首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments were designed to determine the chronological alterations in placental and uterine prostaglandin F and E (PGF and PGE) during pregnancy in the rat. Pregnant rats (sperm in the vagina = day 0) were sacrified at days 15, 18,19, 20, 21 and delivery (day 21 ) and placental and uterine tissues assayed (RIA) for PGF and PGE immediately (“ ”) or after 1 hour incubation (“ ”). Uterine content of PGF and PGE (ng PG/mg DNA) was increased significantly by day 19 and further increases were seen through delivery. Incubation of uterine tissue resulted in enhanced net production of PGF and PGE (p <.05) per mg DNA (as judged by tissue content and release into the incubation medium) by day 18 of pregnancy vs. day 15. Net production peaked around the time of delivery thus paralleling the alterations in tissue content .By contrast, no differences with gestational age were found in placental content of PGF and PGE , the concentrations throughout late gestation remaining in the range of uterine PGs at day 15. However, production of PGs per mg placental DNA increased markedly during incubation with significant enhancement detected by day 19 vs. 15, achieving levels even greater than the uterus .The and findings for the uterus are consistent with the hypothesis that increases in uterine PGs levels at the end of pregnancy may play an important role in parturition. The experiences with placental tissue suggest that the potential for PG production per placental cell may also increase in late gestation and thereby contribute to the augmented intrauterine availability of PGs at that time.  相似文献   

2.
Rapid elongation of porcine blastocysts between Days 11 to 12 of pregnancy coincides with an increase in uterine luminal content of prostaglandins. The present study evaluated the effect of two prostaglandin synthesis inhibitors (indomethacin and flunixin meglumine) on elongation of porcine blastocysts from spherical to filamentous forms between Day 11 to 12 of pregnancy. Gilts were hemi-hysterectomized on Day 11 of prenancy. The excised uterine horn was flushed with 0.9% saline and diameter of blastocysts recovered were measured. Immediately following surgery, pregnant gilts were assigned to receive either: 1) vehicle every 4 h, 2) flunixin meglumine (banamine) every 4 h, or 3) indomethacin every 12 h. The remaining uterine horn was removed and flushed after the time of blastocyst elongation estimated for each gilt on basis of blastocyst development in the first horn. Uterine flushings were analyzed for total calcium, protein, acid phosphatase activity, estrone, estradiol-17β and prostaglandin F. Pretreatment blastocyst diameter was similar for all groups and ranged from 1 mm to 20 mm. Treatment of gilts with either banamine or indomethacin effectively inhibited (P<0.001) the increase in uterine luminal content of PGF. Total calcium, estrone and estradiol-17β were not influenced by treatment. Total uterine luminal protein and acid phosphatase activity were reduced (P<0.05) in banamine treated gilts compared to those receiving vehicle or indomethacin treatments. Although total PGF recovered in uterine flushings was reduced during the period of blastocyst elongation, treatment with PGF synthetase inhibitors failed to block rapid elongation of blastocysts from the spherical to filamentous forms.  相似文献   

3.
前列腺素F(PGF)抗血清对小鼠胚泡着床的影响   总被引:1,自引:1,他引:1  
程丽仁  柳建昌 《动物学报》1990,36(2):177-181
本文试图利用自制的PGP抗血清,对小鼠子宫局部进行注射,以观察其对胚泡着床的影响。结果表明,于妊娠第3天(孕卵在输卵管阶段)单侧子宫角注射PGF抗血清,对胚泡着床无影响。而妊娠第4天(胚泡在子宫阶段〕单侧或双侧子宫角注射PGF抗血清,对胚泡着床均有明显的抑制作用。这一结果提示小鼠胚泡着床中PGF起着重要的作用。  相似文献   

