首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Molecular dynamics (MD) simulations were carried out to study the conformational rearrangement induced by deprotonation of the fluorescent chromophore in GFP, as well as the associated changes in the hydrogen-bonding network. For both the structures with either a neutral or an anionic chromophore, it was found that the beta-barrel was stable and rigid, and the conformation of the chromophore was consistent with the available x-ray structure. The conformational change in Thr203 due to deprotonation was also found to be consistent with the three-state isomerization model. Although GFP is highly fluorescent, denatured-GFP is nonfluorescent, indicating that the environment of the protein plays an important role in its fluorescence behavior. Our MD simulations, which explore the effect of the protein shell on the conformation of the chromophore, find the flexibility of the central chromophore to be significantly restricted due to the rigid nature of the protein shell. The hydrogen-bonding between the chromophore and neighboring residues was also shown to contribute to the chromophore rigidity. In addition to the MD studies, quantum mechanics/molecular mechanics (QM/MM) ONIOM calculations were carried out to investigate the effect of the beta-barrel on the internal rotation in the chromophore. Along with providing quantitative values for torsional rotation barriers about the bridging bond in the chromophore, the ONIOM calculations also validate our MD force field parameters.  相似文献   

3.
Molecular dynamics (MD) simulations and hybrid quantum mechanical/molecular mechanical (QM/MM) calculations have been performed to explore the dynamic behaviors of cytochrome P450 2A6 (CYP2A6) binding with nicotine analogs (that are typical inhibitors) and to calculate their binding free energies in combination with Poisson–Boltzmann surface area (PBSA) calculations. The combined MD simulations and QM/MM-PBSA calculations reveal that the most important structural parameters affecting the CYP2A6-inhibitor binding affinity are two crucial internuclear distances, that is, the distance between the heme iron atom of CYP2A6 and the coordinating atom of the inhibitor, and the hydrogen-bonding distance between the N297 side chain of CYP2A6 and the pyridine nitrogen of the inhibitor. The combined MD simulations and QM/MM-PBSA calculations have led to dynamic CYP2A6-inhibitor binding structures that are consistent with the observed dynamic behaviors and structural features of CYP2A6-inhibitor binding, and led to the binding free energies that are in good agreement with the experimentally-derived binding free energies. The agreement between the calculated binding free energies and the experimentally-derived binding free energies suggests that the combined MD and QM/MM-PBSA approach may be used as a valuable tool to accurately predict the CYP2A6-inhibitor binding affinities in future computational design of new, potent and selective CYP2A6 inhibitors.  相似文献   

4.
The quantum mechanical–molecular mechanical (QM/MM) theory was applied to calculate accurate structural parameters, vibrational and optical spectra of bathorhodopsin (BATHO), one of the primary photoproducts of the functional cycle of the visual pigment rhodopsin (RHO), and to characterize reaction routes from RHO to BATHO. The recently resolved crystal structure of BATHO (PDBID: 2G87) served as an initial source of coordinates of heavy atoms. Protein structures in the ground electronic state and vibrational frequencies were determined by using the density functional theory in the PBE0/cc‐pVDZ approximation for the QM part and the AMBER force field parameters in the MM part. Calculated and assigned vibrational spectra of both model protein systems, BATHO and RHO, cover three main regions referring to the hydrogen‐out‐of‐plan (HOOP) motion, the C?C ethylenic stretches, and the C? C single‐bond stretches. The S0–S1 electronic excitation energies of the QM part, including the chromophore group in the field of the protein matrix, were estimated by using the advanced quantum chemistry methods. The computed structural parameters as well as the spectral bands match perfectly the experimental findings. A structure of the transition state on the S0 potential energy surface for the ground electronic state rearrangement from RHO to BATHO was located proving a possible route of the thermal protein activation to the primary photoproduct. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Op't Holt BT  Merz KM 《Biochemistry》2007,46(30):8816-8826
The human antioxidant protein, HAH1, is an important participant in a Cu(I) transport chain, delivering one Cu(I) ion to the Wilson's (WND) or Menkes disease protein (MNK). Full geometry optimizations and second-derivative calculations were performed on several binding site models using the B3LYP functional to derive parameters for the construction of a novel molecular mechanical (MM) force field for Cu(I) and its ligating residues in HAH1. MM minimization and molecular dynamics (MD) calculations were then performed using the AMBER suite to validate the newly generated force field. The X-ray crystal structure of the protein and the geometry of the Cu(I) binding site within the protein were reproduced by the MD simulations on the protein based on rmsd and visual inspection, validating the new force field parameters. The results from the quantum mechanical (QM) and MD simulations suggest that either a two- or three-coordinate exchange reaction is preferred and that it is unlikely that a four-coordinate Cu(I) species plays a role in copper exchange.  相似文献   

