首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Upon activation of living or skinned vertebrate skeletal muscle fibers, the sixth X-ray layer-line reflection from actin (6th ALL) is known to intensify, without a shift of its peak position along the layer line. Since myosin attachment to actin is expected to shift the peak towards the meridian, this intensification is considered to reflect the structural change of individual actin monomers in the thin filament. Here, we show that the 6th ALL of skinned insect flight muscles (IFMs) is rather weakened upon isometric calcium activation, and its peak shifts away from the meridian. This suggests that the actin monomers in the two types of muscles change their structures in substantially different manners. The changes that occurred in the 6th ALL of IFM were not diminished by lowering the temperature from 20 to 5 °C, while active force was greatly reduced. The inclusion of 100 μM blebbistatin (a myosin inhibitor) did not affect the changes either. This suggests that calcium binding to troponin C, rather than myosin binding to actin, causes the structural change of IFM actin.  相似文献   

2.
Measurements of the half-sarcomere stiffness during activation of skinned fibers from rabbit psoas (sarcomere length 2.5 μm, temperature 12°C) indicate that addition of 0.1 mM orthovanadate (Vi) to the solution produces a drop to ∼1/2 in number of force-generating myosin motors, proportional to the drop in steady isometric force (T0), an effect similar to that produced by the addition of 10 mM phosphate (Pi). However, in contrast to Pi, Vi does not change the rate of isometric force development. The depression of T0 in a series of activations in presence of Vi is consistent with an apparent second-order rate constant of ∼1 × 103 M−1 s−1. The rate constant of T0 recovery in a series of activations after removal of Vi is 3.5 × 10−2 s−1. These results, together with the finding in the literature that the ATPase rate is reduced by Vi in proportion to isometric force, are reproduced with a kinetic model of the acto-myosin cross-bridge cycle where binding of Vi to the force-generating actomyosin-ADP state induces detachment from actin to form a stable myosin-ADP-Vi complex that is not able to complete the hydrolysis cycle and reenters the cycle only via reattachment to actin upon activation in Vi-free solution.  相似文献   

3.
To assess the ability of the thin-filament regulatory system to control each stretch-activation (SA) event in the fast beating of asynchronous insect flight muscle (IFM), we obtained fast (3.4 ms/frame) and semistatic (≥ 50 ms) x-ray diffraction recordings for IFM fibers from bumblebees (beating at 170 Hz) and compared the results with those acquired in giant waterbugs (20-30 Hz) and crane flies (40 Hz, semistatic only). In contrast to the well-documented large SA force of waterbug IFMs, the SA force of bumblebee and crane fly IFMs was small compared to their large isometric force. In semistatic recordings, step-stretched bumblebee and crane fly IFMs showed smaller net SA-associated intensity changes in reflections that report myosin attachment to actin and tropomyosin movement toward its activating position. However, fast recordings on bumblebee IFMs showed a fast and large temporary reversal of intensities in these reflections, suggesting that the myosin heads supporting isometric force are dynamically replaced by SA-supporting heads, and that tropomyosin moves to and back from its inactivating position in milliseconds. In waterbug IFMs, the fast temporary reversal of intensities was not obvious. The observed rates of the attachment/detachment of myosin heads and the motion of tropomyosin are fast enough for the thin-filament regulatory system to control each SA event in fast-beating insects.  相似文献   

4.
In order to investigate the structural changes of the myofilaments involved in the phenomenon of summation in skeletal muscle contraction, we studied small-angle x-ray intensity changes during twitches of frog skeletal muscle elicited by either a single or a double stimulus at 16 °C. The separation of the pulses in the double-pulse stimulation was either 15 or 30 ms. The peak tension was more than doubled by the second stimulus. The equatorial (1,0) intensity, which decreased upon the first stimulus, further decreased with the second stimulus, indicating that more cross-bridges are formed. The meridional reflections from troponin at 1/38.5 and 1/19.2 nm− 1 were affected only slightly by the second stimulus, showing that attachment of a small number of myosin heads to actin can make a cooperative structural change. In overstretched muscle, the intensity increase of the troponin reflection in response to the second stimulus was smaller than that to the first stimulus. These results show that the summation is not due to an increased Ca binding to troponin and further suggest a highly cooperative nature of the structural changes in the thin filament that are related to the regulation of contraction.  相似文献   

