首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two sandwich-type enzyme immunoassays have been developed to measure apolipoproteins A-I and E in rabbit serum. Specific goat antibodies were purified by affinity chromatography and used both for coating and for preparing antibody-peroxydase conjugates. The sensitivity of these assays is sufficient to allow studies of apo A-I and E distribution in lipoproteins fractionated by gel filtration from 50 microliters of serum. In WHHL rabbits, apo A-I is 5-fold lower (5.2 +/- 2.5 mg/dl) and apo E is 8-fold higher (9.9 +/- 3.5 mg/dl) than in normolipidemic rabbits (29 +/- 4.3 mg/dl and 1.3 +/- 0.5 mg/dl, respectively). In hyperlipidemic rabbits, fed 2 months on a 0.5% cholesterol diet, the apo A-I level was similar (32 +/- 12 mg/dl) to that of normolipidemic rabbits, but the apo E level is 12-fold higher (15.1 +/- 5.5 mg/dl). In addition, HDL particles were enriched with cholesterol and apo E. The bulk of apo E and cholesterol is located in large beta-VLDL in diet-induced hyperlipidemia, whereas they are mainly located in smaller size beta-VLDL in WHHL rabbits. In normolipidemic rabbits apo E occurs mainly in HDL, and cholesterol is distributed in the main three lipoprotein fractions VLDL, LDL and HDL. Interestingly, HDL of WHHL rabbit are deficient in apo A-I. These results are compatible with profound perturbations of lipoprotein composition and metabolism in atherogenic hyperlipidemia.  相似文献   

2.
Oxidative stress is implicated in the pathogenesis of Alzheimer's disease (AD), and the enzyme myeloperoxidase (MPO) has been identified as one source of reactive oxidants. MPO-mediated oxidation of high-density lipoprotein (HDL) plays an important role in the pathogenesis of atherosclerosis and although several links between cardiovascular disease and AD have been reported, surprisingly little is known about the role of HDL oxidation in AD. We show that MPO binding to isolated HDL depends on the lipidation state of apolipoprotein A-I (apo A-I), the major protein constituent of HDL. When quantifying apo A-I and oxidized HDL in plasma of AD patients and cognitive healthy, age- and gender matched controls, we observed similar apo A-I levels in AD patients (263 +/- 70 mg/dl) and controls (268 +/- 70 mg/dl, p = 0.83). In striking contrast, oxidized HDL was significantly reduced in AD patients (4.72 +/- 1.91 U/dl) compared to controls (6.98 +/- 3.32 U/dl, p = 0.012). The marked decrease of oxidized HDL in AD patients is surprising considering the current oxidation hypothesis. We suggest that additional mechanisms, including increased antioxidant production and/or altered lipoprotein metabolism, might be involved in AD pathology.  相似文献   

3.
Probucol is a widely prescribed lipid-lowering agent, the major effects of which are to lower cholesterol in both low- and high-density lipoproteins (LDL and HDL, respectively). The mechanism of action of probucol on HDL apolipoprotein (apo) A-I kinetics was investigated in rabbits, with or without cholesterol feeding. 125I-labeled HDL was injected intravenously, and blood samples were taken periodically for 6 days. Kinetic parameters were calculated from the apo A-I-specific radioactivity decay curves. Fractional catabolic rate (FCR) and synthetic rate (SR) of apo A-I in rabbits fed a normal chow and normal chow with 1% probucol were similar. Apo A-I FCR of the rabbits fed 0.5% cholesterol was significantly increased but there were no changes in SR, compared to findings in the normal chow-fed group. Apo A-I FCR of the rabbits fed 1% probucol with 0.5% cholesterol (both 1 month and 2 months) was significantly increased compared to findings in rabbits fed the normal chow as well as 0.5% cholesterol diet group, while SR of apo A-I was significantly reduced in the former groups. Kinetics at 1 month after discontinuation of 1% probucol (under cholesterol feeding) showed a similar FCR of HDL-apo A-I to that of the rabbits fed 0.5% cholesterol, but the SR of apo A-I remained lower. Apo A-I isoproteins kinetics assessed by autoradiography of isoelectric focusing slab gels showed that the synthesis of proapo A-I was significantly reduced in the 1% probucol with 0.5% cholesterol administered, compared to the 0.5% cholesterol group. Thus, the action of probucol on HDL apo A-I kinetics was only prominent in case of higher serum cholesterol levels. The decreased HDL or apo A-I seen with probucol was apparently the result of an increase in FCR and a decrease in SR of HDL-apo A-I. A decreased synthesis of apo A-I remained evident even 1 month after discontinuing probucol. The action of probucol on the intracellular synthetic processes of apo A-I was revealed by the reduced synthesis of proapo A-I.  相似文献   

