首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Force spectroscopy of LFA-1 and its ligands, ICAM-1 and ICAM-2   总被引:2,自引:0,他引:2  
Single-molecule measurements of the interaction of leukocyte function-associated antigen-1 (LFA-1), expressed on Jurkat T cells, with intercellular adhesion molecules-1 and -2 (ICAM-1 and ICAM-2) were conducted using atomic force microscopy (AFM). The force spectra (i.e., unbinding force versus loading rate) of both the LFA-1/ICAM-1 and LFA-1/ICAM-2 interactions were acquired at a loading rate range covering 3 orders of magnitude (50-60,000 pN/s) and revealed a fast loading regime and a slow loading regime. This indicates that the dissociation of both complexes involves overcoming a steep inner and a wide outer activation barrier. LFA-1 binding to ICAM-1 and ICAM-2 was strengthened in the slow loading regime by the addition of Mg(2+). Differences in the dynamic strength of the LFA-1/ICAM-1 and LFA-1/ICAM-2 interactions can be attributed to the presence of wider barriers in the ICAM-2 complex, making it more responsive to a pulling force than the ICAM-1 complex.  相似文献   

2.
JAM-A belongs to a family of immunoglobulin-like proteins called junctional adhesion molecules (JAMs) that localize at epithelial and endothelial intercellular tight junctions. JAM-A is also expressed on dendritic cells, neutrophils, and platelets. Homophilic JAM-A interactions play an important role in regulating paracellular permeability and leukocyte transmigration across epithelial monolayers and endothelial cell junctions, respectively. In addition, JAM-A is a receptor for the reovirus attachment protein, sigma1. In this study, we used single molecular force spectroscopy to compare the kinetics of JAM-A interactions with itself and sigma1. A chimeric murine JAM-A/Fc fusion protein and the purified sigma1 head domain were used to probe murine L929 cells, which express JAM-A and are susceptible to reovirus infection. The bond half-life (t(1/2)) of homophilic JAM-A interactions was found to be shorter (k(off)(o) = 0.688 +/- 0.349 s(-1)) than that of sigma1/JAM-A interactions (k(off)(o) = 0.067 +/- 0.041 s(-1)). These results are in accordance with the physiological functions of JAM-A and sigma1. A short bond lifetime imparts a highly dynamic nature to homophilic JAM-A interactions for regulating tight junction permeability while stable interactions between sigma1 and JAM-A likely anchor the virus to the cell surface and facilitate viral entry.  相似文献   

3.
Junctional adhesion molecule A (JAM-A) is a broadly expressed adhesion molecule that regulates cell–cell contacts and facilitates leukocyte transendothelial migration. The latter occurs through interactions with the integrin LFA-1. Although we understand much about JAM-A, little is known regarding the protein’s role in mechanotransduction or as a modulator of RhoA signaling. We found that tension imposed on JAM-A activates RhoA, which leads to increased cell stiffness. Activation of RhoA in this system depends on PI3K-mediated activation of GEF-H1 and p115 RhoGEF. These two GEFs are further regulated by FAK/ERK and Src family kinases, respectively. Finally, we show that phosphorylation of JAM-A at Ser-284 is required for RhoA activation in response to tension. These data demonstrate a direct role of JAM-A in mechanosignaling and control of RhoA and implicate Src family kinases in the regulation of p115 RhoGEF.  相似文献   

4.
Activated leukocyte cell adhesion molecule (ALCAM/CD166), a member of the immunoglobulin superfamily with five extracellular immunoglobulin-like domains, facilitates heterophilic (ALCAM-CD6) and homophilic (ALCAM-ALCAM) cell-cell interactions. While expressed in a wide variety of tissues and cells, ALCAM is restricted to subsets of cells usually involved in dynamic growth and/or migration processes. A structure-function analysis, using two monoclonal anti-ALCAM antibodies and a series of amino-terminally deleted ALCAM constructs, revealed that homophilic cell adhesion depended on ligand binding mediated by the membrane-distal amino-terminal immunoglobulin domain and on avidity controlled by ALCAM clustering at the cell surface involving membrane-proximal immunoglobulin domains. Co-expression of a transmembrane ALCAM deletion mutant, which lacks the ligand binding domain, and endogenous wild-type ALCAM inhibited homophilic cell-cell interactions by interference with ALCAM avidity, while homophilic, soluble ligand binding remained unaltered. The extracellular structures of ALCAM thus provide two structurally and functionally distinguishable modules, one involved in ligand binding and the other in avidity. Functionality of both modules is required for stable homophilic ALCAM-ALCAM cell-cell adhesion.  相似文献   

