首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insertional and point mutations in the gene encoding the prion protein (PrP) are responsible for familial prion diseases. We have previously generated lines of Chinese hamster ovary cells that express PrP molecules carrying pathogenic mutations, and found that the mutant proteins display several biochemical properties reminiscent of PrP(Sc), the infectious isoform of PrP. To analyze the properties and effects of mutant PrP molecules expressed in cells with a neuronal phenotype, we have constructed stably transfected lines of PC12 cells that synthesize a PrP molecule carrying a nine-octapeptide insertion. We report here that this mutant PrP acquires scrapie-like properties, including detergent insolubility, protease resistance, and resistance to phospholipase cleavage of its glycolipid anchor. A detergent-insoluble and phospholipase-resistant form of the mutant protein is also released spontaneously into conditioned medium. These scrapie-like biochemical properties are quantitatively similar to those seen in Chinese hamster ovary cells and are not affected by differentiation of the PC12 cells into sympathetic neurons by nerve growth factor. Moreover, there is no detectable effect of mutant PrP expression on the morphology or viability of the cells in either the differentiated or undifferentiated state. These results indicate that conversion of mutant PrP into a PrP(Sc)-like form does not depend critically on the cellular context, and they suggest that mutant PrP expressed in cultured cells, even those having the phenotype of differentiated neurons, is not neurotoxic.  相似文献   

2.
Studying PrPC and PrPSc in cell culture systems is advantageous because such systems contain all the organelles, membranes, and molecular cofactors that are likely to play an important role in the biology of the proteins. Using cultured cells expressing PrPC, we have discovered that this isoform constitutively cycles between the cell surface and an endocytic compartment, a process that is mediated by clathrin-coated pits and a putative PrPC receptor. We have also constructed stably transfected lines of CHO cells that express PrP molecules carrying mutations that are associated with familial prion diseases. The mutant PrP molecules in these cells are spontaneously converted to the PrPSc state, a phenomenon which has allowed us to analyze several key features of prion formation.  相似文献   

3.
The abnormal isoform of the scrapie prion protein PrPSc is both a host-derived protein and a component of the infectious agent causing scrapie. PrPSc and the normal cellular isoform PrPC have different physical properties that apparently arise from a posttranslational event. Both PrP isoforms are covalently modified at the carboxy terminus by a glycoinositol phospholipid. Using preparations of dissociated cells derived from normal and scrapie-infected hamster brain tissue, we find that the majority of PrPC is released from membranes by phosphatidylinositol-specific phospholipase C (PIPLC), while PrPSc is resistant to release. In contrast, purified denatured PrP 27-30 (which is formed from PrPSc during purification by proteolysis of the amino terminus) is completely cleaved by PIPLC. Incubation of the cell preparations with proteinase K cleaves PrPSc to form PrP 27-30, demonstrating that PrPSc is accessible to added enzymes. We have also developed a protocol involving biotinylation that gives a quantitative estimate of the fraction of a protein exposed to the cell exterior. Using this strategy, we find that a large portion of PrPSc in the cell preparations reacts with a membrane-impermeant biotinylation reagent. Whether alternative membrane anchoring of PrPSc, inaccessibility of the glycoinositol phospholipid anchor to PIPLC, or binding to another cellular component is responsible for the differential release of prion proteins from cells remains to be determined.  相似文献   

4.
Scrapie prion protein contains a phosphatidylinositol glycolipid   总被引:66,自引:0,他引:66  
N Stahl  D R Borchelt  K Hsiao  S B Prusiner 《Cell》1987,51(2):229-240
The scrapie (PrPSc) and cellular (PrPC) prion proteins are encoded by the same gene, and their different properties are thought to arise from posttranslational modifications. We have found a phosphatidylinositol glycolipid on both PrPC and PrP 27-30 (derived from PrPSc by limited proteolysis at the amino terminus). Ethanolamine, myo-inositol, phosphate, and stearic acid were identified as glycolipid components of gel-purified PrP 27-30. PrP 27-30 contains 2.8 moles of ethanolamine per mole. Incubation of PrP 27-30 with a bacterial phosphatidylinositol-specific phospholipase C (PIPLC) releases covalently bound stearic acid, and allows PrP 27-30 to react with antiserum specific for the PIPLC-digested glycolipid linked to the carboxyl terminus of the trypanosomal variant surface glycoprotein. PIPLC catalyzes the release of PrPC from cultured mammalian cells into the medium. These observations indicate that PrPC is anchored to the cell surface by the glycolipid.  相似文献   