4.
A highly sensitive sandwich enzyme-linked immunosorbent assay for rat apo A-I was developed. Samples and standards were added to each well of microtiter plates precoated with immunoaffinity-purified IgG. Bound apo A-I was detected with immunoaffinity-purified Fab'-horseradish peroxidase conjugate by a colorimetric method. The sensitivity reached 2.5 pg/well, and the working range for the measurement of serum apo A-I concentration was 0.1 to 1.0 ng/well. The mean intra- and interassay coefficients of variation were 2.8 and 4.1%, respectively. The epitopes of apo A-I in serum were effectively exposed by the use of 6 mol/liter guanidine.HCl. Serum apo A-I concentrations in 36- to 40-week-old rats (62.3 +/- 8.6 mg/dl, mean +/- SD, n = 16) were significantly higher (P less than 0.05) than those in 8- to 12-week-old rats (55.1 +/- 4.3 mg/dl, n = 9). But the age-related change of serum apo A-I was much smaller than that of serum apo E. Apo A-I was contained in smaller HDL particles (or HDL2) in normal rat serum.  相似文献   

5.
The effects of diets enriched with cholesterol and different fats upon plasma lipoproteins and hepatic low density lipoprotein (LDL) receptor mRNA levels were studied in a group of 18 normal baboons. Animals were fed diets containing 1% cholesterol and 25% fat as either coconut oil, peanut oil, or olive oil for a period of 20 weeks. Plasma total cholesterol, high density lipoprotein (HDL) cholesterol, beta-lipoprotein (LDL + very low density lipoprotein) cholesterol, apolipoprotein B and apolipoprotein A-I were measured in samples obtained at 4-week intervals. All three diet groups demonstrated a statistically significant increase in plasma cholesterol as compared to base line throughout the experiment. Hepatic LDL receptor (LDL-R) mRNA levels were quantified by dot blot hybridization in serial liver biopsies. Animals fed saturated fat sustained a significant reduction in hepatic LDL-R mRNA as compared to those fed either monounsaturated or polyunsaturated fat. A strong negative correlation between LDL-R mRNA and plasma total cholesterol (r = -0.71), HDL cholesterol (r = -0.76), and plasma apo A-I (r = -0.77) was observed only in those animals fed coconut oil. Weak negative correlations between LDL-R mRNA and other plasma parameters did not achieve statistical significance. We conclude that saturated and unsaturated oils may influence plasma cholesterol levels in part through differential effects on LDL receptor biosynthesis in baboons.  相似文献   

6.
Senescence-accelerated mouse-prone (SAMP1; SAMP1@Umz) is an animal model of senile amyloidosis with apolipoprotein A-II (apoA-II) amyloid fibril (AApoAII) deposits. This study was undertaken to investigate the effects of dietary fats on AApoAII deposits in SAMP1 mice when purified diets containing 4% fat as butter, safflower oil, or fish oil were fed to male mice for 26 weeks. The serum HDL cholesterol was significantly lower (P < 0.01) in mice on the diet containing fish oil (7.4 +/- 3.0 mg/dl) than in mice on the butter diet (38.7 +/- 12.5 mg/dl), which in turn had significantly lower (P < 0.01) HDL levels than mice on the safflower oil diet (51.9 +/- 5.6 mg/dl). ApoA-II was also significantly lower (P < 0.01) in mice on the fish oil diet (7.6 +/- 2.7 mg/dl) than on the butter (26.9 +/- 7.3 mg/dl) or safflower oil (21.6 +/- 3.7 mg/dl) diets. The mice fed fish oil had a significantly greater ratio (P < 0.01) of apoA-I to apoA-II, and a smaller HDL particle size than those fed butter and safflower oil. Severe AApoAII deposits in the spleen, heart, skin, liver, and stomach were shown in the fish oil group compared with those in the butter and safflower oil groups (fish oil > butter > safflower oil group, P < 0.05). These findings suggest that dietary fats differ in their effects on serum lipoprotein metabolism, and that dietary lipids may modulate amyloid deposition in SAMP1 mice.  相似文献   

