首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
The native, denatured and renatured states of deoxyribonucleic acid   总被引:38,自引:0,他引:38  
  相似文献   

5.
6.
An efficient method for the immobilization of DNA on Sephadex G200 in the presence of water soluble carboiimide is described and investigated in this paper. An increase in the extent of binding was observed when the incubation temperature of the DNA-Sephadex mixture was changed. It was found that native DNA immobilized to Sephadex with higher efficiency than denatured DNA. However, the stability of native DNA-Sephadex complex was about the same as that of denatured DNA-Sephadex. The size of DNA released by DNA-Sephadex after incubation of a suspension of the complex was the same as that of the DNA used for immobilization. The binding mechanism of DNA to Sephadex is discussed.  相似文献   

7.
Protein folding starts from the elusive form of the denatured state that is present under conditions that favour the native state. We have studied the denatured state of Engrailed Homeodomain (En-HD) under mildly and strongly denaturing conditions at the level of individual residues by NMR and more globally by conventional spectroscopy and solution X-ray scattering. We have compared these states with a destabilized mutant, L16A, which is predominantly denatured under conditions where the wild-type is native. This engineered denatured state, which could be directly studied under native conditions, was in genuine equilibrium with the native state, which could be observably populated by changing the conditions or introducing a stabilizing mutation. The denatured state had extensive native secondary structure and was significantly compact and globular. But, the side-chains and backbone were highly mobile. Non-cooperative melting of the residual structure on the denatured state of En-HD was observed, both at the residue and the molecular level, with increasingly denaturing conditions. The absence of a co-operative transition could result from the denatured state ensemble progressing through a series of intermediates or from a more general slide (second-order transition) from the compact form under native conditions to the more extended at highly denaturing conditions. In either case, the starting point for folding under native conditions is highly structured and already poised to adopt the native structure.  相似文献   

8.
9.
The denatured state of several proteins has been shown to display transient structures that are relevant for folding, stability, and aggregation. To detect them by nuclear magnetic resonance (NMR) spectroscopy, the denatured state must be stabilized by chemical agents or changes in temperature. This makes the environment different from that experienced in biologically relevant processes. Using high-resolution heteronuclear NMR spectroscopy, we have characterized several denatured states of a monomeric variant of HIV-1 protease, which is natively structured in water, induced by different concentrations of urea, guanidinium chloride, and acetic acid. We have extrapolated the chemical shifts and the relaxation parameters to the denaturant-free denatured state at native conditions, showing that they converge to the same values. Subsequently, we characterized the conformational properties of this biologically relevant denatured state under native conditions by advanced molecular dynamics simulations and validated the results by comparison to experimental data. We show that the denatured state of HIV-1 protease under native conditions displays rich patterns of transient native and non-native structures, which could be of relevance to its guidance through a complex folding process.  相似文献   

10.
11.
12.
Raman scattering of native and thermally denatured lysozyme   总被引:2,自引:0,他引:2  
  相似文献   

13.
14.
Paramagnetic relaxation enhancement measurements in the denatured state of ACBP have provided distance restraints that have been used in computer simulations to determine the conformational ensembles representing the denatured states of ACBP under a variety of conditions. A detailed comparison of the residual structure in the denatured state of ACBP under these different conditions has enabled us to infer that regions in the N and C-terminal parts of the protein sequence have a high tendency to interact in the unfolded state under physiological conditions. By comparing the structural features in the denatured states with those in the transition state for folding we also provided new insights into the mechanism of formation of the native state of this protein.  相似文献   

15.
16.
Because interactions between cisplatin and plasma proteins contribute to drug efficacy and side effects, it is important to understand both the binding sites of cisplatin on the proteins and the formation of protein–cisplatin adducts. Previous results suggest that cisplatin preferentially binds to residues on the protein surface. The present work employed electrospray ionization mass spectrometry (MS) to identify such sites on both native and denatured ubiquitin (Ub). Fourier transform (FT) MS and tandem MS (MS/MS and MS3) enable analysis of Ub–cisplatin adduct digests to locate specific cisplatin binding sites. Results indicate that there are three such binding sites, i.e., M1, T12 and T14, and D32, on native Ub. The intensity of the relevant peaks in the FT-MS spectrum of the native Ub adduct digest demonstrates that residues T12 and T14 comprise the primary cisplatin binding site under the native conditions rather than residue M1 as reported in previous research studies. It is found in the present work, however, that M1 is the primary binding site on denatured Ub. Comparison of cisplatin binding sites on native and denatured Ub in this research demonstrates that the conformation of a protein significantly influences the preference of cisplatin for specific binding sites.  相似文献   

