首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A voltage sensitive phosphatase was discovered in the ascidian Ciona intestinalis. The phosphatase, Ci-VSP, contains a voltage-sensing domain homologous to those known from voltage-gated ion channels, but unlike ion channels, the voltage-sensing domain of Ci-VSP can reside in the cell membrane as a monomer. We fused the voltage-sensing domain of Ci-VSP to a pair of fluorescent reporter proteins to generate a genetically encodable voltage-sensing fluorescent probe, VSFP2.3. VSFP2.3 is a fluorescent voltage probe that reports changes in membrane potential as a FRET (fluorescence resonance energy transfer) signal. Here we report sensing current measurements from VSFP2.3, and show that VSFP2.3 carries 1.2 e sensing charges, which are displaced within 1.5 ms. The sensing currents become faster at higher temperatures, and the voltage dependence of the decay time constants is temperature dependent. Neutralization of an arginine in S4, previously suggested to be a sensing charge, and measuring associated sensing currents indicate that this charge is likely to reside at the membrane-aqueous interface rather than within the membrane electric field. The data presented give us insights into the voltage-sensing mechanism of Ci-VSP, which will allow us to further improve the sensitivity and kinetics of the family of VSFP proteins.  相似文献   

2.
Ci-VSP contains a voltage-sensing domain (VSD) homologous to that of voltage-gated potassium channels. Using charge displacement ('gating' current) measurements we show that voltage-sensing movements of this VSD can occur within 1 ms in mammalian membranes. Our analysis lead to development of a genetically encodable fluorescent protein voltage sensor (VSFP) in which the fast, voltage-dependent conformational changes of the Ci-VSP voltage sensor are transduced to similarly fast fluorescence read-outs.  相似文献   

3.
The ascidian voltage-sensing phosphatase (Ci-VSP) consists of the voltage sensor domain (VSD) and a cytoplasmic phosphatase region that has significant homology to the phosphatase and tensin homolog deleted on chromosome TEN (PTEN).The phosphatase activity of Ci-VSP is modified by the conformational change of the VSD. In many proteins, two protein modules are bidirectionally coupled, but it is unknown whether the phosphatase domain could affect the movement of the VSD in VSP. We addressed this issue by whole-cell patch recording of gating currents from a teleost VSP (Dr-VSP) cloned from Danio rerio expressed in tsA201 cells. Replacement of a critical cysteine residue, in the phosphatase active center of Dr-VSP, by serine sharpened both ON- and OFF-gating currents. Similar changes were produced by treatment with phosphatase inhibitors, pervanadate and orthovanadate, that constitutively bind to cysteine in the active catalytic center of phosphatases. The distinct kinetics of gating currents dependent on enzyme activity were not because of altered phosphatidylinositol 4,5-bisphosphate levels, because the kinetics of gating current did not change by depletion of phosphatidylinositol 4,5-bisphosphate, as reported by coexpressed KCNQ2/3 channels. These results indicate that the movement of the VSD is influenced by the enzymatic state of the cytoplasmic domain, providing an important clue for understanding mechanisms of coupling between the VSD and its effector.  相似文献   

4.
The Ciona intestinalis voltage-sensitive phosphatase (Ci-VSP) represents the first discovered member of enzymes regulated by a voltage-sensor domain (VSD) related to the VSD found in voltage-gated ion channels. Although the VSD operation in Ci-VSP exhibits original voltage dependence and kinetics compared to ion channels, it has been poorly investigated. Here, we show that the kinetics and voltage dependence of VSD movement in Ci-VSP can be tuned over 2 orders of magnitude and shifted over 120 mV, respectively, by the size of a conserved isoleucine (I126) in the S1 segment, thus indicating the importance of this residue in Ci-VSP activation. Mutations of the conserved Phe in the S2 segment (F161) do not significantly perturb the voltage dependence of the VSD movement, suggesting a unique voltage sensing mechanism in Ci-VSP.  相似文献   