5.
Evidence for synthesis of scrapie prion proteins in the endocytic pathway.   总被引:28,自引:0,他引:28  
Infectious scrapie prions are composed largely, if not entirely, of an abnormal isoform of the prion protein (PrP) which is designated PrPSc. A chromosomal gene encodes both the cellular prion protein (PrPC) as well as PrPSc. Pulse-chase experiments with scrapie-infected cultured cells indicate that PrPSc is formed by a post-translational process. PrP is translated in the endoplasmic reticulum, modified as it passes through the Golgi, and is transported to the cell surface. Release of nascent PrP from the cell surface by phosphatidylinositol-specific phospholipase C or hydrolysis with dispase prevented PrPSc synthesis. At 18 degrees C, the synthesis of PrPSc was inhibited under conditions that other investigators report a blockage of endosomal fusion with lysosomes. Our results suggest that PrPSc synthesis occurs after PrP transits from the cell surface. Whether all of the PrP molecules have an equal likelihood to be converted into PrPSc or only a distinct subset is eligible for conversion remains to be established. Identifying the subcellular compartment(s) of PrPSc synthesis should be of considerable importance in defining the molecular changes that distinguish PrPSc from PrPC.  相似文献   

6.
《朊病毒》2013,7(3):134-138
In transmissible spongiform encephalopathies (TSE or prion diseases) such as sheep scrapie, bovine spongiform encephalopathy and human Creutzfeldt-Jakob disease, normally soluble and protease-sensitive prion protein (PrP-sen or PrPC) is converted to an abnormal, insoluble and protease-resistant form termed PrP-res or PrPSc. PrP-res/PrPSc is believed to be the main component of the prion, the infectious agent of the TSE/prion diseases. Its precursor, PrP-sen, is anchored to the cell surface at the C-terminus by a co-translationally added glycophosphatidyl-inositol (GPI) membrane anchor which can be cleaved by the enzyme phosphatidyl-inositol specific phospholipase (PIPLC). The GPI anchor is also present in PrP-res, but is inaccessible to PIPLC digestion suggesting that conformational changes in PrP associated with PrP-res formation have blocked the PIPLC cleavage site. Although the GPI anchor is present in both PrP-sen and PrP-res, its precise role in TSE diseases remains unclear primarily because there are data to suggest that it both is and is not necessary for PrP-res formation and prion infection.  相似文献   

7.
Miura T  Yoda M  Takaku N  Hirose T  Takeuchi H 《Biochemistry》2007,46(41):11589-11597
The conformational conversion of prion protein (PrP) from an alpha-helix-rich normal cellular isoform (PrPC) to a beta-sheet-rich pathogenic isoform (PrPSc) is a key event in the development of prion diseases, and it takes place in caveolae, cavelike invaginations of the plasma membrane. A peptide homologous to residues 106-126 of human PrP (PrP106-126) is known to share several properties with PrPSc, e.g., the capability to form a beta-sheet and toxicity against PrPC-expressing cells. PrP106-126 is thus expected to represent a segment of PrP that is involved in the formation of PrPSc. We have examined the effect of lipid membranes containing negatively charged ganglioside, an important component of caveolae, on the secondary structure of PrP106-126 by circular dichroism. The peptide forms an alpha-helical or a beta-sheet structure on the ganglioside-containing membranes. The beta-sheet content increases with an increase of the peptide:lipid ratio, indicating that the beta-sheet formation is linked with self-association of the positively charged peptide on the negatively charged membrane surface. Analogous beta-sheet formation is also induced by membranes composed of negatively charged and neutral glycerophospholipids with high and low melting temperatures, respectively, in which lateral phase separation and clustering of negatively charged lipids occur as shown by Raman spectroscopy. Since ganglioside-containing membranes also exhibit lateral phase separation, clustered negative charges are concluded to be responsible for the beta-sheet formation of PrP106-126. In caveolae, clustered ganglioside molecules are likely to interact with the residue 106-126 region of PrPC to promote the PrPC-to-PrPSc conversion.  相似文献   