5.
Myosin cross-bridges play an important role in the regulation of thin-filament activation in cardiac muscle. To test the hypothesis that sarcomere length (SL) modulation of thin-filament activation by strong-binding cross-bridges underlies the Frank-Starling mechanism, we inhibited force and strong cross-bridge binding to intermediate levels with sodium vanadate (Vi). Force and stiffness varied proportionately with [Ca2+] and [Vi]. Increasing [Vi] (decreased force) reduced the pCa50 of force-[Ca2+] relations at 2.3 and 2.0 μm SL, with little effect on slope (nH). When maximum force was inhibited to ∼40%, the effects of SL on force were diminished at lower [Ca2+], whereas at higher [Ca2+] (pCa < 5.6) the relative influence of SL on force increased. In contrast, force inhibition to ∼20% significantly reduced the sensitivity of force-[Ca2+] relations to changes in both SL and myofilament lattice spacing. Strong cross-bridge binding cooperatively induced changes in cardiac troponin C structure, as measured by dichroism of 5′ iodoacetamido-tetramethylrhodamine-labeled cardiac troponin C. This apparent cooperativity was reduced at shorter SL. These data emphasize that SL and/or myofilament lattice spacing modulation of the cross-bridge component of cardiac thin-filament activation contributes to the Frank-Starling mechanism.  相似文献   

6.
The elementary steps of the cross-bridge cycle in which troponin C (TnC) was partially extracted were investigated by sinusoidal analysis in rabbit psoas muscle fibers. The effects of MgATP and phosphate on the rate constants of exponential processes were studied at 200 mM ionic strength, pCa 4.20, pH 7.00, and at 20 degrees C. The results were analyzed with the following cross-bridge scheme: [formula: see text] where A is actin, M is myosin, S is MgATP, D is MgADP, and P is phosphate (Pi). When TnC was extracted so that the average remaining tension was 11% (range 8-15%), K1 (MgATP association constant) increased to 7x, k2 (rate constant of cross-bridge detachment) increased to 1.55x, k-2 (reversal of detachment) decreased to 0.27x, and K2 (= k2/k-2: equilibrium constant of cross-bridge detachment) increased to 6.6x, k4 (rate constant of force generation) decreased to 0.4x, k-4 (reversal of force generation) increased to 2x, K4 (= k4/k-4) decreased to 0.17x, and K5 (Pi association constant) did not change. The activation factor alpha, which represents the fraction of cross-bridges participating in the cycling, decreased from 1 to 0.14 with TnC extraction. The fact that K1 increased with TnC extraction implies that the condition of the thin filament modifies the contour of the substrate binding site on the myosin head and is consistent with the Fenn effect. The fact that alpha decreased to 0.14 is consistent with the steric blocking mechanism (recruitment hypothesis) and indicates that some of the cross-bridges disappear from the active cycling pool. The fact that the equilibrium constants changed is consistent with the cooperative activation mechanism (graded activation hypothesis) among thin-filament regulatory units that consist of troponin (TnC, Tnl, TnT), tropomyosin, and seven actin molecules, and possibly include cross-bridges.  相似文献   