4.
Uterine prostaglandins (PGs) increase markedly at term in the pregnant rat. To assess the contribution of the fetal-placental unit (FUP) on uterine tissue and uterine venous blood PG concentrations, each uterine horn of 14 unilaterally pregnant rats at day 21 of pregnancy were compared. In addition, 7 bilaterally pregnant rats were studied. Uterine tissue and uterine venous plasma PGF, PGE, 6-Keto-PGF1 (6KF) and thromboxane B2 (TxB2) and systematic plasma progesterone, estradiol and estrone were determined by radioimmunoassay. Uterine concentrations of PGs (ng/mg DNA) were always greater on the pregnant side of unilaterally pregnant rats (p<.05) although the PGF levels were elevated to a lesser extent than were PGE, TxB2 or 6KF. However, no differences were detected between uterine tissue from the pregnant side of unilaterally pregnant compared to bilaterally pregnant rats. In addition, no differences were found in uterine venous plasma PGs adjacent or opposite the pregnant uterine horn and in systematic plasma progesterone, estradiol and estrone levels in unilaterally vs bilaterally pregnant rats. These data suggest that the presence of the FPU is associated with an increased capacity of uterine tissue to produce PGE, TxB2 and 6KF, and to a lesser degree PGF, and thus may contribute to the increase in uterine PGs periparturition.  相似文献   

5.
Two experiments were conducted to examine the effect of estradiol-17beta (E(2)-17beta) on content of immunoreactive prostagladin F(2)alpha (PGF, ng) and total protein (TUP, mg) in uterine flushings, as well as concentrations of 13, 14-dihydro-15-keto-PGF(2)alpha (PGFM) in plasma (Pg/ml). In experiment 1, Holstein heifers were utilized in a single reversal trial in which either E(2)-17beta (3 mg in 2 ml saline/ethanol 50:50; n=5) or vehicle alone (n=6) were given intravenously on day 14 or 15 of the estrous cycle (Period 1) following an induced estrus (day of estrus = day 0). Treatment (Trt) groups were reversed in Period 2 (Day 14 or 15 of the second estrous cycle). Jugular venous plasma was obtained before treatment (Oh), and at 5, 6, and 9h posttreatment (PT). Uterine flushings were collected nonsurgically in vivo , per cervix, via Foley catheter at 6h PT (20 ml of .9% saline per uterine horn). E(2)-17beta did not significantly alter (E(2)-17beta vs vehicle; x(-) +/- S.E.M.) PGF (1674 +/- .11 +/- 338.39 vs 1889.91 +/- 400.24 ng; P> .10) or TUP (33.25 +/- 2.57 vs 39.16 +/- 3.04 mg; P > .10). However, E(2)-17beta increased (P < .05) plasma PGFM (E(2)-17beta vs vehicle) after treatment (0h, 113.2 vs 163.8; 5h, 312.5 vs 203.9; 6h, 324.5 vs 198.0; 9h, 323.2 vs 246.8, pg/ml). In experiment 2, crossbred beef cattle received comparable treatments of either E(2)-17beta (n=5) or vehicle (n=5) on day 14 or 15 postestrus. Jugular venous plasma was obtained at 0h PT, and at 6h PT. Uterine flushings (1.9% saline, 20 ml per uterine horn) and peripheral plasma were collected at slaughter. Estradiol-17beta increased PGF (30.07 +/- 5.94 vs 8.46 +/- 2.01 ng; P> <.05) in uterine flushings as well as PGFM in plasma (E(2)-17beta : 55.82 +/- 19.13 pg/ml, at 0h and 89.31 +/- 14.02 pg/ml, at 6h, vs saline: 103.46 +/- 50.73 pg/ml, at 0h and 17.78 +/- 14.22, at 6h). Estradiol-17beta stimulated uterine production and release of PGF and protein as measured in flushings (experiment 2) as well as plasma PGFM responses (experiments 1 and 2). Uterine and/or cervical stimulation of experiment 1 may have masked uterine response to E(2)-17beta.  相似文献   