6.
7.
Early intermediates of bacteriorhodopsin's photocycle were modeled by means of ab initio quantum mechanical/molecular mechanical and molecular dynamics simulations. The photoisomerization of the retinal chromophore and the formation of photoproducts corresponding to the early intermediates were simulated by molecular dynamics simulations. By means of the quantum mechanical/molecular mechanical method, the resulting structures were refined and the respective excitation energies were calculated. Two sequential intermediates were found with absorption maxima that exhibit red shifts from the resting state. The intermediates were therefore assigned to the K and KL states. In K, the conformation of the retinal chromophore is strongly deformed, and the N--H bond of the Schiff base points almost perpendicular to the membrane normal toward Asp-212. The strongly deformed conformation of the chromophore and weakened interaction of the Schiff base with the surrounding polar groups are the means by which the absorbed energy is stored. During the K-to-KL transition, the chromophore undergoes further conformational changes that result in the formation of a hydrogen bond between the N--H group of the Schiff base and Thr-89 as well as other rearrangements of the hydrogen-bond network in the vicinity of the Schiff base, which are suggested to play a key role in the proton transfer process in the later phase of the photocycle.  相似文献   

8.
The crystal structure of sensory rhodopsin II from Natronobacterium pharaonis was recently solved at 2.1 A resolution from lipidic cubic phase-grown crystals. A critical analysis of previous structure-function studies is possible within the framework of the high-resolution structure of this photoreceptor. Based on the structure, a molecular understanding emerges of the efficiency and selectivity of the photoisomerization reaction, of the interaction of the sensory receptor and its cognate transducer protein HtrII, and of the mechanism of spectral tuning in photoreceptors. The architecture of the retinal binding pocket is compact, representing a major determinant for the selective binding of the chromophore, all-trans retinal to the apoprotein, opsin. Several chromophore-protein interactions revealed by the structure were not predicted by previous mutagenesis and spectroscopic analyses. The structure suggests likely mechanisms by which photoisomerization triggers the activation of sensory rhodopsin II, and highlights the possibility of a unified mechanism of signaling mediated by sensory receptors, including visual rhodopsins. Future investigations using time-resolved crystallography, structural dynamics, and computational studies will provide the basis to unveil the molecular mechanisms of sensory receptors-mediated transmembrane signaling.  相似文献   

9.
Residue motions of the distal heme pocket and bound CO ligand of carbonmonoxy Myoglobin are studied using a combination of molecular dynamics simulations and quantum chemical methods. Using mixed quantum mechanics/molecular mechanics calculations together with sampling from molecular dynamics simulations (QM/MM(MD)), the experimentally observed spectroscopic A0 and A1 substates of the bound CO ligand are assigned to the open and closed conformation of His64 and the Hisɛ64 tautomer, respectively. Several previously proposed origins of the A3 substate, including rotamers of the doubly protonated His64H+ side chain, His64H+ inside the distal pocket, and cooperative motions with Arg45, are investigated with QM/MM(MD). However, the signatures of the calculated infrared spectra do not agree with the experimentally observed ones. For additional insight on this, extensive molecular dynamics simulations are used together with improved electrostatics for the bound ligand. A CO fluctuating charge model is developed to describe the ab initio dipole and quadrupole moments of the bound ligand. CO absorption spectra are then obtained directly from the dynamics simulations. Finally, the electrostatics of the heme pocket is examined in detail in an attempt to determine the structural origins of the observed spectroscopic A-states from MD simulations. However, contrary to related simulations for unbound CO in myoglobin, the shifts and splittings for carbonmonoxy Myoglobin are generally small and difficult to relate to structural change. This suggests that coupling of the CO motion to other degrees of freedom, such as the Fe-CO stretching and bending, is important to correctly describe the dynamics of bound CO in myoglobin.  相似文献   

