首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rho termination factor is an essential hexameric helicase responsible for terminating 20-50% of all mRNA synthesis in Escherichia coli. We used single-molecule force spectroscopy to investigate Rho-RNA binding interactions at the Rho utilization site of the λtR1 terminator. Our results are consistent with Rho complexes adopting two states: one that binds 57 ± 2 nt of RNA across all six of the Rho primary binding sites, and another that binds 85 ± 2 nt at the six primary sites plus a single secondary site situated at the center of the hexamer. The single-molecule data serve to establish that Rho translocates 5′ → 3′ toward RNA polymerase (RNAP) by a tethered-tracking mechanism, looping out the intervening RNA between the Rho utilization site and RNAP. These findings lead to a general model for Rho binding and translocation and establish a novel experimental approach that should facilitate additional single-molecule studies of RNA-binding proteins.  相似文献   

2.
3.
4.
  1. Download : Download high-res image (376KB)
  2. Download : Download full-size image
  相似文献   

5.
6.
7.
8.
9.
10.
The repair of double-stranded DNA breaks by homologous recombination is essential for maintaining genome integrity. Much of what we know about this DNA repair pathway in eukaryotes has been gleaned from genetics, in vivo experiments with GFP-tagged proteins and traditional biochemical experiments with purified proteins. However, many questions have remained inaccessible to these experimental approaches. Recent technological advances have made it possible to directly visualize the behaviors of individual DNA and protein molecules in vitro, and it is now becoming feasible to apply these technology-driven approaches to complex biochemical systems, such as those involved in the repair of damaged DNA. This report summarizes the use of total internal reflection fluorescence microscopy to probe fundamental aspects of protein-DNA interactions at the single-molecule level, and specific emphasis is placed on our efforts to develop new methods and techniques for studying DNA repair. Using these new approaches we are investigating the DNA-binding behavior of human Rad51 and we have recently demonstrated that this protein can slide on dsDNA via a one-dimensional random walk mechanism driven solely by thermal fluctuations of the surrounding solvent. Here, we highlight some possible implications of this recent finding, and we also briefly discuss the potential benefits of future single-molecule studies in the study of protein-DNA interactions and DNA repair.  相似文献   

11.
12.
The study of chromatin, once thought to be a purely structural matrix serving to compact the DNA of the genome into the nucleus, is of increasing value for our understanding of how DNA functions in the cell. This article provides two basic procedures for the study of chromatinin vivo.The first is a DNase I-based method for the treatment of isolated nuclei to resolve the chromatin structure of a particular region; the second employs dimethyl sulfate footprinting of whole cellsin vivoto determine the binding of factors tociselements in the locus of interest. Specific examples illustrating the techniques described are given from our work on the regulation of the yeastPHO8gene, but have also been successfully and reliably applied to the study of many other yeast loci. These procedures make it possible to correlate the binding of atransactivator with an altered or perturbed chromatin organization at a specific locus.  相似文献   

13.
14.
转录因子结合位点的计算预测是研究基因转录调控的重要环节,但现有算法的预测特异性偏低.在深入分析转录因子结合位点生物特征的基础上,对当前基于保守模体和基于比较基因组学的两类计算预测方法进行了综述,指出了方法各自的优点和不足,并探讨了可能的改进方向.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号