5.
Voltage control over enzymatic activity in voltage-sensitive phosphatases (VSPs) is conferred by a voltage-sensing domain (VSD) located in the N terminus. These VSDs are constituted by four putative transmembrane segments (S1 to S4) resembling those found in voltage-gated ion channels. The putative fourth segment (S4) of the VSD contains positive residues that likely function as voltage-sensing elements. To study in detail how these residues sense the plasma membrane potential, we have focused on five arginines in the S4 segment of the Ciona intestinalis VSP (Ci-VSP). After implementing a histidine scan, here we show that four arginine-to-histidine mutants, namely R223H to R232H, mediate voltage-dependent proton translocation across the membrane, indicating that these residues transit through the hydrophobic core of Ci-VSP as a function of the membrane potential. These observations indicate that the charges carried by these residues are sensing charges. Furthermore, our results also show that the electrical field in VSPs is focused in a narrow hydrophobic region that separates the extracellular and intracellular space and constitutes the energy barrier for charge crossing.  相似文献   

6.
Genetically-encoded optical probes for membrane potential hold the promise of monitoring electrical signaling of electrically active cells such as specific neuronal populations in intact brain tissue. The most advanced class of these probes was generated by molecular fusion of the voltage sensing domain (VSD) of Ci-VSP with a fluorescent protein (FP) pair. We quantitatively compared the three most advanced versions of these probes (two previously reported and one new variant), each involving a spectrally distinct tandem of FPs. Despite these different FP tandems and dissimilarities within the amino acid sequence linking the VSD to the FPs, the amplitude and kinetics of voltage dependent fluorescence changes were surprisingly similar. However, each of these fluorescent probes has specific merits when considering different potential applications.  相似文献   

7.
In the voltage-sensitive phosphatase Ci-VSP, conformational changes in the transmembrane voltage sensor domain (VSD) are transduced to the intracellular catalytic domain (CD) leading to its dephosphorylation activity against membrane-embedded phosphoinositides. The linker between both domains is proposed to be crucial for the VSD-CD coupling. With a combined approach of electrophysiological measurements on Xenopus oocytes and molecular dynamics simulations of a Ci-VSP model embedded in a lipid bilayer, we analyzed how conformational changes in the linker mediate the interaction between the CD and the activated VSD. In this way, we identified specific residues in the linker that interact with well-defined amino acids in one of the three loops forming the active site of the protein, named TI loop. With our results, we shed light into the early steps of the coupling process between the VSD and the CD, which are based on fine-tuned electrostatic and hydrophobic interactions between the linker, the membrane and the CD.  相似文献   

8.
Fluorescent protein voltage sensors are recombinant proteins that are designed as genetically encoded cellular probes of membrane potential using mechanisms of voltage-dependent modulation of fluorescence. Several such proteins, including VSFP2.3 and VSFP3.1, were recently reported with reliable function in mammalian cells. They were designed as molecular fusions of the voltage sensor of Ciona intestinalis voltage sensor containing phosphatase with a fluorescence reporter domain. Expression of these proteins in cell membranes is accompanied by additional dynamic membrane capacitance, or “sensing capacitance”, with feedback effect on the native electro-responsiveness of targeted cells. We used recordings of sensing currents and fluorescence responses of VSFP2.3 and of VSFP3.1 to derive kinetic models of the voltage-dependent signaling of these proteins. Using computational neuron simulations, we quantitatively investigated the perturbing effects of sensing capacitance on the input/output relationship in two central neuron models, a cerebellar Purkinje and a layer 5 pyramidal neuron. Probe-induced sensing capacitance manifested as time shifts of action potentials and increased synaptic input thresholds for somatic action potential initiation with linear dependence on the membrane density of the probe. Whereas the fluorescence signal/noise grows with the square root of the surface density of the probe, the growth of sensing capacitance is linear. We analyzed the trade-off between minimization of sensing capacitance and signal/noise of the optical read-out depending on kinetic properties and cellular distribution of the probe. The simulation results suggest ways to reduce capacitive effects at a given level of signal/noise. Yet, the simulations indicate that significant improvement of existing probes will still be required to report action potentials in individual neurons in mammalian brain tissue in single trials.  相似文献   