5.
We describe the use of atomic force microscopy (AFM) in studies of cell adhesion and cell compliance. Our studies use the interaction between leukocyte function associated antigen-1 (LFA-1)/intercellular adhesion molecule-1 (ICAM-1) as a model system. The forces required to unbind a single LFA-1/ICAM-1 bond were measured at different loading rates. This data was used to determine the dynamic strength of the LFA-1/ICAM-1 complex and characterize the activation potential that this complex overcomes during its breakage. Force measurements acquired at the multiple- bond level provided insight about the mechanism of cell adhesion. In addition, the AFM was used as a microindenter to determine the mechanical properties of cells. The applications of these methods are described using data from a previous study. Published: January 15, 2004  相似文献   

6.
Specific leukocyte/endothelial interactions are critical for immunity and inflammation, yet the molecular details of this interaction interface remain poorly understood. Thus, we investigated, with confocal microscopy, the distribution dynamics of the central adhesion molecules ICAM-1 and LFA-1 in this context. Monolayers of activated HUVECs stained with fluorescent anti-ICAM-1 Fabs or Chinese hamster ovary-K1 cells expressing ICAM-1-green fluorescent protein were allowed to bind LFA-1-bearing monocytes, neutrophils, or K562 LFA-1 transfectants. ICAM-1 was rapidly relocalized to newly formed microvilli-like membrane projections in response to binding LFA-1 on leukocytes. These ICAM-1-enriched projections encircled the leukocytes extending up their sides and clustered LFA-1 underneath into linear tracks. Projections formed independently of VCAM-1/very late Ag 4 interactions, shear, and proactive contributions from the LFA-1-bearing cells. In the ICAM-1-bearing endothelial cells, projections were enriched in actin but not microtubules, required intracellular calcium, and intact microfilament and microtubule cytoskeletons and were independent of Rho/Rho kinase signaling. Disruption of these projections with cytochalasin D, colchicine, or BAPTA-AM had no affect on firm adhesion. These data show that in response to LFA-1 engagement the endothelium proactively forms an ICAM-1-enriched cup-like structure that surrounds adherent leukocytes but is not important for firm adhesion. This finding leaves open a possible role in leukocyte transendothelial migration, which would be consistent with the geometry and kinetics of formation of the cup-like structure.  相似文献   

7.
Junctional adhesion molecule-A (JAM-A) is an adherens and tight junction protein expressed by endothelial and epithelial cells. JAM-A serves many roles and contributes to barrier function and cell migration and motility, and it also acts as a ligand for the leukocyte receptor LFA-1. JAM-A is reported to contain N-glycans, but the extent of this modification and its contribution to the protein’s functions are unknown. We show that human JAM-A contains a single N-glycan at N185 and that this residue is conserved across multiple mammalian species. A glycomutant lacking all N-glycans, N185Q, is able to reach the cell surface but exhibits decreased protein half-life compared with the wild- type protein. N-glycosylation of JAM-A is required for the protein’s ability to reinforce barrier function and contributes to Rap1 activity. We further show that glycosylation of N185 is required for JAM-A–mediated reduction of cell migration. Finally, we show that N-glycosylation of JAM-A regulates leukocyte adhesion and LFA-1 binding. These findings identify N-glycosylation as critical for JAM-A’s many functions.  相似文献   

8.
Interactions between leukocyte function-associated antigen-1 (LFA-1) with its cognate ligand, intercellular adhesion molecule-1 (ICAM-1) play a crucial role in leukocyte adhesion. Because the cell and its adhesive components are subject to external perturbation from the surrounding flow of blood, it is important to understand the binding properties of the LFA-1/ICAM-1 interaction in both steady state and in the presence of an external pulling force. Here we report on atomic force microscopy (AFM) measurements of the unbinding of LFA-1 from ICAM-1. The single molecule measurements revealed the energy landscape corresponding to the dissociation of the LFA-1/ICAM-1 complex and provided the basis for defining the energetic determinants of the complex at equilibrium and under the influence of an external force. The AFM force measurements were performed in an experimental system consisting of an LFA-1-expressing T cell hybridoma, 3A9, attached to the end of the AFM cantilever and an apposing surface expressing ICAM-1. In measurements covering three orders of magnitude change in force loading rate, the LFA-1/ICAM-1 force spectrum (i.e., unbinding force versus loading rate) revealed a fast and a slow loading regime that characterized a steep inner activation barrier and a wide outer activation barrier, respectively. The addition of Mg(2+), a cofactor that stabilizes the LFA-1/ICAM-1 interaction, elevated the unbinding force of the complex in the slow loading regime. In contrast, the presence of EDTA suppressed the inner barrier of the LFA-1/ICAM-1 complex. These results suggest that the equilibrium dissociation constant of the LFA-1/ICAM-1 interaction is regulated by the energetics of the outer activation barrier of the complex, while the ability of the complex to resist a pulling force is determined by the divalent cation-dependent inner activation barrier.  相似文献   