8.
Both the cellular and scrapie isoforms of the prion protein (PrP) designated PrPc and PrPSc are encoded by a single-copy chromosomal gene and appear to be translated from the same 2.1-kb mRNA. PrPC can be distinguished from PrPSc by limited proteolysis under conditions where PrPC is hydrolyzed and PrPSc is resistant. We report here that PrPC can be released from the surface of both normal-control and scrapie-infected murine neuroblastoma (N2a) cells by phosphatidylinositol-specific phospholipase C (PIPLC) digestion and it can be selectively labeled with sulfo-NHS-biotin, a membrane impermeant reagent. In contrast, PrPSc was neither released by PIPLC nor labeled with sulfo-NHS-biotin. Pulse-chase experiments showed that [35S]methionine was incorporated almost immediately into PrPC while incorporation into PrPSc molecules was observed only during the chase period. While PrPC is synthesized and degraded relatively rapidly (t1/2 approximately 5 h), PrPSc is synthesized slowly (t1/2 approximately 15 h) and appears to accumulate. These results are consistent with several observations previously made on rodent brains where PrP mRNA and PrPC levels did not change throughout the course of scrapie infection, yet PrPSc accumulated to levels exceeding that of PrPC. Our kinetic studies demonstrate that PrPSc is derived from a protease-sensitive precursor and that the acquisition of proteinase K resistance results from a posttranslational event. Whether or not prolonged incubation periods, which are a cardinal feature of prion diseases, reflect the slow synthesis of PrPSc remains to be established.  相似文献   

9.
The cellular prion protein (PrPc) is a host-encoded sialoglycoprotein bound to the external surface of the cell membrane by a glycosyl phosphatidylinositol anchor. A posttranslationally modified PrP isoform (PrPSc) is a component of the infectious particle causing scrapie and the other prion diseases. mAb have been raised against the protease-resistant core of Syrian hamster (SHa) PrPSc designated PrP 27-30. To map the epitopes within PrP reacting to these antibodies, we have expressed wild-type, chimeric mouse (Mo)/SHa and mutant MoPrP genes using recombinant vaccinia virus systems. The fidelity of the expression of recombinant PrPC was examined using vaccinia viruses expressing SHa-PrPC. It is full length, possesses Asn-linked carbohydrates and is attached to the external surface of the cell membrane by a glycosyl phosphatidylinositol anchor that is sensitive to cleavage by phosphatidylinositol-specific phospholipase C. We have tested 18 mAb for their ability to bind to chimeric prion proteins on immunoblots. Three distinct epitopes were identified that mapped to amino acid differences between SHa and MoPrP sequences. The first epitope, recognized by three of the antibodies tested, was defined by methionines at amino acids 108 and 111 in the mouse protein. The second epitope was dependent upon the presence of asparagines at positions 154 and 174 in MoPrP and was recognized by four of the antibodies tested. The third epitope mapped to a single amino acid substitution at residue 138 in MoPrP. mAb raised against SHaPrP 27-30 specific for this epitope are able to bind MoPrPC which has a single amino acid change (Ile to Met) at position 138. Eleven of the 18 antibodies tested mapped to this immunodominant epitope. It is located within a postulated amphipathic helix, a structure associated with immunodominant Ag. Inasmuch as PrPC, in its native form on the cell surface, is detected by the mAb 13A5 (a prototypic antibody of the immunodominant third epitope class), it is likely that this epitope is accessible in the native conformation of this protein.  相似文献   