10.
This article reviews the primary reaction processes in rhodopsin, a photoreceptive pigment for twilight vision. Rhodopsin has an 11-cis retinal as the chromophore, which binds covalently with a lysine residue through a protonated Schiff base linkage. Absorption of a photon by rhodopsin initiates the primary photochemical reaction in the chromophore. Picosecond time-resolved spectroscopy of 11-cis locked rhodopsin analogs revealed that the cis-trans isomerization of the chromophore is the primary reaction in rhodopsin. Then, generation of femtosecond laser pulses in the 1990s made it possible to follow the process of isomerization in real time. Formation of photorhodopsin within 200 fsec was observed by a transient absorption (pump–probe) experiment, which also revealed that the photoisomerization in rhodopsin is a vibrationally coherent process. Femtosecond fluorescence spectroscopy directly captured excited-state dynamics of rhodopsin, so that both coherent reaction process and unreacted excited state were observed. Faster photoreaction of the chromophore in rhodopsin than that in solution implies that the protein environment facilitates the efficient isomerization process. Such contributions of the protein residues have been monitored by infrared spectroscopy of rhodopsin, bathorhodopsin, and isorhodopsin (9-cis rhodopsin) at low temperatures. The crystal structure of bovine rhodopsin recently reported will lead to better understanding of the mechanism in future.  相似文献   

11.
Human immunodeficiency virus (HIV)-1 integrase (IN) is an attractive target for development of acquired immunodeficiency syndrome chemotherapy. In this study, conventional and coupled quantum mechanical and molecular mechanical (QM/MM) molecular dynamics (MD) simulations of HIV-1 IN complexed with 5CITEP (IN-5CITEP) were carried out. In addition to differences in the bound position of 5CITEP, significant differences at the two levels of theory were observed in the metal coordination geometry and the areas involving residues 116-119 and 140-166. In the conventional MD simulation, the coordination of Mg(2+) was found to be a near-perfect octahedral geometry whereas a distorted octahedral complex was observed in QM/MM. All of the above reasons lead to a different pattern of protein-ligand salt link formation that was not observed in the classical MD simulation. Furthermore to provide a theoretical understanding of inhibition mechanisms of 5CITEP and its derivative (DKA), hybrid QM/MM MD simulations of the two complexes (IN-5CITEP and IN-DKA) have been performed. The results reveal that areas involving residues 60-68, 116-119, and 140-149 were substantially different among the two systems. The two systems show similar pattern of metal coordination geometry, i.e., a distorted octahedron. In IN-DKA, both OD1 and OD2 of Asp-64 coordinate the Mg(2+) in a monodentate fashion whereas only OD1 is chelated to the metal as observed in IN-5CITEP. The high potency of DKA as compared to 5CITEP is supported by a strong salt link formed between its carboxylate moiety and the ammonium group of Lys-159. Detailed comparisons between HIV-1 IN complexed with DKA and with 5CITEP provide information about ligand structure effects on protein-ligand interactions in particular with the Lys-159. This is useful for the design of new selective HIV-1 IN inhibitors.  相似文献   

12.
The crystal structure of sensory rhodopsin II from Natronobacterium pharaonis was recently solved at 2.1 Å resolution from lipidic cubic phase-grown crystals. A critical analysis of previous structure-function studies is possible within the framework of the high-resolution structure of this photoreceptor. Based on the structure, a molecular understanding emerges of the efficiency and selectivity of the photoisomerization reaction, of the interaction of the sensory receptor and its cognate transducer protein HtrII, and of the mechanism of spectral tuning in photoreceptors. The architecture of the retinal binding pocket is compact, representing a major determinant for the selective binding of the chromophore, all-trans retinal to the apoprotein, opsin. Several chromophore-protein interactions revealed by the structure were not predicted by previous mutagenesis and spectroscopic analyses. The structure suggests likely mechanisms by which photoisomerization triggers the activation of sensory rhodopsin II, and highlights the possibility of a unified mechanism of signaling mediated by sensory receptors, including visual rhodopsins. Future investigations using time-resolved crystallography, structural dynamics, and computational studies will provide the basis to unveil the molecular mechanisms of sensory receptors-mediated transmembrane signaling.  相似文献   

13.
We here report a combined quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) study on the binding interactions between the α(V)β(3) integrin and eight cyclic arginine-glycine-aspartate (RGD) containing peptides. The initial conformation of each peptide within the binding site of the integrin was determined by docking the ligand to the reactive site of the integrin crystal structure with the aid of docking software FRED. The subsequent QM/MM MD simulations of the complex structures show that these eight cyclic RGD-peptides have a generally similar interaction mode with the binding site of the integrin to the cyclo(RGDf-N[M]V) analog found in the crystal structure. Still, there are subtle differences in the interactions of peptide ligands with the integrin, which contribute to the different inhibition activities. The averaged QM/MM protein-ligand interaction energy (IE) is remarkably correlated to the biological activity of the ligand. The IE, as well as a three-variable model which is somewhat interpretable, thus can be used to predict the bioactivity of a new ligand quantitatively, at least within a family of analogs. The present study establishes a helpful protocol for advancing lead compounds to potent inhibitors.  相似文献   