7.
8.
The effect of the degree of dietary fat saturation on the hepatic expression of apolipoprotein A-I mRNA was studied in male rats. Animals were maintained for two months on a high fat diet (40% w/w) containing 0.1% cholesterol. Two groups of control animals received either chow diet or chow plus 0.1% cholesterol, while experimental groups received their fat supplement as coconut, corn or olive oil respectively. Dietary cholesterol did not affect apolipoprotein A-I mRNA levels as compared to control animals. Corn oil fed animals had significantly higher levels of hepatic apolipoprotein A-I mRNA than those receiving cholesterol, or coconut oil plus cholesterol. Olive oil fed animals had significantly higher levels of hepatic apolipoprotein A-I mRNA when compared to all other dietary groups. Our data indicate that monounsaturated fatty acids supplied as olive oil play a major role in regulating the hepatic expression of apolipoprotein A-I in male rats.  相似文献   

9.
The influence of partial replacement of starch by sucrose on dietary cholesterol-induced serum lipoprotein responses was examined in 10 male cynomolgus monkeys (Macaca fascicularis). In a crossover design two semipurified diets provided either starch or starch and sucrose (1:1) as carbohydrate (49% by calories) with 0.4 mg cholesterol/kcal. Six weeks of starch + sucrose diet resulted in significantly reduced levels (mean +/- SE, mg/dl) of serum total cholesterol (264 +/- 9 vs 244 +/- 8) and apo B (110 +/- 6 vs 96 +/- 6) when compared with starch diet, whereas serum triglyceride levels remained similar between diets. With respect to changes in lipids and apolipoproteins (A-I or B) of very low (VLDL), low (LDL), intermediate (IDL), and high (HDL) density lipoproteins, starch + sucrose diet significantly increased VLDL-apo B (+34%), and decreased LDL-cholesterol (-18%) and LDL-apo B (-15%) as compared with starch alone; no differences were found in IDL and HDL between diets. The relative proportion of starch to sucrose in a diet appears to influence the magnitude of response of lipoproteins to dietary cholesterol.  相似文献   

10.
A sensitive and specific double antibody radio-immunoassay for the major apolipoprotein (apoB) of rhesus (Macaca mulatta) serum very low density lipoprotein (VLDL) and low density lipoprotein (LDL) is described. The anti-serum was raised to LDL (d 1.030-1.040 g/ml) and the LDL(2) (d 1.020-1.050 g/ml) was labeled with (125)I by the chloramine-T or iodine monochloride method. The assay, which was sensitive to 0.02-0.5 micro g of LDL(2), had an inter-assay coefficient of variation of 4.5%. This assay was successfully used to measure apoB in the whole serum and low density lipoproteins of control monkeys maintained on a standard Purina monkey chow (PMC) diet and of three groups of monkeys fed atherogenic diets: an "average American diet," a 25% peanut oil and 2% cholesterol-supplemented PMC diet, and a 25% coconut oil and 2% cholesterol-supplemented PMC diet. The control monkeys (n = 13) had a serum cholesterol of 146 +/- 28 mg/dl and an apoB of 50 +/- 18 mg/dl. In the monkeys maintained on the atherogenic diets the serum apoB was elevated: 103 +/- 28 mg/dl (American), 102 +/- 35 mg/dl (peanut oil), and 312 +/- 88 mg/dl (coconut oil). The values for serum total cholesterol were 333 +/- 65 mg/dl (American), 606 +/- 212 mg/dl (peanut oil), and 864 +/- 233 mg/dl (coconut oil) and were elevated relative to controls (P < 0.001). For each of the diets, total serum cholesterol correlated with serum apoB (P < 0.001). The slopes of the regression lines of serum apoB vs. cholesterol for the monkeys on the PMC, American, and coconut oil diets were similar (m = 0.531, 0.401, and 0.359, respectively), but differed from that of monkeys on the peanut oil diet (m = 0.121). The immunoreactivities of rhesus and human LDL were compared using specific antisera raised against these antigens. In homologous assay systems, monkey and human LDL exhibited unique immunological determinants. The same results were obtained with the delipidated preparations of the two LDLs using antisera raised against either monkey or human apoB. Crossover studies using a heterologous tracer with each anti-serum resulted in the selection of a specific population of antibodies directed against antigenic sites shared by these two LDL species.  相似文献   