10.
The transmissible spongiform encephalopathies, more commonly known as the prion diseases, are associated with the production and aggregation of disease-related isoforms of the prion protein (PrP(Sc)). The mechanisms by which PrP(Sc) accumulation causes neurodegeneration in these diseases are poorly understood. In cultured neurons, the addition of PrP(Sc) alters cell membranes, increasing cholesterol, activating cytoplasmic phospholipase A(2) (cPLA(2)), and triggering synapse damage. These effects of PrP(Sc) are dependent upon its glycosylphosphatidylinositol (GPI) anchor, suggesting that it is the increased density of GPIs that occurs following the aggregation of PrP(Sc) molecules that triggers neurodegeneration. This hypothesis was supported by observations that cross-linkage of the normal cellular prion protein (PrP(C)) also increased membrane cholesterol, activated cPLA(2), and triggered synapse damage. These effects were not seen after cross-linkage of Thy-1, another GPI-anchored protein, and were dependent on the GPI anchor attached to PrP(C) containing two acyl chains and sialic acid. We propose that the aggregation of PrP(Sc), or the cross-linkage of PrP(C), causes the clustering of sialic acid-containing GPI anchors at high densities, resulting in altered membrane composition, the pathological activation of cPLA(2), and synapse damage.  相似文献   

11.
The cellular prion protein (PrP(C)) is essential for the pathogenesis and transmission of prion diseases. Whereas the majority of PrP(C) is bound to the cell membrane via a glycosylphosphatidylinositol (GPI) anchor, a secreted form of the protein has been identified. Here we show that PrP(C) can be shed into the medium of human neuroblastoma SH-SY5Y cells by both protease- and phospholipase-mediated mechanisms. The constitutive shedding of PrP(C) was inhibited by a range of hydroxamate-based zinc metalloprotease inhibitors in a manner identical to the alpha-secretase-mediated shedding of the amyloid precursor protein, indicating a proteolytic shedding mechanism. Like amyloid precursor protein, this zinc metalloprotease-mediated shedding of PrP(C) could be stimulated by phorbol myristate acetate and by copper ions. The lipid raft-disrupting agents filipin and methyl-beta-cyclodextrin promoted the shedding of PrP(C) via a distinct mechanism that was not inhibited by hydroxamate-based inhibitors. Filipin-mediated shedding of PrP(C) is likely to occur via phospholipase cleavage of the GPI anchor, since a transmembrane polypeptide-anchored PrP construct was not shed in response to filipin treatment. Collectively, our data indicate that shedding of PrP(C) can occur via both secretase-like proteolytic cleavage of the protein and phospholipase cleavage of the GPI anchor moiety.  相似文献   

12.
Conversion of PrP(C) into PrP(Sc) is the central event in the pathogenesis of transmissible prion diseases. Although the molecular basis of this event and the intracellular compartment where it occurs are not yet understood, the association of PrP with cellular membranes and in particular its presence in detergent-resistant microdomains appears to be of critical importance. In addition it appears that scrapie conversion requires membrane-bound glycosylphosphatidylinositol (GPI)-linked PrP. The GPI anchor may affect either the conformation, the intracellular localization, or the association of the prion protein with specific membrane domains. However, how this occurs is not known. To understand the relevance of the GPI anchor for the cellular behavior of PrP, we have studied the biosynthesis and localization of a PrP version which lacks the GPI anchor attachment signal (PrP Delta GPI). We found that PrP Delta GPI is tethered to cell membranes and associates to membrane detergent-resistant microdomains but does not assume a transmembrane topology. Differently to PrP(C), this protein does not localize at the cell surface but is mainly released in the culture media in a fully glycosylated soluble form. The cellular behavior of anchorless PrP explains why PrP Delta GPI Tg mice can be infected but do not show the classical signs of the disorder, thus indicating that the plasma membrane localization of PrP(C) and/or of the converted scrapie form might be necessary for the development of a symptomatic disease.  相似文献   