9.
The junctional adhesion molecule C (JAM-C) was recently shown to undergo a heterophilic interaction with the leukocyte beta2 integrin Mac-1, thereby mediating interactions between vascular cells in inflammatory cell recruitment. Here, the homophilic interaction of JAM-C is presented and functionally characterized to mediate tumor cell-endothelial cell interactions. Recombinant soluble JAM-C in fluid phase bound to immobilized JAM-C as assessed in a purified system; moreover, JAM-C-transfected Chinese hamster ovary (CHO) cells adhered to immobilized JAM-C. The homophilic interaction of JAM-C was mediated by the isolated amino-terminal Ig domain (D1), but not the carboxyl-terminal Ig domain (D2), of the molecule. Dimerization of JAM-A is dependent on the sequence RVE in the amino-terminal Ig domain. This motif is conserved in JAM-C (Arg64-Ile65-Glu66), and a single amino acid mutation in this motif (E66R) abolished the homophilic interaction of JAM-C. The lung carcinoma cell line NCI-H522 was found to express JAM-C. NCI-H522 cells adhered to immobilized JAM-C, as well as to JAM-C-transfected CHO cells, but not to mock-transfected CHO cells or to CHO cells transfected with the JAM-C mutant (E66R). Adhesion of NCI-H522 cells to JAM-C protein or JAM-C-transfected CHO cells was abolished in the presence of soluble JAM-C or the isolated D1. Furthermore, the adhesion of NCI-H522 cells to endothelial cells was significantly blocked by soluble JAM-C or the isolated D1. Thus, JAM-C undergoes a homophilic interaction via the Arg64-Ile65-Glu66 motif on the membrane-distal Ig domain of the molecule. The homophilic interaction of JAM-C can mediate tumor cell-endothelial cell interactions and may thereby be involved in the process of tumor cell metastasis.  相似文献   

10.
An in vitro model of T cell adhesion to human umbilical vein endothelial cells (HUVEC) and transendothelial migration was used to determine whether the activation state of the T cell or cytokine exposure of the HUVEC altered T cell-HUVEC interactions or receptor utilization. Stimulation of T cells with the activator of protein kinase C, phorbol dibutyrate (PDB) alone or in combination with the calcium ionophore, ionomycin increased their binding to HUVEC. Much of the binding of control and activated T cells to HUVEC was mediated by leukocyte function-associated Ag-1 (LFA-1) (CD11a/CD18), because mAb to either chain of this molecule inhibited binding substantially, but not completely. Activation of HUVEC with IL-1 also increased binding of T cells. Binding of control T cells to IL-1-stimulated HUVEC, however, was found to be LFA-1 independent, because mAb to CD11a/CD18 failed to block the interaction. In contrast, binding of activated T cells to IL-1-stimulated HUVEC was partially inhibited by mAb to LFA-1. Binding of activated T cells to IL-1-stimulated HUVEC also involved CD44 because this interaction was partially blocked by mAb to this determinant. When T cell migration was analyzed, it was found that the migration of PDB-activated T cells was three to four-fold more than that of control T cells. Migration through HUVEC and random migration were both enhanced by PDB stimulation. However, when the T cells were costimulated with PDB and ionomycin, migration was not increased above that of control T cells. PDB-activated T cells appeared to use LFA-1 for migration regardless of the activation status of the HUVEC, because mAb to CD11a/CD18 partially blocked their migration after binding to HUVEC. There was also a modest inhibition of PDB-activated T cell migration by mAb to CD44. In contrast, migration of control T cells involved neither LFA-1 nor CD44. Finally, binding of control T cells to high endothelial venules of peripheral lymphoid tissue was found to be CD11a/CD18 and CD44 independent, and completely inhibited by activation with either PDB or the combination of PDB and ionomycin. These results demonstrate that T cells use LFA-1 and CD44 as well as other as yet unidentified adhesion receptors for interactions with HUVEC, and that use of these adhesion receptors is mutable and related to the activation state of the T cell and cytokine stimulation of the HUVEC.  相似文献   