7.
The kinetics of Ca2+-dependent conformational changes of human cardiac troponin (cTn) were studied on isolated cTn and within the sarcomeric environment of myofibrils. Human cTnC was selectively labeled on cysteine 84 with N-((2-(iodoacetoxy)ethyl)-N-methyl)amino-7-nitrobenz-2-oxa-1,3-diazole and reconstituted with cTnI and cTnT to the cTn complex, which was incorporated into guinea pig cardiac myofibrils. These exchanged myofibrils, or the isolated cTn, were rapidly mixed in a stopped-flow apparatus with different [Ca2+] or the Ca2+-buffer 1,2-Bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid to determine the kinetics of the switch-on or switch-off, respectively, of cTn. Activation of myofibrils with high [Ca2+] (pCa 4.6) induced a biphasic fluorescence increase with rate constants of >2000 s−1 and ∼330 s−1, respectively. At low [Ca2+] (pCa 6.6), the slower rate was reduced to ∼25 s−1, but was still ∼50-fold higher than the rate constant of Ca2+-induced myofibrillar force development measured in a mechanical setup. Decreasing [Ca2+] from pCa 5.0-7.9 induced a fluorescence decay with a rate constant of 39 s−1, which was approximately fivefold faster than force relaxation. Modeling the data indicates two sequentially coupled conformational changes of cTnC in myofibrils: 1), rapid Ca2+-binding (kB ≈ 120 μM−1 s−1) and dissociation (kD ≈ 550 s−1); and 2), slower switch-on (kon = 390s−1) and switch-off (koff = 36s−1) kinetics. At high [Ca2+], ∼90% of cTnC is switched on. Both switch-on and switch-off kinetics of incorporated cTn were around fourfold faster than those of isolated cTn. In conclusion, the switch kinetics of cTn are sensitively changed by its structural integration in the sarcomere and directly rate-limit neither cardiac myofibrillar contraction nor relaxation.  相似文献   

8.
In order to clarify the structural changes related to the regulation mechanism in skeletal muscle contraction, the intensity changes of thin filament-based reflections were investigated by X-ray fiber diffraction. The time course and extent of intensity changes of the first to third order troponin (TN)-associated meridional reflections with a basic repeat of 38.4 nm were different for each of these reflections. The intensity of the first and second thin filament layer lines changed in a reciprocal manner both during initial activation and during the force generation process. The axial spacings of the TN-meridional reflections decreased by ∼0.1% upon activation relative to the relaxing state and increased by ∼0.24% in the force generation state, in line with that of the 2.7-nm reflection. Ca2+-binding to TN triggered the shortening and a change in the helical symmetry of the thin filaments. Modeling of the structural changes using the intensities of the thin filament-based reflections suggested that the conformation of the globular core domain of TN altered upon activation, undergoing additional conformational changes at the tension plateau. The tail domain of TN moved together with tropomyosin during contraction. The results indicate that the structural changes of regulatory proteins bound to the actin filaments occur in two steps, the first in response to the Ca2+-binding and the second induced by actomyosin interaction.  相似文献   

9.
The luminescent complex [Pt(terpy)OH]BF4 undergoes photoinduced electron transfer reactions with phenyl amine electron donors and nitrophenyl electron acceptors. Stern-Volmer analysis of the quenching of metal-to-ligand charge transfer phosphorescence (3MLCT) was used to calculate bimolecular rate constants for electron transfer. Rate constants vary from 108 to >1010 M−1 s−1, depending on the thermodynamic driving force of the electron transfer reaction, with rate constants indicating that [Pt(terpy)OH]BF4* is a powerful photo-oxidant. Aromatic triplet energy acceptors can also quench the 3MLCT emission.  相似文献   

10.
The relation between the chemical and mechanical steps of the myosin-actin ATPase reaction that leads to generation of isometric force in fast skeletal muscle was investigated in demembranated fibers of rabbit psoas muscle by determining the effect of the concentration of inorganic phosphate (Pi) on the stiffness of the half-sarcomere (hs) during transient and steady-state conditions of the isometric contraction (temperature 12°C, sarcomere length 2.5 μm). Changes in the hs strain were measured by imposing length steps or small 4 kHz oscillations on the fibers in control solution (without added Pi) and in solution with 3-20 mM added Pi. At the plateau of the isometric contraction in control solution, the hs stiffness is 22.8 ± 1.1 kPa nm−1. Taking the filament compliance into account, the total stiffness of the array of myosin cross-bridges in the hs (e) is 40.7 ± 3.7 kPa nm−1. An increase in [Pi] decreases the stiffness of the cross-bridge array in proportion to the isometric force, indicating that the force of the cross-bridge remains constant independently of [Pi]. The rate constant of isometric force development after a period of unloaded shortening (rF) is 23.5 ± 1.0 s−1 in control solution and increases monotonically with [Pi], attaining a maximum value of 48.6 ± 0.9 s−1 at 20 mM [Pi], in agreement with the idea that Pi release is a relatively fast step after force generation by the myosin cross-bridge. During isometric force development at any [Pi], e and thus the number of attached cross-bridges increase in proportion to the force, indicating that, independently of the speed of the process that leads to myosin attachment to actin, there is no significant (>1 ms) delay between generation of stiffness and generation of force by the cross-bridges.  相似文献   