11.
Relative to saturated fatty acids, trans-fatty acids/hydrogenated fat-enriched diets have been reported to increase low density lipoprotein (LDL) cholesterol levels and either decrease or have no effect on high density lipoprotein (HDL) cholesterol levels. To better understand the effect of trans-fatty acids/hydrogenated fat on HDL cholesterol levels and metabolism, 36 subjects (female, n = 18; male, n = 18) were provided with each of three diets containing, as the major sources of fat, vegetable oil-based semiliquid margarine, traditional stick margarine, or butter for 35-day periods. LDL cholesterol levels were 155 +/- 27, 168 +/- 30, and 177 +/- 32 mg/dl after subjects followed the semiliquid margarine, stick margarine, and butter-enriched diets, respectively. HDL cholesterol levels were 43 +/- 10, 42 +/- 9, and 45 +/- 10 mg/dl, respectively. Dietary response in apolipoprotein (apo) A-I levels was similar to that in HDL cholesterol levels. HDL(2) cholesterol levels were 12 +/- 7, 11 +/- 6, and 14 +/- 7 mg/dl, respectively. There was virtually no effect of dietary fat on HDL3 cholesterol levels. The dietary perturbations had a larger effect on particles containing apoA-I only (Lp A-I) than apoA-I and A-II (Lp A-I/A-II). Cholesterol ester transfer protein (CETP) activity was 13.28 +/- 5.76, 15.74 +/- 5.41, and 14.35 +/- 4.77 mmol x h(-1) x ml(-1), respectively. Differences in CETP, phospholipid transfer protein activity, or the fractional esterification rate of cholesterol in HDL did not account for the differences observed in HDL cholesterol levels.These data suggest that the saturated fatty acid component, rather than the trans- or polyunsaturated fatty acid component, of the diets was the putative factor in modulating HDL cholesterol response.  相似文献   

12.
Two populations of high-density lipoprotein (HDL) particles exist in human plasma. Both contain apolipoprotein (apo) A-I, but only one contains apo A-II: Lp(AI w AII) and Lp(AI w/o AII). To study the extent of interaction between these particles, apo B-free plasma prepared by the selective removal of apo B-containing lipoproteins (LpB) from the plasma of three normolipidemic (NL) subjects and whole plasma from two patients with abetalipoproteinemia (ABL) were incubated at 37 degrees C for 24 h. Apo B-free plasma samples were used to avoid lipid-exchange between HDL and LpB. Lp(AI w AII) and Lp(AI w/o AII) were isolated from each apo B-free plasma sample before and after incubation and their protein and lipid contents quantified. Before incubation, ABL plasma had reduced levels of Lp(AI w AII) and Lp(AI w/o AII), (40% and 70% of normals, respectively). Compared to the HDL of apo B-free NL plasma, ABL HDL had higher relative contents of free cholesterol, phospholipid and total lipid, and contained more particles with apparent hydrated Stokes diameter in the 9.2-17.0 nm region. These differences were particularly pronounced in particles without apo A-II. Despite their differences, the total cholesterol contents of Lp(AI w AII) increased, while that of Lp(AI w/o AII) decreased in all five plasma samples and the amount of apo A-I in Lp(AI w AII) increased by 6-8 mg/dl in four during the incubation. These compositional changes were accompanied by a relative reduction of particles in the 7.0-8.2 nm Stokes diameter size region and an increase of particles in the 9.2-11.2 nm region. These data are consistent with intravascular modulation between HDL particles with and without apo A-II. The observed increase in apo A-II-associated cholesterol and apo A-I, could involve either the transfer of cholesterol and apo A-I from particles without apo A-II to those with A-II, or the transfer of apo A-II from Lp(AI w AII) to Lp(AI w/o AII). The exact mechanism and direction of the transfer remain to be determined.  相似文献   