13.
The scrapie prion protein (PrPSc) is derived from a cellular isoform (PrPC) that acquires protease resistance posttranslationally. We have used several different experimental approaches in attempts to reconstitute in vitro the processes leading to protease-resistant PrPSc molecules. In the first study, we performed mixing experiments by adding mouse PrP 27-30 (MoPrP27-30), the protease-resistant core of PrPSc, to PrPC and then incubating the mixture to investigate the possibility of heterodimer formation as a first step in prion replication. We used epitopically tagged PrP molecules, synthesized in murine neuroblastoma (N2a) cells transfected with the chimeric mouse/Syrian hamster MHM2 PrP construct, which are recognized by the Syrian hamster-specific monoclonal antibody 3F4. After as long as 24 h of incubation, the reaction mixture was assayed for heterodimeric intermediates of MHM2 PrPC and MoPrPSc and for protease-resistant 3F4-reactive PrP. We were unable to identify any aggregates of MHM2 PrPC and MoPrPSc on immunoblots; furthermore, we did not observe de novo formation of protease-resistant MHM2 PrP. In a second study, MoPrPC was metabolically radiolabeled in scrapie prion-infected N2a cultured cells, and then the cell extract was homogenized and incubated under various conditions to allow for the formation of protease-resistant MoPrPSc. We observed no radiolabeled MoPrPSc by immunoprecipitation after as long as 24 h of in vitro incubation. In a third approach, Syrian hamster PrP (SHaPrP) was synthesized in a cell-free translation system supplemented with microsomal membranes derived from either normal or scrapie prion-infected cultured cells. We found that all SHaPrP species translocated across microsomal membranes from scrapie prion-infected cells were protease sensitive in the presence of detergents and displayed the same topology as those generated by microsomes from normal cells or from dog pancreas. We also studied PrP molecules that encode the codon 102 mutation that causes the rare human prion disease Gerstmann-Str?ussler-Scheinker (GSS) syndrome. On the basis of our data, GSSPrP appears to yield topological forms similar to those of the wild-type PrP when processed by either normal or scrapie prion-derived microsomes.  相似文献   

14.
Carcinoembryonic antigen is present in the cell membrane of most tumors of colorectal origin and in the plasma of patients with colorectal cancer and other malignancies. In this paper we demonstrate that carcinoembryonic antigen can be released from HT-29 cells by phosphatidylinositol specific phospholipase C. Triton X-114 phase separation shows that phospholipase C converts the antigen into a water soluble protein. In addition, plasma carcinoembryonic antigen behaves as the cleaved antigen in phase separation experiments. This strongly suggests that carcinoembryonic antigen is attached to cell membranes by a glycosyl-phosphatidylinositol anchor and that it can be released in vivo by enzymatic cleavage of the hydrophobic tail.  相似文献   

15.
Prion diseases occur following the conversion of the cellular prion protein (PrP(C)) into a disease related, protease-resistant isoform (PrP(Sc)). In these studies, a cell painting technique was used to introduce PrP(C) to prion-infected neuronal cell lines (ScGT1, ScN2a, or SMB cells). The addition of PrP(C) resulted in increased PrP(Sc) formation that was preceded by an increase in the cholesterol content of cell membranes and increased activation of cytoplasmic phospholipase A(2) (cPLA(2)). In contrast, although PrP(C) lacking one of the two acyl chains from its glycosylphosphatidylinositol (GPI) anchor (PrP(C)-G-lyso-PI) bound readily to cells, it did not alter the amount of cholesterol in cell membranes, was not found within detergent-resistant membranes (lipid rafts), and did not activate cPLA(2). It remained within cells for longer than PrP(C) with a conventional GPI anchor and was not converted to PrP(Sc). Moreover, the addition of high amounts of PrP(C)-G-lyso-PI displaced cPLA(2) from PrP(Sc)-containing lipid rafts, reduced the activation of cPLA(2), and reduced PrP(Sc) formation in all three cell lines. In addition, ScGT1 cells treated with PrP(C)-G-lyso-PI did not transmit infection following intracerebral injection to mice. We propose that that the chemical composition of the GPI anchor attached to PrP(C) modified the local membrane microenvironments that control cell signaling, the fate of PrP(C), and hence PrP(Sc) formation. In addition, our observations raise the possibility that pharmacological modification of GPI anchors might constitute a novel therapeutic approach to prion diseases.  相似文献   