11.
A system based on high-performance affinity chromatography was developed for characterizing the binding, elution and regeneration kinetics of immobilized antibodies and immunoaffinity supports. This information was provided by using a combination of frontal analysis, split-peak analysis and peak decay analysis to determine the rate constants for antibody–antigen interactions under typical sample application and elution conditions. This technique was tested using immunoaffinity supports that contained monoclonal antibodies for 2,4-dichlorophenoxyacetic acid (2,4-D). Association equilibrium constants measured by frontal analysis for 2,4-D and related compounds with the immobilized antibodies were 1.7–12 × 106 M−1 at pH 7.0 and 25 °C. Split-peak analysis gave association rate constants of 1.4–12 × 105 M−1 s−1 and calculated dissociation rate constants of 0.01–0.4 s−1 under the application conditions. Elution at pH 2.5 for the analytes from the antibodies was examined by peak decay analysis and gave dissociation rate constants of 0.056–0.17 s−1. A comparison of frontal analysis results after various periods of column regeneration allowed the rate of antibody regeneration to be examined, with the results giving a first-order regeneration rate constant of 2.4 × 10−4 s−1. This combined approach and the information it provides should be useful in the design and optimization of immunoaffinity chromatography and other analytical methods that employ immobilized antibodies. The methods described are not limited to the particular analytes and antibodies employed in this study but should be useful in characterizing other targets, ligands and supports.  相似文献   

12.
Tropomyosin polymerizes along actin filaments and together with troponin regulates muscle contraction in a Ca-dependent manner. Actin-binding periods are homologous residues, which repeat along tropomyosin sequence, form tropomyosin-actin interface and determine regulatory functions. To learn how period 3 is involved in tropomyosin functions we examined effects of two mutations in Tpm1.1, I92T and V95A, which have been linked to dilated and hypertrophic cardiomyopathies characterized respectively by hyper- and hypocontractile phenotypes. In this work the functional consequences of both mutations were studied in vitro by using actin thin filaments reconstituted in the presence of mutant Tpm1.1 homodimers carrying the substitutions in both tropomyosin chains, Tpm1.1 heterodimers with substitution only in one Tpm1.1 chain, and Tpm1.1/Tpm2.2 heterodimers with substitution in Tpm1.1 chain and wild type Tpm2.2 in the second chain. The presence of the substitution I92T decreased the tropomyosin affinity for actin, abolished Ca2+-dependent activation of the actomyosin ATPase, decreased the sensitivity of the tropomyosin-troponin complex to subsaturating Ca2+ concentrations and reduced the cooperativity of the myosin-induced transition of the thin filament to a fully active state. The substitution V95A had opposite effects: increased actin affinity, increased the actomyosin ATPase activity above the level observed for wild type Tpm and increased cooperativity of myosin-induced activation of the thin filaments reconstructed with homo- and heterodimers of tropomyosin. Substitutions I92T and V95A were dominant, but the formation of heterodimers modified the effects observed for homodimers.  相似文献   