13.
Paraoxonase activity is reduced by a pro-atherosclerotic diet in rabbits   总被引:3,自引:0,他引:3  
Serum paraoxonase (PON1) is believed to protect against the development of atherosclerosis because of its ability to retard the oxidation of low-density lipoprotein (LDL) by hydrolysing LDL-associated phospholipid and cholesteryl-ester hydroperoxides. We have examined the relationship between PON1 and atherosclerosis development in transgenic rabbits overexpressing human apolipoprotein (apo) A-I and nontransgenic littermates fed a pro-atherogenic diet. PON1 activity was higher in transgenic (4006.1 +/- 716.7 nmol/min/ml) compared to control (3078.5 +/- 623.3 nmol/min/ml) rabbits (P < 0.01) while high-density lipoprotein (HDL) cholesterol was 1.84 +/- 0.54 mmol/L in transgenic rabbits and 0.57 +/- 0.21 mmol/L in control rabbits (P = 0.0001). After feeding rabbits a high-cholesterol diet for 14 weeks HDL-cholesterol fell by 70% in both transgenic and control rabbits (P < 0.001 compared to week 0) PON1 activity fell by 50% in both groups of rabbits (P < 0. 01 compared to week 0). The amount of thoracic aortic surface area covered by lesions was 29 +/- 16% in the control group and 26 +/- 15% in the transgenic group (P = NS). A pro-atherosclerotic diet reduces PON1 which may exaggerate the effects of the diet on the development of atherosclerosis.  相似文献   

14.
Inbred mouse strains C57BL/6J (B6) (susceptible) and C3H/HeJ (C3H) (resistant) differ in atherosclerosis susceptibility due to a single gene, Ath-1. Plasma lipoproteins from female mice fed chow or an atherogenic diet displayed strain differences in lipoprotein particle sizes and apolipoprotein (apo) composition. High density lipoprotein (HDL) particle sizes were 9.5 +/- 0.1 nm for B6 and 10.2 +/- 0.1 nm for C3H. No major HDL particle size subclasses were observed. Plasma HDL level in the B6 strain was reduced by the atherogenic diet consumption while the HDL level in the resistant C3H mice was unaffected. The reduction in HDL in the B6 strain was associated with decreases in HDL apolipoproteins A-I(-34%) and A-II(-60%). The HDL apoC content in mice fed chow was two-fold higher in C3H than B6. Lipoproteins containing apolipoprotein B (VLDL, IDL, LDL) shifted from a preponderance of the B-100 (chow diet) to a preponderance of the B-48 (atherogenic diet). The LDL-particle size distribution was strain-specific with the chow diet but not genetically associated with the Ath-1 gene. In both strains on each diet, apolipoprotein E was largely distributed in the VLDL, LDL, and HDL fractions. The B6 strain became sixfold elevated in total lipoprotein E content which in the C3H strain was not significantly affected by diet. However, the C3H LDL apoE content was reduced. On both diets, the C3H strain exhibited apolipoprotein E levels comparable to the atherogenic diet-induced levels of the B6 mice.  相似文献   

15.
A deficiency or an excess of some elements in the diet is reported to modify the concentration of cholesterol in plasma, and, conversely, a reduction of cholesterol in the diet decreases zinc in plasma. We have studied the distribution of elements Na, K, Ca, Mg, Fe, Cu, Zn, S, P, and Mn in the tissues, plasma, heart, aorta, lung, liver, spleen, kidney, thymus, and brain of New Zealand White rabbits (NZW) and of Watanabe Heritable Hyperlipidemic rabbits (WHHL). The WHHL rabbits had a massive hypercholesterolemia (7.45 +/- 1.2 g/L) induced by a lack of liver low density lipoprotein receptors. The concentrations of elements in the tissues of the control NZW rabbits were very similar to those found in the normal rat. In WHHL, compared to NZW, besides the very important increase of total phosphorus in plasma explained by the augmentation of phospholipids, there was an increase of plasma copper (+44%) and zinc (+36%). The other noticeable changes were an increase of iron in heart (+19%), sulfur, and zinc in liver (+15% and +18%). The other changes observed in WHHL rabbits were, besides the increase of ceruloplasmin, the increase of vit E (+468%) and MDA (+62%). In conclusion, despite a massive increase of lipids in plasma, there was no major disturbance of element distribution in WHHL rabbits.  相似文献   