6.
Previous studies in our laboratory have shown that 24 hours of estradiol treatment significantly enhanced uterine prostaglandin (PG)F, PGE and thromboxane B2 (TxB2) leels but had no effect on 6-Keto-PGF (6KF) concentrations in ovariectomized-pregnant rats. One explanatior for the lack of an augmentation in 6KF was a temporal differences in response (i.e. 6KF increased and decreased within the 24 hour period). To test this possibility rats were ovariectomized on day 19 of pregnancy and sacrificed 0, 4, 8, 12, 16, 20 and 24 hours after estradiol treatment. Uterine tissue and venous plasma were analyzed for PGs by radioimmunoassay. No significant (p > .05) alterations were detected for any of the uterine PGs at 0, 4, 8 and 12 hours. However, at 16 hours PGF, TxB2 and PGE all showed significant (p > .05) increases (2.4, 3.4 and 2.1 fold, respectively) compared to 12 hours. In contrast, no significant augmentation in 6KF levels (p > .05, 1.3 fold) was detected at 16 compared to 12 hours although it was enhanced relative to 0 and 4 hours. In addition, PGF, TxB2 and PGE, but not 6KF, showed further increases 24 hours after estradiol administration. No alterations were found (p > .05) for any of the PGs in uterine venous plasma at the time points studied. In summary, uterine PGF, PGE and TxB2 net production appears to be more enhanced by estradiol treatment than 6KF at the time points studied. In addition, there is a slight, but significant, difference in the temporal response characteristics of 6KF compared to the other PGs. The data suggest that the dramatic increase in uterine PGF, PGE and TxB2 levels at parturition in the rat are probably significantly related to enhanced levels of estradiol. However, the majority of the increase in uterine 6KF levels at labor is more likely caused by factors other than augmented plasma estradiol.  相似文献   

7.
The concentration of prostaglandin F (PGF) has been measured in the peripheral plasma of normal rhesus monkeys ( ) during the final third of gestation, and in monkeys treated with dexamethasone or PGF2α after day 145 of pregnancy. Daily administration of PGF2α (10–15 mg/day im) reliably induced abortion within 3–6 days. However, dexamethasone (8 mg/day im from day 145) had no effect on the length of gestation.The concentration of PGF in the femoral venous plasma of untreated or dexamethasone-treated monkeys was highly variable, both in serial samples taken from the same animal and in samples taken from different animals at the same time of gestation. There was no indication of an effect of dexamethasone treatment on the plasma PGF levels, nor did the concentration of PGF increase during late pregnancy before spontaneous parturition. These results show that the myometrium of the pregnant rhesus monkey is highly sensitive to exogenous PGF2α during late gestation. However, a significant increase in the peripheral plasma concentration of PGF prior to the onset of labor was not observed.  相似文献   

8.
The effect of endotoxin (Salmonella enteritidis-Boivin) on ovum transport in the rabbit was examined. A dose of 10 μg/kg intravenously (iv) given 24 h after an injection of human chorionic gonadotrophin (hCG) to induce ovulation caused expulsion of 87% of ova from the oviduct within 24 h. The ED50 and 95% probability limits were 3.1 (2.38–4.03) μg/kg. A dose of 20 μg/kg given at 24 h after hCG exerted its effect on ovum transport within 4 h. Concurrent treatment with indomethacin completely prevented the effect of endotoxin on ovum transport. Endotoxin caused an increase of prostaglandin-like material (PG) E, measured by radioimmunoassay, in uterine vein blood within 35 min and PGE levels continued to rise until 3 h after endotoxin and remained elevated until 8–9 ½ h. PGF in uterine vein blood was not elevated until 90 min after endotoxin and then increased more rapidly than PGE during the next 2.5 h: it was still elevated at 8–9 ½ h. The ratio of PGF:PGE in uterine vein blood decreased from 3:1 in 24 h control samples to 1:1 at 1 h after endotoxin, and then increased rapidly exceeding 5:1 at 2 h. In animals given both indomethacin and endotoxin PG levels in uterine vein blood declined. Phenoxybenzamine partially prevented the effect of endotoxin on ovum transport and in animals so treated PGE levels in uterine vein blood increased similarly to those in animals receiving endotoxin alone, but PGF values, while elevated, were suppressed compared to those in endotoxin animals and the PGF:PGE ratio never exceeded 2:1. It is concluded that endotoxin induces accelerated ovum transport by causing an initial relaxation of the oviductal isthmic musculature due to PGE dominance followed by stimulation of oviductal circular musculature due to PGF dominance.  相似文献   