14.
Soluble epoxide hydrolase (sEH) is an enzyme involved in drug metabolism that catalyzes the hydrolysis of epoxides to form their corresponding diols. sEH has a broad substrate range and shows high regio- and enantioselectivity for nucleophilic ring opening by Asp333. Epoxide hydrolases therefore have potential synthetic applications. We have used combined quantum mechanics/molecular mechanics (QM/MM) umbrella sampling molecular dynamics (MD) simulations (at the AM1/CHARMM22 level) and high-level ab initio (SCS-MP2) QM/MM calculations to analyze the reactions, and determinants of selectivity, for two substrates: trans-stilbene oxide (t-SO) and trans-diphenylpropene oxide (t-DPPO). The calculated free energy barriers from the QM/MM (AM1/CHARMM22) umbrella sampling MD simulations show a lower barrier for phenyl attack in t-DPPO, compared with that for benzylic attack, in agreement with experiment. Activation barriers in agreement with experimental rate constants are obtained only with the highest level of QM theory (SCS-MP2) used. Our results show that the selectivity of the ring-opening reaction is influenced by several factors, including proximity to the nucleophile, electronic stabilization of the transition state, and hydrogen bonding to two active site tyrosine residues. The protonation state of His523 during nucleophilic attack has also been investigated, and our results show that the protonated form is most consistent with experimental findings. The work presented here illustrates how determinants of selectivity can be identified from QM/MM simulations. These insights may also provide useful information for the design of novel catalysts for use in the synthesis of enantiopure compounds.  相似文献   

15.
Due to the higher computational cost relative to pure molecular mechanical (MM) simulations, hybrid quantum mechanical/molecular mechanical (QM/MM) free energy simulations particularly require a careful consideration of balancing computational cost and accuracy. Here, we review several recent developments in free energy methods most relevant to QM/MM simulations and discuss several topics motivated by these developments using simple but informative examples that involve processes in water. For chemical reactions, we highlight the value of invoking enhanced sampling technique (e.g. replica-exchange) in umbrella sampling calculations and the value of including collective environmental variables (e.g. hydration level) in metadynamics simulations; we also illustrate the sensitivity of string calculations, especially free energy along the path, to various parameters in the computation. Alchemical free energy simulations with a specific thermodynamic cycle are used to probe the effect of including the first solvation shell into the QM region when computing solvation free energies. For cases where high-level QM/MM potential functions are needed, we analyse two different approaches: the QM/MM–MFEP method of Yang and co-workers and perturbative correction to low-level QM/MM free energy results. For the examples analysed here, both approaches seem productive although care needs to be exercised when analysing the perturbative corrections.  相似文献   

16.
Modeling methods allow the identification and analysis of determinants of reactivity and specificity in enzymes. The reaction between glutathione and 1-chloro-2,4-dinitrobenzene (CDNB) is widely used as a standard activity assay for glutathione S-transferases (GSTs). It is important to understand the causes of differences between catalytic GST isoenzymes and the effects of mutations and genetic polymorphisms. Quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulations have been performed here to investigate the addition of the glutathione anion to CDNB in the wild-type M1-1 GST isoenzyme from rat and in three single point mutant (Tyr6Phe, Tyr115Phe, and Met108Ala) M1-1 GST enzymes. We have developed a specifically parameterized QM/MM method (AM1-SRP/CHARMM22) to model this reaction by fitting to experimental heats of formation and ionization potentials. Free energy profiles were obtained from molecular dynamics simulations of the reaction using umbrella sampling and weighted histogram analysis techniques. The reaction in solution has also been simulated and is compared to the enzymatic reaction. The free energies are in excellent agreement with experimental results. Overall the results of the present study show that QM/MM reaction pathway analysis provides detailed insight into the chemistry of GST and can be used to obtain mechanistic insight into the effects of specific mutations on this catalytic process.  相似文献   

17.
The direct reaction field (DRF) approach has proven to be a useful tool to investigate the influence of solvents on the quantum/classical behaviour of solute molecules. In this paper, we report the latest extension of this DRF approach, which consists of the gradient of the completely classical energy expressions of this otherwise QM/MM method. They can be used in (completely classical) molecular dynamics (MD) simulations and geometry optimizations, that can be followed by a number of single point QM/MM calculations on configurations obtained in these simulations/optimizations. We report all energy and gradient expressions, and results for a number of interesting (model) systems. They include geometry optimization of the benzene dimer as well as MD simulations of some solvents. The most stable configuration for the benzene dimer is shown to be the parallel-displaced form, which is slightly more stable (0.3 kcal/mol) than the T-shaped dimer.  相似文献   

18.
1. The nature of the chromophoric group of the ultraviolet visual pigment of the neuropteran Ascalaphus macaronius Scop. was investigated. Analysis of the carotenoid content of the retina by the reaction with SbCl3 indicated the presence of retinal.

