwater clades of Alpha- and Betaproteobacteria, while the pycnocline contained mostly green sulfur bacteria (phylum Chlorobi). Sequences of the upper layers were closely related to sequences found in other aquatic ecosystems, suggesting that they have a strong potential for dispersal and colonization. In contrast, the monimolimnion contained new deeply branching bacterial divisions within the OP11 cluster and the Bacteroidetes, and was the most diverse of the layers. The unique environmental conditions characterizing the deep layers of the lagoon may explain the novelty of the microbial communities found at the Clipperton atoll.  相似文献   

17.
H2S is produced as a main end-product of anaerobic mineralization in anoxic, sulphate-rich environments by a diverse population of sulphate-reducing bacteria. The sulphate reducers can carry out an almost complete oxidation of detrital organic matter to CO2. The H2S consequently becomes an important electron carrier from the anoxic to the oxic world. Thiobacilli and other colourless sulphur bacteria have the potential to oxidize the H2S at the oxic-anoxic interface in sediments or stratified waters, but their role is still poorly understood. A comparison of sulphide oxidation processes in the chemoclines of the Black Sea, the Solar Lake and in A beggiatoa mat indicated that depth scales and retention times of coexisting O2 and H2S regulate the bacterial involvement in the sulphide oxidation. The H2S specialists, Beggiatoa and Thiovulum, are optimally adapted to compete with the autocatalytic oxidation of H2S by O2. Microelectrode measurements show retention times of O2-H2S in the bacterial mats or veils of less than 1 s. In photic chemoclines of stratified waters or sulfureta, the phototrophic sulphur bacteria or cyanobacteria interact with the sulphide oxidation at the O2-H2S interface. Short cycles between H2S and intermediate oxidation products, So or S2O2 3-, are created. The bacteria of the sulfuretum are highly adapted to the diurnal rhythm of light, O2 and H2S.  相似文献   

18.
Detailed analysis of 16S rRNA and intact polar lipids (IPLs) from streamer biofilm communities (SBCs), collected from geochemically similar hot springs in the Lower Geyser Basin, Yellowstone National Park, shows good agreement and affirm that IPLs can be used as reliable markers for the microbial constituents of SBCs. Uncultured Crenarchaea are prominent in SBS, and their IPLs contain both glycosidic and mixed glyco‐phospho head groups with tetraether cores, having 0–4 rings. Archaeal IPL contributions increase with increasing temperature and comprise up to one‐fourth of the total IPL inventory at >84 °C. At elevated temperatures, bacterial IPLs contain abundant glycosidic glycerol diether lipids. Diether and diacylglycerol (DAG) lipids with aminopentanetetrol and phosphatidylinositol head groups were identified as lipids diagnostic of Aquificales, while DAG glycolipids and glyco‐phospholipids containing N‐acetylgycosamine as head group were assigned to members of the Thermales. With decreasing temperature and concomitant changes in water chemistry, IPLs typical of phototrophic bacteria, such as mono‐, diglycosyl, and sulfoquinovosyl DAG, which are specific for cyanobacteria, increase in abundance, consistent with genomic data from the same samples. Compound‐specific stable carbon isotope analysis of IPL breakdown products reveals a large isotopic diversity among SBCs in different hot springs. At two of the hot springs, ‘Bison Pool’ and Flat Cone, lipids derived from Aquificales are enriched in 13C relative to biomass and approach values close to dissolved inorganic carbon (DIC) (approximately 0‰), consistent with fractionation during autotrophic carbon fixation via the reversed tricarboxylic acid pathway. At a third site, Octopus Spring, the same Aquificales‐diagnostic lipids are 10‰ depleted relative to biomass and resemble stable carbon isotope values of dissolved organic carbon (DOC), indicative of heterotrophy. Other bacterial and archaeal lipids show a similar variance, with values resembling the DIC or DOC pool or a mixture thereof. This variance cannot be explained by hot spring chemistry or temperature alone, but instead, we argue that intermittent input of exogenous organic carbon can result in metabolic shifts of the chemotrophic communities from autotrophy to heterotrophy and vice versa.  相似文献   

19.
For the first time, microbiological monitoring was performed in the deepwater area of the Southern Caspian Sea. It revealed seasonal and interannual variations in total microbial content and concentrations of saprophytes and other physiological groups of bacteria in water and bottom sediments. The biomass, generation time, and bacterial production were determined. The most profound variations in microbial content, biomass, and production were found to occur in the water column and in bottom sediments at depths to 200–250 m.  相似文献   

20.
The compositions of archaeal and bacterial populations at different depths (60 m [mixolimnion-chemocline interface], 70 m [chemocline-subchemocline interface], 90 m, and 92 m [the water-sediment interface]) in the anoxic zone of the water column in Lake Pavin, a freshwater permanently stratified mountain lake in France, were determined. Phylogenetic trees were constructed from sequences to assess archaeal and bacterial diversity at the four sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号