9.
L Wilson  L S Huang 《Prostaglandins》1983,25(5):725-731
Uterine prostaglandins (PGs) increase markedly at term in the pregnant rat. To assess the contribution of the fetal-placental unit (FPU) on uterine tissue and uterine venous blood PG concentrations, each uterine horn of 14 unilaterally pregnant rats at day 21 of pregnancy were compared. In addition, 7 bilaterally pregnant rats were studied. Uterine tissue and uterine venous plasma PGF, PGE, 6-Keto-PGF1 (6KF) and thromboxane B2 (TxB2) and systemic plasma progesterone, estradiol and estrone were determined by radioimmunoassay. Uterine concentrations of PGs (ng/mg DNA) were always greater on the pregnant side of unilaterally pregnant rats (p less than .05) although the PGF levels were elevated to a lesser extent than were PGE, TxB2 or 6KF. However, no differences were detected between uterine tissue from the pregnant side of unilaterally pregnant compared to bilaterally pregnant rats. In addition, no differences were found in uterine venous plasma PGs adjacent or opposite the pregnant uterine horn and in systemic plasma progesterone, estradiol and estrone levels in unilaterally vs bilaterally pregnant rats. These data suggest that the presence of the FPU is associated with an increased capacity of uterine tissue to produce PGE, TxB2 and 6KF, and to a lesser degree PGF, and thus may contribute to the increase in uterine PGs periparturition.  相似文献   

10.
Following ovariectomy of five New Zealand white rabbits at day 25 of pregnancy, the intrauterine pressure (IUP) and uterine progesterone (P) and prostaglandin (PG) levels were measured sequentially at days 25, 26 and 27. At day 25, when the uterine P and PGE and PGF were high, massive intrauterine treatment with 500 μg PGF2α provoked only a sustained contracture on which only low level oscillation in IUP was superimposed. At day 26, when the P levels had decreased significantly (P<0.001) and the PG levels had not changed significantly, 50 μg PGF2α significantly increased cyclic IUP as compared with the day 25 value (P<0.001). At day 27, when the P levels decreased further, as little as 5 μg PGF2α provoked still higher cyclic IUP, in spite of a significant reduction in PG levels (P<0.05).Stretching the uterus of six post partum and six 26 days pregnant rabbits (after removing the uterine contents) significantly increased the uterine PGF levels (P<0.001). However, stretch increased only cyclic IUP of the post partum uterus and was without effect on the pregnant uterus, which still had high P levels. These results indicate that the myometrium activated by exogenous PG or stretch, regardless of whether the uterine PG levels increase, remain unchanged or even moderately decrease, provided that the uterine P levels are reduced to a critical value.  相似文献   

11.
Uterine flushings were collected from 38 gilts representing Days 6,8,10,12,14,15,16 and 18 of the estrous cycle and pregnancy. The same group of gilts were represented within each of the respective days of the estrous cycle and pregnancy, i.e., three to six gilts per day per status. Uterine flushings (about 40ml) were assayed for prostaglandin F (PGF), estrone (E1), estradiol (E2), progestins (P) and protein. Nonpregnant gilts had higher (P<.01) concentrations of P in uterine flushings than pregnant gilts, but pregnant gilts had higher (P<.01) E1 and E2 concentrations. Significant day by status interactions were detected for E1 (P<.05), but not for E2 concentrations in uterine flushings. Total recoverable PGF and PGF concentrations in uterine flushings were greater (P<.01) in pregnant than nonpregnant gilts and significant (P<.01) day by status interactions were detected. In nonpregnant gilts, PGF increased between Days 12 and 16, i.e., during the period of corpora lutea (CL) regression. In pregnant gilts, PGF in uterine flushings increased markedly between Days 10 and 18. Total recoverable PGF on Day 18 of the estrous cycle was only 464.5 ± 37.6 ng as compared to 22,688.1 ± 1772.4 ng on Day 18 of pregnancy. Total recoverable protein was also higher (P<.01) in pregnant gilts. These data indicate that PGF synthesis and secretion by the uterine endometrium and/or conceptuses is not inhibited during pregnancy and suggest that PGF is sequestered within the uterine lumen of pregnant gilts, as is the total protein component of endometrial secretions referred to as histotroph.  相似文献   