13.
Pang X  Qin S  Zhou HX 《Biophysical journal》2011,(5):1744-1183
The four cytokines erythropoietin (EPO), interleukin-4 (IL4), human growth hormone (hGH), and prolactin (PRL) all form four-helix bundles and bind to type I cytokine receptors. However, their receptor-binding rate constants span a 5000-fold range. Here, we quantitatively rationalize these vast differences in rate constants by our transient-complex theory for protein-protein association. In the transient complex, the two proteins have near-native separation and relative orientation, but have yet to form the short-range specific interactions of the native complex. The theory predicts the association rate constant as where ka0 is the basal rate constant for reaching the transient complex by random diffusion, and the Boltzmann factor captures the rate enhancement due to electrostatic attraction. We found that the vast differences in receptor-binding rate constants of the four cytokines arise mostly from the differences in charge complementarity among the four cytokine-receptor complexes. The basal rate constants (ka0) of EPO, IL4, hGH, and PRL were similar (5.2 × 105 M−1s−1, 2.4 × 105 M−1s−1, 1.7 × 105 M−1s−1, and 1.7 × 105 M−1s−1, respectively). However, the average electrostatic free energies () were very different (−4.2 kcal/mol, −2.4 kcal/mol, −0.1 kcal/mol, and −0.5 kcal/mol, respectively, at ionic strength = 160 mM). The receptor-binding rate constants predicted without adjusting any parameters, 6.2 × 108 M−1s−1, 1.3 × 107 M−1s−1, 2.0 × 105 M−1s−1, and 7.6 × 104 M−1s−1, respectively, for EPO, IL4, hGH, and PRL agree well with experimental results. We uncover that these diverse rate constants are anticorrelated with the circulation concentrations of the cytokines, with the resulting cytokine-receptor binding rates very close to the limits set by the half-lives of the receptors, suggesting that these binding rates are functionally relevant and perhaps evolutionarily tuned. Our calculations also reproduced well-observed effects of mutations and ionic strength on the rate constants and produced a set of mutations on the complex of hGH with its receptor that putatively enhances the rate constant by nearly 100-fold through increasing charge complementarity. To quantify charge complementarity, we propose a simple index based on the charge distribution within the binding interface, which shows good correlation with . Together these results suggest that protein charges can be manipulated to tune ka and control biological function.  相似文献   

14.
The effect of the fast skeletal muscle troponin activator, CK-2066260, on calcium-induced force development was studied in skinned fast skeletal muscle fibers from wildtype (WT) and nebulin deficient (NEB KO) mice. Nebulin is a sarcomeric protein that when absent (NEB KO mouse) or present at low levels (nemaline myopathy (NM) patients with NEB mutations) causes muscle weakness. We studied the effect of fast skeletal troponin activation on WT muscle and tested whether it might be a therapeutic mechanism to increase muscle strength in nebulin deficient muscle. We measured tension–pCa relations with and without added CK-2066260. Maximal active tension in NEB KO tibialis cranialis fibers in the absence of CK-2066260 was ∼60% less than in WT fibers, consistent with earlier work. CK-2066260 shifted the tension-calcium relationship leftwards, with the largest relative increase (up to 8-fold) at low to intermediate calcium levels. This was a general effect that was present in both WT and NEB KO fiber bundles. At pCa levels above ∼6.0 (i.e., calcium concentrations <1 µM), CK-2066260 increased tension of NEB KO fibers to beyond that of WT fibers. Crossbridge cycling kinetics were studied by measuring ktr (rate constant of force redevelopment following a rapid shortening/restretch). CK-2066260 greatly increased ktr at submaximal activation levels in both WT and NEB KO fiber bundles. We also studied the sarcomere length (SL) dependence of the CK-2066260 effect (SL 2.1 µm and 2.6 µm) and found that in the NEB KO fibers, CK-2066260 had a larger effect on calcium sensitivity at the long SL. We conclude that fast skeletal muscle troponin activation increases force at submaximal activation in both wildtype and NEB KO fiber bundles and, importantly, that this troponin activation is a potential therapeutic mechanism for increasing force in NM and other skeletal muscle diseases with loss of muscle strength.  相似文献   