9.
The modular architecture of voltage-gated K+ (Kv) channels suggests that they resulted from the fusion of a voltage-sensing domain (VSD) to a pore module. Here, we show that the VSD of Ciona intestinalis phosphatase (Ci-VSP) fused to the viral channel Kcv creates KvSynth1, a functional voltage-gated, outwardly rectifying K+ channel. KvSynth1 displays the summed features of its individual components: pore properties of Kcv (selectivity and filter gating) and voltage dependence of Ci-VSP (V1/2 = +56 mV; z of ∼1), including the depolarization-induced mode shift. The degree of outward rectification of the channel is critically dependent on the length of the linker more than on its amino acid composition. This highlights a mechanistic role of the linker in transmitting the movement of the sensor to the pore and shows that electromechanical coupling can occur without coevolution of the two domains.  相似文献   

10.
The Ciona intestinalis voltage sensitive phosphatase (Ci-VSP) was the first proven enzyme to be under direct control of the membrane potential. Ci-VSP belongs to a family of proteins known as Protein Tyrosine Phosphatases (PTP), which are a group of enzymes that catalyze the removal of phosphate groups from phosphatidylinositides and phosphorylated tyrosine residues on proteins. What makes Ci-VSP and similar phosphatases unique is the presence of a Voltage Sensing Domain (VSD) in their N-terminus. The VSD of Ci-VSP shares high homology with those from voltage-gated channels and confers voltage sensitivity to these enzymes. The catalytic domain of Ci-VSP displays extraordinary structural and functional similarities to PTEN. This latter protein is encoded by the Phosphatase and Tensin homolog deleted from chromosome 10 gene, thus its name, and it is known as a tumor suppressor. The resemblance between these proteins has prompted the use of PTEN as a template for the study of Ci-VSP and produced a rapid advance in our understanding of the mechanism of activity of Ci-VSP. This review will be focused on discussing recent advances in the understanding of the activation mechanism for these molecules known as electrochemical coupling.  相似文献   

11.
Membrane proteins that respond to changes in transmembrane voltage are critical in regulating the function of living cells. The voltage-sensing domains (VSDs) of voltage-gated ion channels are extensively studied to elucidate voltage-sensing mechanisms, and yet many aspects of their structure-function relationship remain elusive. Here, we transplanted homologous amino acid motifs from the tetrameric voltage-activated potassium channel Kv3.1 to the monomeric VSD of Ciona intestinalis voltage-sensitive phosphatase (Ci-VSP) to explore which portions of Kv3.1 subunits depend on the tetrameric structure of Kv channels and which properties of Kv3.1 can be transferred to the monomeric Ci-VSP scaffold. By attaching fluorescent proteins to these chimeric VSDs, we obtained an optical readout to establish membrane trafficking and kinetics of voltage-dependent structural rearrangements. We found that motifs extending from 10 to roughly 100 amino acids can be readily transplanted from Kv3.1 into Ci-VSP to form engineered VSDs that efficiently incorporate into the plasma membrane and sense voltage. Some of the functional features of these engineered VSDs are reminiscent of Kv3.1 channels, indicating that these properties do not require interactions between Kv subunits or between the voltage sensing and the pore domains of Kv channels.  相似文献   

12.
The voltage-sensor domain (VSD) is a functional module that undergoes structural transitions in response to membrane potential changes and regulates its effectors, thereby playing a crucial role in amplifying and decoding membrane electrical signals. Ion-conductive pore and phosphoinositide phosphatase are the downstream effectors of voltage-gated channels and the voltage-sensing phosphatase, respectively. It is known that upon transition, the VSD generally acts on the region C-terminal to S4. However, whether the VSD also induces any structural changes in the N-terminal region of S1 has not been addressed directly. Here, we report the existence of such an N-terminal effect. We used two distinct optical reporters—one based on the Förster resonance energy transfer between a pair of fluorescent proteins, and the other based on fluorophore-labeled HaloTag—and studied the behavior of these reporters placed at the N-terminal end of the monomeric VSD derived from voltage-sensing phosphatase. We found that both of these reporters were affected by the VSD transition, generating voltage-dependent fluorescence readouts. We also observed that whereas the voltage dependencies of the N- and C-terminal effects appear to be tightly coupled, the local structural rearrangements reflect the way in which the VSD is loaded, demonstrating the flexible nature of the VSD.  相似文献   