17.
The fluorescence decay kinetics at different ranges of the emission spectrum is reported for 17 proteins. Out of eight proteins containing a single tryptophan residue per molecule, seven proteins display multiexponential decay kinetics, suggesting that variability in protein structure may exist for most proteins. Tryptophan residues whose fluorescence spectrum is red shifted may have lifetimes longer than 7 ns. Such long lifetimes have not been detected in any of the denatured proteins studied, indicating that in native proteins the tryptophans having a red-shifted spectrum are affected by the tertiary structure of the protein. The fluorescence decay kinetics of ten denatured proteins studied obey multiexponential decay functions. It is therefore concluded that the tryptophan residues in denatured proteins can be grouped in two classes. The first characterized by a relatively long lifetime of about 4 ns and the second has a short lifetime of about 1.5 ns. The emission spectrum of the group which is characterized by the longer lifetime is red shifted relative to the emission spectrum of the group characterized by the shorter lifetime. A comparison of the decay data with the quantum yield of the proteins raises the possibility that a subgroup of the tryptophan residues is fully quenched. It is noteworthy that despite this heterogeneity in the environment of tryptophan residues in each denatured protein, almost the same decay kinetics has been obtained for all the denatured proteins studied in spite of the vastly different primary structures. It is therefore concluded that each tryptophan residue interacts in a more-or-less random manner with other groups on the polypeptide chain, and that on the average the different tryptophan residues in denatured proteins have a similar type of environment.  相似文献   

18.
The kinetics of thermally induced aggregation of the glycoprotein Peniophora lycii phytase (Phy) and a deglycosylated form (dgPhy) was studied by dynamic (DLS) and static (SLS) light scattering. This provided a detailed insight into the time course of the formation of small aggregates ( approximately 10-100 molecules) of the enzyme. The thermodynamic stability of the two forms was also investigated using scanning calorimetry (DSC). It was found that the glycans strongly promoted kinetic stability (i.e., reduced the rate of irreversible denaturation) while leaving the equilibrium denaturation temperature, T(d), defined by DSC, largely unaltered. At pH 4.5-5.0, for example, dgPhy aggregated approximately 200 times faster than Phy, even though the difference in T(d) was only 1-3 degrees C. To elucidate the mechanism by which the glycans promote kinetic stability, we measured the effect of ionic strength and temperature on the aggregation rate. Also, the second virial coefficients (B(22)) for the two forms were measured by SLS. These results showed that the aggregation rate of Phy scaled with the concentration of thermally denatured protein. This suggested first-order kinetics with respect to the concentration of the thermally denatured state. A similar but less pronounced correlation was found for dgPhy, and it was suggested that while the aggregation process for the deglycosylated form is dominated by denatured protein, it also involves a smaller contribution from associating molecules in the native state. The measurements of B(22) revealed that dgPhy had slightly higher values than Phy. This suggests that dgPhy interacts more favorably with the buffer than Phy and hence rules out strong hydration of the glycans as the origin of their effect on the kinetic stability. On the basis of this and the effects of pH and ionic strength, we suggest that the inhibition of aggregation is more likely to depend on steric hindrance of the glycans in the aggregated form of the protein.  相似文献   

19.
20.
The binding of pancreatic ribonuclease-A by denatured DNA, native DNA, poly-dA, and poly-dT, has been studied by a gel filtration method. With denatured DNA at pH 7.5, ionic strength 0.053M, there is one binding site per 12 nucleotides and the equilibrium binding constant per site is 9.7 × 104 l./mole. The binding constant increases by a factor of 8 as the pH is decreased from 8 to 7. The strength of the binding of denatured DNA increases with decreasing ionic strength. At pH 7.5, native DNA binds about ? as strongly as does denatured DNA. The binding affinity increases in the order poly-dA, denatured DNA, and poly-dT. These results support the view that the binding of denatured DNA involves both electrostatic interactions between the negatively charged polynucleotide and the positively charged protein, and an interaction of the protein with a pyrimidine residue of the denatured DNA, and thus that the binding is basically similar to that between RNAse and its substrate RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号