16.
1. Apolipoprotein A-1, isolated from hamster high density lipoprotein, possessed a molecular weight of approximately 27,000. 2. Its amino acid composition differed from human apo A-1 and it contained a higher threonine to serine ratio and a higher methionine and leucine content. 3. The concentration in normal serum was 126.0 +/- 1.9 mg/dl. 4. Apolipoprotein B, isolated from hamster low density lipoprotein consisted of three major components when analyzed by SDS-polyacrylamide gel electrophoresis with Mrs of 635 Kd, 460 Kd and 305 Kd respectively. 5. Hamster apo B possessed a higher aspartic acid to glutamic acid ratio and a higher methionine and valine content than human apo B. 6. The concentration in normal serum was 20.9 +/- 1.0 mg/dl. 7. The apolipoprotein and lipoprotein profile of hamsters fed a high cholesterol diet for 30 days changed considerably. 8. Total serum cholesterol levels increased 7 fold; LDL levels increased 14 fold; HDL levels doubled and total serum triglyceride increased 3 fold. 9. Apo A-1 levels increased by 45% and apo B levels increased 5 fold.  相似文献   

17.
In homozygous Watanabe heritable hyperlipidemic (WHHL) rabbits, the serum cholesterol level and serum low-density lipoprotein (LDL) level decreased from 562 +/- 76 (mean +/- S.E.) to 144 +/- 34 mg/dl and 410 +/- 56 to 90 +/- 25 mg/dl, respectively, during pregnancy, although the LDL receptor in this rabbit is genetically deficient. When Tyroxapol, which inhibits the degradation of very-low-density lipoprotein (VLDL), as well as Triton WR-1339, was injected into WHHL rabbits, the rate of the increase in serum cholesterol level in pregnant rabbits was not statistically different from that in non-pregnant rabbits. This result implied that the secretion rate of VLDL-cholesterol, the precursor of LDL-cholesterol, did not decrease during pregnancy. The amount of 125I-labeled LDL bound to LDL receptor was increased 1.8-fold in normal rabbits (from 29.3 +/- 4.3 to 52.3 +/- 4.6 ng/mg protein) and 12-fold in WHHL rabbits (from 0.5 +/- 0.2 to 6.0 +/- 0.7 ng/mg protein) during pregnancy. These results suggest that the decrease in serum cholesterol level in WHHL rabbits during pregnancy was associated with an increase in hepatic LDL receptor activity, which plays an important role in the regulation of serum cholesterol level.  相似文献   

18.
Reduction in VLDL, but not HDL, in plasma of rats deficient in choline   总被引:2,自引:0,他引:2  
We have analyzed plasma lipoprotein levels in young male rats fed a choline-deficient diet for 3 days. We confirmed previous studies that choline deficiency promotes 6.5-fold accumulation of triacyglycerol in the liver (23.9 +/- 6.0 versus 3.69 +/- 0.92 mumol/g liver) and reduction of triacylglycerol concentration in plasma by 60% (0.17 +/- 0.04 versus 0.46 +/- 0.10 mumol/mL plasma). Agarose gel electrophoresis showed that the plasma very low density lipoprotein (VLDL) levels were reduced in choline-deficient rats, but the concentration of plasma high density lipoproteins (HDL) was not affected. Sodium dodecyl sulfate - polyacrylamide gel electrophoresis of fractionated plasma lipoproteins revealed that the concentrations of apolipoproteins (apo) BH, BL, and E in VLDL from choline-deficient rats were 37.1, 11.0, and 37.2% of normal levels, respectively. In contrast, the amount of apo A-I, the major one in HDL, was almost unchanged. Correspondingly, there were decreased lipid (mainly phosphatidylcholine and triacylglycerol) levels in VLDL from choline-deficient rats, but no change in the levels of phosphatidylcholine, cholesterol, and cholesterol ester in HDL. There were similar levels of apo B and E (components of VLDL) in homogenates of livers from normal and choline-deficient rats, as determined by immunoblotting. These results support the hypothesis that choline deficiency causes reduction of VLDL, but not HDL, levels in plasma as a consequence of impaired hepatic VLDL secretion.  相似文献   