13.
To examine the structure and function of the Na-K-Cl cotransporter, NKCC1, we tagged the transporter with cyan (CFP) and yellow (YFP) fluorescent proteins and measured fluorescence resonance energy transfer (FRET) in stably expressing human embryonic kidney cell lines. Fluorescent protein tags were added at the N-terminal residue between the regulatory domain and the membrane domain and within a poorly conserved region of the C terminus. Both singly and doubly tagged NKCC1s were appropriately trafficked to the cell membrane and were fully functional; regulation was normal except when YFP was inserted near the regulatory domain, in which case activation occurred only upon incubation with calyculin A. Quenching of YFP fluorescence by Cl(-) provided a ratiometric indicator of intracellular [Cl(-)]. All of the CFP/YFP NKCC pairs exhibited some level of FRET, demonstrating the presence of dimers or higher multimers in functioning NKCC1. With YFP near the regulatory domain and CFP in the C terminus, we recorded a 6% FRET change signaling the regulatory phosphorylation event. On the other hand, when the probe was placed at the extreme N terminus, such changes were not seen, presumably due to the length and predicted flexibility of the N terminus. Substantial FRET changes were observed contemporaneous with cell volume changes, possibly reflective of an increase in molecular crowding upon cell shrinkage.  相似文献   

14.
Ciona intestinalis voltage-sensing phosphatase (Ci-VSP) has a transmembrane voltage sensor domain and a cytoplasmic region sharing similarity to the phosphatase and tensin homolog (PTEN). It dephosphorylates phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate upon membrane depolarization. The cytoplasmic region is composed of a phosphatase domain and a putative membrane interaction domain, C2. Here we determined the crystal structures of the Ci-VSP cytoplasmic region in three distinct constructs, wild-type (248-576), wild-type (236-576), and G365A mutant (248-576). The crystal structure of WT-236 and G365A-248 had the disulfide bond between the catalytic residue Cys-363 and the adjacent residue Cys-310. On the other hand, the disulfide bond was not present in the crystal structure of WT-248. These suggest the possibility that Ci-VSP is regulated by reactive oxygen species as found in PTEN. These structures also revealed that the conformation of the TI loop in the active site of the Ci-VSP cytoplasmic region was distinct from the corresponding region of PTEN; Ci-VSP has glutamic acid (Glu-411) in the TI loop, orienting toward the center of active site pocket. Mutation of Glu-411 led to acquirement of increased activity toward phosphatidylinositol 3,5-bisphosphate, suggesting that this site is required for determining substrate specificity. Our results provide the basic information of the enzymatic mechanism of Ci-VSP.  相似文献   

15.
The Arabidopsis thaliana somatic embryogenesis receptor kinase 1 (AtSERK1) gene is expressed in developing ovules and early embryos. AtSERK1 is also transiently expressed during somatic embryogenesis. The predicted AtSERK1 protein contains an extracellular domain with a leucine zipper motif followed by five leucine-rich repeats, a proline-rich region, a single transmembrane region and an intracellular kinase domain. The AtSERK1 cDNA was fused to two different variants of green fluorescent protein (GFP), a yellow-emitting GFP (YFP) and a cyan-emitting GFP (CFP), and transiently expressed in both plant protoplasts and insect cells. Using confocal laser scanning microscopy it was determined that the AtSERK1-YFP fusion protein is targeted to plasma membranes in both plant and animal cells. The extracellular leucine-rich repeats, and in particular the N-linked oligosaccharides that are present on them appear to be essential for correct localization of the AtSERK1-YFP protein. The potential for dimerization of the AtSERK1 protein was investigated by measuring the YFP/CFP fluorescence emission ratio using fluorescence spectral imaging microscopy. This ratio will increase due to fluorescence resonance energy transfer if the AtSERK1-CFP and AtSERK1-YFP fusion proteins interact. In 15 % of the cells the YFP/CFP emission ratio for plasma membrane localized AtSERK1 proteins was enhanced. Yeast-protein interaction experiments confirmed the possibility for AtSERK1 homodimerization. Elimination of the extracellular leucine zipper domain reduced the YFP/CFP emission ratio to control levels indicating that without the leucine zipper domain AtSERK1 is monomeric.  相似文献   