16.
Decay-accelerating factor (DAF) is an integral membrane protein that inhibits amplification of the complement cascade on the cell surface. We and other investigators have shown that DAF is part of a newly characterized family of proteins that are anchored to the cell membrane by phosphatidylinositol (PI). The group includes the variant surface glycoprotein (VSG) of African trypanosomes, the p63 protein of Leishmania, acetylcholinesterase (AChE), alkaline phosphatase, Thy-1, 5'-nucleotidase, and RT6.2--an alloantigen from rat T cells. The structure of the membrane anchor has been best characterized for VSG, but chemical studies of the membrane anchors of AChE and Thy-1 suggest that similar glycolipid moieties anchor these proteins to the cell surface. In the VSG, the membrane anchor consists of an ethanolamine linked covalently to an oligosaccharide and glucosamine; the entire complex is anchored to the cell membrane by PI. Immunologically, this glycolipid defines an epitope, the cross-reacting determinant (CRD), that is only revealed after removal of the diacyl glycerol anchor by a phospholipase C. By Western blotting, we show here that DAF-S (DAF released from the membrane by PI-specific phospholipase C [PIPLC]) also contains CRD. Using a newly developed immunoradiometric assay (IRMA) in which the solid-phase capturing antibody is a monoclonal antibody to DAF and the second antibody is anti-CRD, we have been able to quantitate DAF-S. By IRMA, we show that the reaction between anti-CRD and DAF-S is specific, since the binding is competitively inhibited only by the soluble form of the VSG. These observations further support the concept that the glycolipid anchors of this new family of proteins have similar structures. DAF is also found as a soluble protein in various tissue fluids as well as in Hela cell supernatants. No evidence for the presence of the CRD epitope was found on these proteins, suggesting that these forms of DAF are not released from the surface of cells by endogenous phospholipases.  相似文献   

17.
The cellular isoform of the prion protein (PrPC) is a sialoglycoprotein bound almost exclusively on the external surface of the plasma membrane by a glycosyl phosphatidylinositol anchor. The deduced amino acid sequence of Syrian hamster PrPC identifies two potential sites for the addition of Asn-linked carbohydrates at amino acids 181-183 (Asn-Ile-Thr) and 197-199 (Asn-Phe-Thr). We have altered these sites by replacing the threonine residues with alanine and expressed the mutant proteins transiently in CV1 cells utilizing a mutagenesis vector with the T7 promoter located upstream from the PrP gene. The T7 RNA polymerase was supplied by infection with a recombinant vaccinia virus. The 3 mutant proteins (PrPAla183, PrPAla199 and PrPAla183/199) have a reduced relative molecular weight compared to wild-type (wt) PrP. Deglycosylation as well as synthesis in the presence of tunicamycin reduced the relative molecular weight of all the PrP species to that of the double mutant PrPAla183/199. Our results indicate that both single-site mutant prion proteins are glycosylated at non-mutated sites and they suggest that both potential sites for Asn-linked glycosylation are utilized in wt PrPC. Immunofluorescence studies demonstrate that while wt PrPC localizes to the cell surface, all the mutant PrP molecules accumulate intracellularly. The site of accumulation of PrPAla183 is probably prior to the mid-Golgi stack since this protein does not acquire resistance to endoglycosidase H. Whether the intracellular locations of the mutant PrPC species are the same as those identified for the scrapie isoform of the prion protein (PrPSc) remains to be established.  相似文献   