12.
Rapid elongation of porcine blastocysts between Days 11 to 12 of pregnancy coincides with an increase in uterine luminal content of prostaglandins. The present study evaluated the effect of two prostaglandin synthesis inhibitors (indomethacin and flunixin meglumine) on elongation of porcine blastocysts from spherical to filamentous forms between Day 11 to 12 of pregnancy. Gilts were hemi-hysterectomized on Day 11 of pregnancy. The excised uterine horn was flushed with 0.9% saline and diameter of blastocysts recovered were measured. Immediately following surgery, pregnant gilts were assigned to receive either: 1) vehicle every 4 h, 2) flunixin meglumine (banamine) every 4 h, or 3) indomethacin every 12 h. The remaining uterine horn was removed and flushed after the time of blastocyst elongation estimated for each gilt on basis of blastocyst development in the first horn. Uterine flushings were analyzed for total calcium, protein, acid phosphatase activity, estrone, estradiol-17 beta and prostaglandin F. Pretreatment blastocyst diameter was similar for all groups and ranged from 1 mm to 20 mm. Treatment of gilts with either banamine or indomethacin effectively inhibited (P less than 0.001) the increase in uterine luminal content of PGF. Total calcium, estrone and estradiol-17 beta were not influenced by treatment. Total uterine luminal protein and acid phosphatase activity were reduced (P less than 0.05) in banamine treated gilts compared to those receiving vehicle or indomethacin treatments. Although total PGF recovered in uterine flushings was reduced during the period of blastocyst elongation, treatment with PGF synthetase inhibitors failed to block rapid elongation of blastocysts from the spherical to filamentous forms.  相似文献   

13.
Periodic collections of uterine venous blood were obtained from three nonmated, three pregnant and two mated but nonpregnant ewes in which uterine veins were cannulated with polyvinyl tubing on day 11 postestrus. Frequent sampling was achieved in three of these ewes with additional cannulae in the ovarian veins. Blood samples were collected at 3-hr intervals from 0600 on day 12 to 1800 on day 13 and then 6-hr intervals through day 15. On day 13, three additional samples at 30-min intervals were collected between 1400 and 1530. Prostaglandins F (PGF) in plasma were quantified by radioimmunoassay. On day 12, one ewe in each group had at least one measurement which suggested an increased rate of release of PGF into the uterine vein. Seven of eight ewes on day 13 appeared to have increased rates of release of PGF from the uterus between 0900 and 1500. The highest level measured in each ewe during this period ranged from 2.7 to 11 ng per milliliter. Concentrations of PGF in ovarian venous plasma in two of three ewes were positively correlated (P less than .05) with concentrations of PGF in uterine venous plasma (r equals .64 in each ewe). No evidence was obtained that pregnant and nonpregnant ewes differ in rate or pattern of release of PGF from the uterus into the uterine vein on days 12 and 13. Comparisons could not be made with confidence concerning PGF either in uterine veins on days 14 and 15 or in ovarian veins on all days due to limited number of observations.  相似文献   

14.
Rats with delayed implantation, induced by ovariectomy or hypophysectomy, as well as those with normal pregnancy were used to examine the changes in uterine prostaglandin F2 alpha (PGF2 alpha) associated with implantation. In normal pregnant rats, while maximal uterine production of PGF2 alpha was found at 09:00, maximal catabolic enzyme activity (CEA) was seen at 17:00 of day 4. Uterine content of PGF2 alpha was high at 17:00 of day 4, but decreased by 80% within the next 24 h. There was no change in PGF2 alpha production during the first 6 h after injection of estradiol to hypophysectomized animals. There was, however, a dramatic decrease in production within the next 6 h. In contrast, CEA was not different in animals treated with estrogen than in those receiving only progesterone. In ovariectomized animals, uterine PGF2 alpha production also was lowered by estrogen but in these animals CEA was significantly elevated 18 h after injection of estradiol. Estrogen caused a greater increase in PGF2 alpha content in the hypophysectomized, compared to the ovariectomized, rats. The results are consistent with the view that ovarian steroids play an important role in controlling the changes in uterine PGF2 alpha around the time of implantation in rat.  相似文献   