19.
Diabetes mellitus is associated with hyperlipidemia and increased risk of atherosclerosis. A diabetic animal model has been developed to study the effect of treatment with pravastatin, a potent HMG CoA reductase inhibitor, on plasma lipoprotein levels. Hypercholesterolemia was induced in alloxan diabetic and control rabbits by feeding a diet containing 25% casein and 10% hydrogenated coconut oil for 8 weeks. Feeding the casein-coconut oil diet to the diabetic group resulted in a 5-fold increase in serum cholesterol levels, which was not statistically different from the nondiabetic group fed this diet. However, in the diabetic group, there was more cholesterol in the VLDL fraction and less in LDL as compared to the nondiabetic group. Serum triacylglycerol levels in the diabetic rabbits were variable and ranged from 58-943 mg/dl. The diabetic and nondiabetic animals were then treated with pravastatin at a dose of 10 mg/kg per day for 21 days. In the nondiabetic group, pravastatin treatment significantly lowered serum and LDL cholesterol concentrations by 28.5% (52.3 mg/dl, P less than 0.05) and 36.2% (40.7 mg/dl, P less than 0.05) respectively, relative to the placebo group. Serum and VLDL triacylglycerol levels in the nondiabetic group were also significantly decreased following pravastatin treatment. In the diabetic group, serum and LDL cholesterol levels were decreased by 37.0% (69.1 mg/dl, P less than 0.05) and 52.7% (32.1 mg/dl, P less than 0.01), respectively, relative to the diabetics given the placebo. Pravastatin treatment did not adversely affect serum glucose levels. Thus, pravastatin treatment was effective in controlling the hypercholesterolemia present in these diabetic animals.  相似文献   

20.
Five lines of transgenic mice, which had integrated the human apolipoprotein (apo) A-I gene and various amounts of flanking sequences, were established. Normally, apoA-I is expressed mainly in liver and intestine, but all of the transgenic lines only expressed apoA-I mRNA in liver, strongly suggesting that 256 base pairs of 5'-flanking sequence was sufficient for liver apoA-I gene expression but that 5.5 kilobase pairs was not sufficient for intestinal expression. Mean plasma levels of human apoA-I varied in different lines from approximately 0.1 to 200% of normal mouse levels. This was not dependent on the amount of flanking sequence. Lipoprotein levels were studied in detail in one of the lines with a significantly increased apoA-I pool size. In one study, the total plasma apoA-I level (mouse plus human) was 381 +/- 43 mg/dl in six animals from this line, compared to 153 +/- 17 mg/dl in matched controls. Total and high density lipoprotein cholesterol (HDL-C) levels were increased 60% in transgenic animals, compared to controls (total cholesterol: 125 +/- 12 versus 78 +/- 13 mg/dl, p = 0.0001; HDL-C 90 +/- 7 versus 55 +/- 11 mg/dl, p = 0.0001). The molar ratio of HDL-C/apoA-I was significantly lower in transgenic animals, 17 +/- 1 versus 25 +/- 2 (p = 0.0001), suggesting the increase was in smaller HDL particles. This was confirmed by native gradient gel electrophoresis. This was not due to aberrant metabolism of human apoA-I in the mouse, since human apoA-I was distributed throughout the HDL particle size range and was catabolized at the same rate as mouse apoA-I. In another study of 23 transgenic mice, HDL-C and human apoA-I levels were highly correlated (r = 0.87, p less than 0.001). The slope of the correlation line also indicated the additional HDL particles were in the smaller size range. We conclude that human apoA-I can be incorporated into mouse HDL, and excessive amounts increase HDL-C levels primarily by increasing smaller HDL particles, comparable to human HDL3 (HDL-C/apoA-I molar ratio = 18).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号