15.
Static and time-resolved two-dimensional x-ray diffraction patterns, recorded from the living mouse diaphragm muscle, were compared with those from living frog sartorius muscle. The resting pattern of mouse muscle was similar to that of frog muscle, and consisted of actin- and myosin-based reflections with spacings basically identical to those of frog. As a notable exception, the sampling pattern of the myosin layer lines (MLL's) indicated that the mouse myofilaments were not organized into a superlattice as in frog. The intensity changes of reflections upon activation were also similar. The MLL's of both muscles were markedly weakened. Stereospecific (rigorlike) actomyosin species were not significantly populated in either muscle, as was evidenced by the 6th actin layer line (ALL), which was substantially enhanced but without a shift in its peak position or a concomitant rise of lower order ALL's. On close examination of the mouse pattern, however, a few lower order ALL's were found to rise, slightly but definitely, at the position expected for stereospecific binding. Their quick rise after the onset of stimulation indicates that this stereospecific complex is generated in the process of normal contraction. However, their rise is still too small to account for the marked enhancement of the 6th ALL, which is better explained by a myosin-induced structural change of actin. Since the forces of the two muscles are comparable regardless of the amount of stereospecific complex, it would be natural to consider that most of the force of skeletal muscle is supported by nonstereospecific actomyosin species.  相似文献   

16.
The regulation of muscle contraction by calcium involves interactions among actin filaments, myosin-S1, tropomyosin (Tm), and troponin (Tn). We have extended our previous model in which the TmTn regulatory units are treated as a continuous flexible chain, and applied it to transient kinetic data. We have measured the time course of myosin-S1 binding to actin-Tm-Tn filaments in solution at various calcium levels with [actin]/[myosin] ratios of 10 and 0.1, which exhibit modest slowing as [Ca2+] is reduced and a lag phase at low calcium. These observations can be explained if myosin binds to actin in two steps, where the first step is rate-limiting and blocked by TmTnI at low calcium, and the second step is fast, reversible, and controlled by the neighboring configuration of coupled tropomyosin-troponin units. The model can describe the calcium dependence of the observed myosin binding reactions and predicts cooperative calcium binding to TnC with competition between actin and Ca-TnC for the binding of TnI. Implications for theories of thin-filament regulation in muscle are discussed.  相似文献   

17.
Interactions of the components of reconstituted thin filaments were investigated using a tropomyosin internal deletion mutant, D234, in which actin-binding pseudo-repeats 2, 3, and 4 are missing. D234 retains regions of tropomyosin that bind troponin and form end-to-end tropomyosin bonds, but has a length to span only four instead of seven actin monomers. It inhibits acto-myosin subfragment 1 ATPase (acto-S-1 ATPase) and filament sliding in vitro in both the presence and absence of Ca(2+) (, J. Biol. Chem. 272:14051-14056) and lowers the affinity of S-1.ADP for actin while increasing its cooperative binding. Electron microscopy and three-dimensional reconstruction of reconstituted thin filaments containing actin, troponin, and wild-type or D234 tropomyosin were carried out to determine if Ca(2+)-induced movement of D234 occurred in the filaments. In the presence and absence of Ca(2+), the D234 position was indistinguishable from that of the wild-type tropomyosin, demonstrating that the mutation did not affect normal tropomyosin movement induced by Ca(2+) and troponin. These results suggested that, in the presence of Ca(2+) and troponin, D234 tropomyosin was trapped on filaments in the Ca(2+)-induced position and was unable to undergo a transition to a completely activated position. By adding small amounts of rigor-bonded N-ethyl-maleimide-treated S-1 to mutant thin filaments, thus mimicking the myosin-induced "open" state, inhibition could be overcome and full activation restored. This myosin requirement for full activation provides support for the existence of three functionally distinct thin filament states (off, Ca(2+)-induced, myosin-induced; cf.;, J. Mol. Biol. 266:8-14). We propose a further refinement of the three-state model in which the binding of myosin to actin causes allosteric changes in actin that promote the binding of tropomyosin in an otherwise energetically unfavorable "open" state.  相似文献   