16.
Voltage-gated potassium channels or Kv's are membrane proteins with fundamental physiological roles. They are composed of 2 main functional protein domains, the pore domain, which regulates ion permeation, and the voltage-sensing domain, which is in charge of sensing voltage and undergoing a conformational change that is later transduced into pore opening. The voltage-sensing domain or VSD is a highly conserved structural motif found in all voltage-gated ion channels and can also exist as an independent feature, giving rise to voltage sensitive enzymes and also sustaining proton fluxes in proton-permeable channels. In spite of the structural conservation of VSDs in potassium channels, there are several differences in the details of VSD function found across variants of Kvs. These differences are mainly reflected in variations in the electrostatic energy needed to open different potassium channels. In turn, the differences in detailed VSD functioning among voltage-gated potassium channels might have physiological consequences that have not been explored and which might reflect evolutionary adaptations to the different roles played by Kv channels in cell physiology.  相似文献   

17.
Highly efficient fluorescence resonance energy transfer between cyan(CFP) and yellow fluorescent proteins (YFP), the cyan- and yellow-emitting variants of the Aequorea green fluorescent protein, respectively, was achieved by tightly concatenating the two proteins. After the C-terminus of CFP and the N-terminus of YFP were truncated by 11 and 5 amino acids, respectively, the proteins were fused through a leucine-glutamate dipeptide. The resulting chimeric protein, which we called Cy11.5, exhibited a simple emission spectrum that peaked at 527 nm when the protein was excited at 436 nm. The time-resolved emission of Cy11.5 was measured using a streak camera. After excitation of Cy11.5 with a 400 nm ultrashort pulse, a fast decay of the CFP emission and a concomitant rise of the YFP emission were observed with a lifetime of 66 ps. By contrast, the emission from CFP alone showed a decay component with a lifetime of 2.9 ns. We concluded that in fully folded Cy11.5 molecules, intramolecular FRET occurred with an efficiency of 98%. Importantly, most Cy11.5 molecules were properly folded, and the protein was highly resistant to all of the tested proteases. In living cells, therefore, Cy11.5 behaved as a single fluorescent protein with a broad excitation spectrum. Moreover, Cy11.5 was used as an optical highlighter after photobleaching of YFP. When HeLa cells expressing Cy11.5 were irradiated at 514.5 nm, a 10-fold increase in the 475 nm fluorescence intensity was observed. These features make Cy11.5 useful as an optical highlighter and a new-colored fluorescent protein for multicolor imaging.  相似文献   