15.
The purpose of this work was to investigate the effect of oxytocin on prostaglandin F (PGF) concentrations in uterine venous effluent. PGF was measured in utero-ovarian venous plasma from three pregnant ewes and in posterior vena caval plasma, from two puerperal ewes, during oxytocin administration. Oxytocin caused 4.9 – 5.3-fold increases in PGF concentrations in the pregnant animals, the response increasing towards term. In the puerperal animals oxytocin caused 3.7 – 17.2-fold increases in PGF concentrations with a marked latency in the response. Measurement of uterine activity and progesterone and total unconjugated oestrogen concentrations indicated that neither uterine contractions nor a decreased uterine blood flow accounted for the elevated PGF levels stimulated by oxytocin.  相似文献   

16.
Two experiments were conducted to assess the effect of exogenous hormone treatment on uterine luminal prostaglandin F (PGF). In the first experiment ovariectomized pony mares received either corn oil (21 days, n = 3), estradiol valerate (21 days, n = 3), progesterone (21 days, n = 3) or estradiol valerate (7 days) followed by progesterone (14 days, n = 4). Progesterone treated mares had higher (P<.01) uterine luminal PGF compared with all other groups, and no differences were detected between other treatment comparisons. In Experiment II, uterine fluid was collected from 4 ovariectomized horse mares before and after treatment with estradiol valerate (7 days) followed by progesterone (50 days). Pretreatment uterine luminal PGF levels were lower (P<.001) than post-treatment levels (.03 vs 76.80 ng/ml). In a third experiment PGF was measured in uterine fluid of pony mares on days 8, 12, 14, 16, 18 and 20 of the estrous cycle and pregnancy. In nonpregnant mares a day effect P<.03) was observed in which uterine fluid PGF increased during the late luteal phase and declined thereafter. In contrast, no day effect was observed in pregnant animals and uterine luminal PGF was lower (P<.001) than in cycling animals. These studies indicate that exogenous progesterone administration results in a large increase in uterine luminal PGF, whereas, pregnancy results in suppression. Taken collectively with previous work from our laboratory, these results suggest that while the endometrium of pregnant mares is capable of producing large amounts of PGF, the presence of a conceptus impedes its synthesis and/or release which allows for luteal maintenance.  相似文献   

17.
Concentrations of prostaglandin E (PGE), PGF and 6-oxo-PGF (the hydrolytic product of PGI2) were measured by radioimmunoassay (RIA) in myometrium, endometrium, cotyledons, amnion and chorioallantois taken from different uterine areas from chronically catheterized sheep bearing fetuses which had died 12–26 h previously (n=4) or 34–72 h previously (n=4). These two groups of animals were designated fetuses dead <30 h and >30 h respectively. The time of fetal death was assessed on the basis of fetal heart rate and blood gases. At the time of the tissue collection the ewes were between 123 and 130 days after mating. For comparative purposes, tissues also were collected from four sheep bearing live chronically catheterized fetuses at 130 days of gestation.For myometrium, concentration of PGF, PGE and 6-oxo-PGF were significantly higher in sheep bearing dead fetuses, compared to those bearing live fetuses. Analysis of variance also showed a significant effect of uterine area on myometrial PGE concentrations, concentrations being higher in tubal areas than elsewhere. Concentrations of PGE, PGF and 6-oxo-PGF were higher in endometrium taken from uteri containing dead fetuses. In cotyledons, concentrations of PGF and 6-oxo-PGF but not PGE, were significant elevated following fetal death. Concentrations of 6-oxo-PGF, but not PGE or PGF, were elevated in both chorioallantois and amnion of sheep bearing dead fetuses, compared to those bearing live fetuses. In association with elevated PG concentrations, there was a progressive increase in the frequency and maximum amplitude of uterine contractions. These results show that PG concetrations are elevated following fetal death in sheep, and suggest an association between elevated PG concentrations and delivery of the dead fetus.  相似文献   