18.
Fiber-optic biosensors have been studied intensively because they are very useful and important tools for monitoring biomolecular interactions. Here we describe a fluorescence detection fiber-optic biosensor (FD-FOB) using a sandwich assay to detect antibody-antigen interaction. In addition, the quantitative measurement of binding kinetics, including the association and dissociation rate constants for immunoglobulin G (IgG)/anti-mouse IgG, is achieved, indicating 0.38 × 106 M−1 s−1 for ka and 3.15 × 10−3 s−1 for kd. These constants are calculated from the fluorescence signals detected on fiber surface only where the excited evanescent wave can be generated. Thus, a confined fluorescence-detecting region is achieved to specifically determine the binding kinetics at the vicinity of the interface between sensing materials and uncladded fiber surface. With this FD-FOB, the mathematical deduction and experimental verification of the binding kinetics in a sandwich immunoassay provide a theoretical basis for measuring rate constants and equilibrium dissociation constants. A further measurement to study the interaction between human heart-type fatty acid-binding protein and its antibody gave the calculated kinetic constants ka, kd, and KD as 8.48 × 105 M−1 s−1, 1.7 × 10−3 s−1, and 2.0 nM, respectively. Our study is the first attempt to establish a theoretical basis for the florescence-sensitive immunoassay using a sandwich format. Moreover, we demonstrate that the FD-FOB as a high-throughput biosensor can provide an alternative to the chip-based biosensors to study real-time biomolecular interaction.  相似文献   

19.
In muscle, force emerges from myosin binding with actin (forming a cross-bridge). This actomyosin binding depends upon myofilament geometry, kinetics of thin-filament Ca2+ activation, and kinetics of cross-bridge cycling. Binding occurs within a compliant network of protein filaments where there is mechanical coupling between myosins along the thick-filament backbone and between actin monomers along the thin filament. Such mechanical coupling precludes using ordinary differential equation models when examining the effects of lattice geometry, kinetics, or compliance on force production. This study uses two stochastically driven, spatially explicit models to predict levels of cross-bridge binding, force, thin-filament Ca2+ activation, and ATP utilization. One model incorporates the 2-to-1 ratio of thin to thick filaments of vertebrate striated muscle (multi-filament model), while the other comprises only one thick and one thin filament (two-filament model). Simulations comparing these models show that the multi-filament predictions of force, fractional cross-bridge binding, and cross-bridge turnover are more consistent with published experimental values. Furthermore, the values predicted by the multi-filament model are greater than those values predicted by the two-filament model. These increases are larger than the relative increase of potential inter-filament interactions in the multi-filament model versus the two-filament model. This amplification of coordinated cross-bridge binding and cycling indicates a mechanism of cooperativity that depends on sarcomere lattice geometry, specifically the ratio and arrangement of myofilaments.  相似文献   

20.
We studied force-induced elongation of filopodia by coupling magnetic tweezers to the tip through the bacterial coat protein invasin, which couples the force generator to the actin bundles (through myosin X), thus impeding the growth of the actin plus end. Single force pulses (15–30 s) with amplitudes between 20 and 600 pN and staircase-like force scenarios (amplitudes, ∼50 pN; step widths, 30 s) were applied. In both cases, the responses consist of a fast viscoelastic deflection followed by a linear flow regime. The deflections are reversible after switching off the forces, suggesting a mechanical memory. The elongation velocity exhibits an exponential distribution (half-width <v1/2>, ∼0.02 μm s−1) and did not increase systematically with the force amplitudes. We estimate the bending modulus (0.4 × 10−23 J m) and the number of actin filaments (∼10) by analyzing filopodium bending fluctuations. Sequestering of intracellular Ca2+ by BAPTA caused a strong reduction in the amplitude of elongation, whereas latrunculin A resulted in loss of the elastic response. We attribute the force-independent velocity to the elongation of actin bundles enabled by the force-induced actin membrane uncoupling and the reversibility by the treadmilling mechanism and an elastic response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号