18.
《Biophysical journal》2020,118(4):873-884
Voltage-dependent potassium (Kv) channels play a fundamental role in neuronal and cardiac excitability and are potential therapeutic targets. They assemble as tetramers with a centrally located pore domain surrounded by a voltage-sensing domain (VSD), which is critical for sensing transmembrane potential and subsequent gating. Although the sensor is supposed to be in “Up” conformation in both n-octylglucoside (OG) micelles and phospholipid membranes in the absence of membrane potential, toxins that bind VSD and modulate the gating behavior of Kv channels exhibit dramatic affinity differences in these membrane-mimetic systems. In this study, we have monitored the structural dynamics of the S3b-S4 loop of the paddle motif in activated conformation of KvAP-VSD by site-directed fluorescence approaches, using the environment-sensitive fluorescent probe 7-nitrobenz-2-oxa-1,3-diazol-4-yl-ethylenediamine (NBD). Emission maximum of NBD-labeled loop region of KvAP-VSD (residues 110–117) suggests a significant change in the polarity of local environment in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1′-rac-glycerol) membranes compared to OG micelles. This indicates that S3b-S4 loop residues might be partitioning to membrane interface, which is supported by an overall increased mean fluorescence lifetimes and significantly reduced water accessibility in membranes. Further, the magnitude of red edge excitation shift (REES) supports the presence of restricted/bound water molecules in the loop region of the VSD in micelles and membranes. Quantitative analysis of REES data using Gaussian probability distribution function clearly indicates that the sensor loop has fewer discrete equilibrium conformational states when reconstituted in membranes. Interestingly, this reduced molecular heterogeneity is consistent with the site-specific NBD polarization results, which suggest that the membrane environment offers a relaxed/dynamic organization for most of the S3b-S4 loop residues of the sensor. Overall, our results are relevant for understanding toxin-VSD interaction and gating mechanisms of Kv channels in membranes.  相似文献   

19.
The molecular structure and agonist-induced conformational changes of class II G protein-coupled receptors are poorly understood. In this work, we developed and characterized a series of dual cyan fluorescent protein (CFP)-tagged and yellow fluorescent protein (YFP)-tagged secretin receptor constructs for use in various functional and fluorescence analyses of receptor structural variants. CFP insertions within the first or second intracellular loop domains of this receptor were tolerated poorly or partially, respectively, in receptors tagged with a carboxyl-terminal yellow fluorescent protein that itself had no effect on secretin binding or cAMP production. A similar CFP insertion into the third intracellular loop resulted in a plasma membrane-localized receptor that bound secretin and signaled normally. This fully active third-loop variant exhibited a significant decrease in fluorescence resonance energy transfer signals that were recorded with an acousto-optic tunable filter microscope after exposure to secretin agonist but not to a receptor antagonist. These data demonstrate changes in the relative positions of intracellular structures that support a model for secretin receptor activation.  相似文献   

20.

Background

Human APPL1 and APPL2 are homologous RAB5 effectors whose binding partners include a diverse set of transmembrane receptors, signaling proteins, and phosphoinositides. APPL proteins associate dynamically with endosomal membranes and are proposed to function in endosome-mediated signaling pathways linking the cell surface to the cell nucleus. APPL proteins contain an N-terminal Bin/Amphiphysin/Rvs (BAR) domain, a central pleckstrin homology (PH) domain, and a C-terminal phosphotyrosine binding (PTB) domain. Previous structural and biochemical studies have shown that the APPL BAR domains mediate homotypic and heterotypic APPL-APPL interactions and that the APPL1 BAR domain forms crescent-shaped dimers. Although previous studies have shown that APPL minimal BAR domains associate with curved cell membranes, direct interaction between APPL BAR domains on cell membranes in vivo has not been reported.

Methodology

Herein, we used a laser-scanning confocal microscope equipped with a spectral detector to carry out fluorescence resonance energy transfer (FRET) experiments with cyan fluorescent protein/yellow fluorescent protein (CFP/YFP) FRET donor/acceptor pairs to examine interactions between APPL minimal BAR domains at the subcellular level. This comprehensive approach enabled us to evaluate FRET levels in a single cell using three methods: sensitized emission, standard acceptor photobleaching, and sequential acceptor photobleaching. We also analyzed emission spectra to address an outstanding controversy regarding the use of CFP donor/YFP acceptor pairs in FRET acceptor photobleaching experiments, based on reports that photobleaching of YFP converts it into a CFP-like species.

Conclusions

All three methods consistently showed significant FRET between APPL minimal BAR domain FRET pairs, indicating that they interact directly in a homotypic (i.e., APPL1-APPL1 and APPL2-APPL2) and heterotypic (i.e., APPL1-APPL2) manner on curved cell membranes. Furthermore, the results of our experiments did not show photoconversion of YFP into a CFP-like species following photobleaching, supporting the use of CFP donor/YFP acceptor FRET pairs in acceptor photobleaching studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号