18.
The objective was to evaluate the effects of plasma progesterone (P4) concentrations and exogenous eCG on ovulation and pregnancy rates of pubertal Nellore heifers in fixed-time artificial insemination (FTAI) protocols. In Experiment 1 (Exp. 1), on Day 0 (7 d after ovulation), heifers (n = 15) were given 2 mg of estradiol benzoate (EB) im and randomly allocated to receive: an intravaginal progesterone-releasing device containing 0.558 g of P4 (group 0.5G, n = 4); an intravaginal device containing 1 g of P4 (group 1G, n = 4); 0.558 g of P4 and PGF (PGF; 150 μg d-cloprostenol, group 0.5G/PGF, n = 4); or 1 g of P4 and PGF (group 1G/PGF, n = 3). On Day 8, PGF was given to all heifers and intravaginal devices removed; 24 h later (Day 9), all heifers were given 1 mg EB im. In Exp. 2, pubertal Nellore heifers (n = 292) were treated as in Exp. 1, with FTAI on Day 10 (30 to 36 h after EB). In Exp. 3, pubertal heifers (n = 459) received the treatments described for groups 0.5G/PGF and 1G/PGF and were also given 300 IU of eCG im (groups 0.5G/PGF/eCG and 1G/PGF/eCG) at device removal (Day 8). In Exp. 1, plasma P4 concentrations were significantly higher in heifers that received 1.0 vs 0.588 g P4, and were significantly lower in heifers that received PGF on Day 0. In Exp. 2 and 3, there were no significant differences among groups in rates of ovulation (65-77%) or pregnancy (Exp. 2: 26-33%; Exp. 3: 39-43%). In Exp. 3, diameter of the dominant ovarian follicle on Day 9 was larger in heifers given 0.558 g vs 1.0 g P4 (10.3 ± 0.2 vs 9.3 ± 0.2 mm; P < 0.01). In conclusion, lesser amounts of P4 in the intravaginal device or PGF on Day 0 decreased plasma P4 from Days 1 to 8 and increased diameter of the dominant follicle on Day 9. However, neither of these nor 300 IU of eCG on Day 8 significantly increased rates of ovulation or pregnancy.  相似文献   

19.
Prostaglandins F were quantitated by radioimmunoassay in uterine venous plasma of anesthetized mares on day 7 of estrus, days 2, 6, 10, 14 or 18 of diestrus and days 10, 14 or 18 of pregnancy. The PGF concentration was greater (P<.01) at day 14 of diestrus than at all other days studied. The concentrations at days 10 and 18 of diestrus and at days 10, 14 and 18 of pregnancy were greater (P<.05) than at day 7 of estrus and days 2 and 6 of diestrus. PGF concentrations at days 10 and 14 were greater (P<.01) for diestrous than for pregnant mares.  相似文献   

20.
Synchronization of estrous and fixed-time artificial insemination (FTAI) was conducted during the reproductive season of 2008 (March–April) in a local red deer breeding farm in Argentina. Multiparous suckling hinds (n = 38) were artificially inseminated following hormonal treatment (intravaginal sponge containing 100 mg of medroxiprogesterone acetate). At the time of sponge removal (day 12) 250 IU of eCG and 500 μg of PGF2α were given to each hind. The FTAI was performed at 48–55 h after device removal with cryopreserved semen imported from New Zealand. Rectal-transcervical AI method (similar to that in cattle) was performed and semen was deposited within the uterine body (n = 28) or the cervix (n = 10). Pregnancy was diagnosed by means of ultrasonography 44 days after FTAI. The overall pregnancy rate was 36.8% (14/38). Percentage of does that became pregnant with intrauterine seminal deposition was 42.9% (12/28) whereas pregnancy rate in the hinds with intracervical AI was 20% (2/10; P = 0.27).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号