2. Thin-layer chromatography of ethanol-ether extracts from retinae on silica gel demonstrated the presence of retinal isomers with RF values corresponding to all-trans-retinal and II-cis- and/or 13-cis-retinal. Other retinal isomers and retinol were not detected.

3. Thermal denaturation released retinal from the ultraviolet visual pigment A and its photoproduct B. Analysis of the compounds resulting from thermal denaturation indicated that all-trans-retinal was predominately released. Formation of cattle rhodopsin from cattle opsin and ultraviolet visual pigment A denatured by Ag+ indicated that the stereoconfiguration of retinal in the native pigment is II-cis.

4. As a consequence of the retinal nature of the chromophore, the ultraviolet visual pigment of A. macaronius was designated “rhodopsin 345”, and photoproducts B and C correspond to acid and alkaline metarhodopsin, respectively. The stereoconfiguration of retinal in rhodopsin 345 and metarhodopsin, as well as the linkage of the chromophore in respect of the hypsochromic shift of rhodopsin 345, were discussed.  相似文献   


19.
Wong KY  Gao J 《Biochemistry》2007,46(46):13352-13369
Molecular dynamics simulations employing combined quantum mechanical and molecular mechanical (QM/MM) potentials have been carried out to investigate the reaction mechanism of the hydrolysis of paraoxon by phosphotriesterase (PTE). We used a dual-level QM/MM approach that synthesizes accurate results from high-level electronic structure calculations with computational efficiency of semiempirical QM/MM potentials for free energy simulations. In particular, the intrinsic (gas-phase) energies of the active site in the QM region are determined by using density functional theory (B3LYP) and second-order M?ller-Plesset perturbation theory (MP2) and the molecular dynamics free energy simulations are performed by using the mixed AM1:CHARMM potential. The simulation results suggest a revised mechanism for the phosphotriester hydrolysis mechanism by PTE. The reaction free energy profile is mirrored by structural motions of the binuclear metal center in the active site. The two zinc ions occupy a compact conformation with an average zinc-zinc distance of 3.5 +/- 0.1 A in the Michaelis complex, whereas it is elongated to 5.3 +/- 0.3 A at the transition state and product state. The substrate is loosely bound to the more exposed zinc ion (Znbeta2+) at an average distance of 3.8 A +/- 0.3 A. The P=O bond of the substrate paraoxon is activated by adopting a tight coordination to the Znbeta2+, releasing the coordinate to the bridging hydroxide ion and increasing its nucleophilicity. It was also found that a water molecule enters into the binding pocket of the loosely bound binuclear center, originally occupied by the nucleophilic hydroxide ion. We suggest that the proton of this water molecule is taken up by His254 at low pH or released to the solvent at high pH, resulting in a hydroxide ion that pulls the Znbeta2+ ion closer to form the compact configuration and restores the resting state of the enzyme.  相似文献   

20.
Xiong Y  Lu HT  Li Y  Yang GF  Zhan CG 《Biophysical journal》2006,91(5):1858-1867
Cyclic nucleotide phosphodiesterases (PDEs) constitute a large superfamily of enzymes regulating concentrations of intracellular second messengers cAMP and cGMP through PDE-catalyzed hydrolysis. Although three-dimensional x-ray crystal structures of PDE4 and PDE5 have been reported, it is uncertain whether a critical, second bridging ligand (BL2) in the active site is H2O or HO- because hydrogen atoms cannot be determined by x-ray diffraction. The identity of BL2 is theoretically determined by performing molecular dynamics simulations and hybrid quantum mechanical/molecular mechanical (QM/MM) calculations, for the first time, on the protein structures resolved by x-ray diffraction. The computational results confirm our previous suggestion, which was based on QM calculations on a simplified active site model, that BL2 in PDE4 should be HO-, rather than H2O, serving as the nucleophile to initialize the catalytic hydrolysis of cAMP. The molecular dynamics simulations and QM/MM calculations on PDE5 demonstrate for the first time that the BL2 in PDE5 should also be HO- rather than H2O as proposed in recently published reports on the x-ray crystal structures, which serves as the nucleophile to initialize the PDE5-catalyzed hydrolysis of cGMP. These fundamental structural insights provide a rational basis for future structure-based drug design targeting PDEs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号