18.
In most human and animal prion diseases the abnormal disease-associated prion protein (PrPSc) is deposited as non-amyloid aggregates in CNS, spleen and lymphoid organs. In contrast, in humans and transgenic mice with PrP mutations which cause expression of PrP lacking a glycosylphosphatidylinositol (GPI)-anchor, most PrPSc is in the amyloid form. In transgenic mice expressing only anchorless PrP (tg anchorless), PrPSc is deposited not only in CNS and lymphoid tissues, but also in extraneural tissues including heart, brown fat, white fat, and colon. In the present paper, we report ultrastructural studies of amyloid PrPSc deposition in extraneural tissues of scrapie-infected tg anchorless mice. Amyloid PrPSc fibrils identified by immunogold-labeling were visible at high magnification in interstitial regions and around blood vessels of heart, brown fat, white fat, colon, and lymphoid tissues. PrPSc amyloid was located on and outside the plasma membranes of adipocytes in brown fat and cardiomyocytes, and appeared to invaginate and disrupt the plasma membranes of these cell types, suggesting cellular damage. In contrast, no cellular damage was apparent near PrPSc associated with macrophages in lymphoid tissues and colon, with enteric neuronal ganglion cells in colon or with adipocytes in white fat. PrPSc localized in macrophage phagolysosomes lacked discernable fibrils and might be undergoing degradation. Furthermore, in contrast to wild-type mice expressing GPI-anchored PrP, in lymphoid tissues of tg anchorless mice, PrPSc was not associated with follicular dendritic cells (FDC), and FDC did not display typical prion-associated pathogenic changes.  相似文献   

19.
Prion protein (PrP) is usually bound to membranes by a glycosylphosphatidylinositol (GPI) anchor that associates with detergent-resistant membranes, or rafts. To examine the effect of membrane association on the interaction between the normal protease-sensitive PrP isoform (PrP-sen) and the protease-resistant isoform (PrP-res), a model system was employed using PrP-sen reconstituted into sphingolipid-cholesterol-rich raft-like liposomes (SCRLs). Both full-length (GPI(+)) and GPI anchor-deficient (GPI(-)) PrP-sen produced in fibroblasts stably associated with SCRLs. The latter, alternative mode of membrane association was not detectably altered by glycosylation and was markedly reduced by deletion of residues 34-94. The SCRL-associated PrP molecules were not removed by treatments with either high salt or carbonate buffer. However, only GPI(+) PrP-sen resisted extraction with cold Triton X-100. PrP-sen association with SCRLs was pH-independent. PrP-sen was also one of a small subset of phosphatidylinositol-specific phospholipase C (PI-PLC)-released proteins from fibroblast cells found to bind SCRLs. A cell-free conversion assay was used to measure the interaction of SCRL-bound PrP-sen with exogenous PrP-res as contained in microsomes. SCRL-bound GPI(+) PrP-sen was not converted to PrP-res until PI-PLC was added to the reaction or the combined membrane fractions were treated with the membrane-fusing agent polyethylene glycol (PEG). In contrast, SCRL-bound GPI(-) PrP-sen was converted to PrP-res without PI-PLC or PEG treatment. Thus, of the two forms of raft membrane association by PrP-sen, only the GPI anchor-directed form resists conversion induced by exogenous PrP-res.  相似文献   

20.
The cellular mechanisms by which prions cause neurological dysfunction are poorly understood. To address this issue, we have been using cultured cells to analyze the localization, biosynthesis, and metabolism of PrP molecules carrying mutations associated with familial prion diseases. We report here that mutant PrP molecules are delayed in their maturation to an endoglycosidase H-resistant form after biosynthetic labeling, suggesting that they are impaired in their exit from the endoplasmic reticulum (ER). However, we find that proteasome inhibitors have no effect on the maturation or turnover of either mutant or wild-type PrP molecules. Thus, in contrast to recent studies from other laboratories, our work indicates that PrP is not subject to retrotranslocation from the ER into the cytoplasm prior to degradation by the proteasome. We find that in transfected cells, but not in cultured neurons, proteasome inhibitors cause accumulation of an unglycosylated, signal peptide-bearing form of PrP on the cytoplasmic face of the ER membrane. Thus, under conditions of elevated expression, a small fraction of PrP chains is not translocated into the ER lumen during synthesis, and is rapidly degraded in the cytoplasm by the proteasome. Finally, we report a previously unappreciated artifact caused by treatment of cells with proteasome inhibitors: an increase in PrP mRNA level and synthetic rate when the protein is expressed from a vector containing a viral promoter. We suggest that this phenomenon may explain some of the dramatic effects of proteasome inhibitors observed in other studies. Our results clarify the role of the proteasome in the cell biology of PrP, and suggest reasonable hypotheses for the molecular pathology of inherited prion diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号