11.
Dynamic regulation of integrin adhesiveness is required for immune cell-cell interactions and leukocyte migration. Here, we investigate the relationship between cell adhesion and integrin microclustering as measured by fluorescence resonance energy transfer, and macroclustering as measured by high resolution fluorescence microscopy. Stimuli that activate adhesion through leukocyte function-associated molecule-1 (LFA-1) failed to alter clustering of LFA-1 in the absence of ligand. Binding of monomeric intercellular adhesion molecule-1 (ICAM-1) induced profound changes in the conformation of LFA-1 but did not alter clustering, whereas binding of ICAM-1 oligomers induced significant microclustering. Increased diffusivity in the membrane by cytoskeleton-disrupting agents was sufficient to drive adhesion in the absence of affinity modulation and was associated with a greater accumulation of LFA-1 to the zone of adhesion, but redistribution did not precede cell adhesion. Disruption of conformational communication within the extracellular domain of LFA-1 blocked adhesion stimulated by affinity-modulating agents, but not adhesion stimulated by cytoskeleton-disrupting agents. Thus, LFA-1 clustering does not precede ligand binding, and instead functions in adhesion strengthening after binding to multivalent ligands.  相似文献   

12.
Nepmucin/CLM-9 is an Ig domain-containing sialomucin expressed in vascular endothelial cells. Here we show that, like CD31, nepmucin was localized to interendothelial contacts and to vesicle-like structures along the cell border and underwent intracellular recycling. Functional analyses showed that nepmucin mediated homotypic and heterotypic cell adhesion via its Ig domain. Nepmucin-expressing endothelial cells showed enhanced lymphocyte transendothelial migration (TEM), which was abrogated by anti-nepmucin mAbs that block either homophilic or heterophilic binding. Notably, the mAbs that inhibited homophilic binding blocked TEM without affecting lymphocyte adhesion. These results suggest that endothelial nepmucin promotes lymphocyte TEM using multiple adhesion pathways.  相似文献   

13.
The extracellular homophilic-binding domain of the cadherins consists of 5 cadherin repeats (EC1-EC5). Studies on cadherin specificity have implicated the NH(2)-terminal EC1 domain in the homophilic binding interaction, but the roles of the other extracellular cadherin (EC) domains have not been evaluated. We have undertaken a systematic analysis of the binding properties of the entire cadherin extracellular domain and the contributions of the other EC domains to homophilic binding. Lateral (cis) dimerization of the extracellular domain is thought to be required for adhesive function. Sedimentation analysis of the soluble extracellular segment of C-cadherin revealed that it exists in a monomer-dimer equilibrium with an affinity constant of approximately 64 microm. No higher order oligomers were detected, indicating that homophilic binding between cis-dimers is of significantly lower affinity. The homophilic binding properties of a series of deletion constructs, lacking successive or individual EC domains fused at the COOH terminus to an Fc domain, were analyzed using a bead aggregation assay and a cell attachment-based adhesion assay. A protein with only the first two NH(2)-terminal EC domains (CEC1-2Fc) exhibited very low activity compared with the entire extracellular domain (CEC1-5Fc), demonstrating that EC1 alone is not sufficient for effective homophilic binding. CEC1-3Fc exhibited high activity, but not as much as CEC1-4Fc or CEC1-5Fc. EC3 is not required for homophilic binding, however, since CEC1-2-4Fc and CEC1-2-4-5Fc exhibited high activity in both assays. These and experiments using additional EC combinations show that many, if not all, the EC domains contribute to the formation of the cadherin homophilic bond, and specific one-to-one interaction between particular EC domains may not be required. These conclusions are consistent with a previous study on direct molecular force measurements between cadherin ectodomains demonstrating multiple adhesive interactions (Sivasankar, S., W. Brieher, N. Lavrik, B. Gumbiner, and D. Leckband. 1999. PROC: Natl. Acad. Sci. USA. 96:11820-11824; Sivasankar, S., B. Gumbiner, and D. Leckband. 2001. Biophys J. 80:1758-68). We propose new models for how the cadherin extracellular repeats may contribute to adhesive specificity and function.  相似文献   

14.
The unfolding tale of PECAM-1   总被引:12,自引:0,他引:12  
Jackson DE 《FEBS letters》2003,540(1-3):7-14
Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) is a member of the immunoglobulin (Ig) superfamily that has distinctive features of an immunoreceptor based upon its genomic structure and the presence of intrinsic immunoreceptor tyrosine inhibitory motifs (ITIMs) in its ligand binding polypeptide. This has lead to its subclassification into the Ig-ITIM superfamily. Its amino-terminal Ig-like domain of PECAM-1 is necessary for its homophilic binding, which plays an important role in cell–cell interactions. Its intracellular ITIMs serve as scaffolds for recruitment of signalling molecules including protein-tyrosine phosphatases to mediate its inhibitory co-receptor activity. Increasing evidence has implicated PECAM-1 in a plethora of biological phenomena, including modulation of integrin-mediated cell adhesion, transendothelial migration, angiogenesis, apoptosis, cell migration, negative regulation of immune cell signalling, autoimmunity, macrophage phagocytosis, IgE-mediated anaphylaxis and thrombosis. In this review, we discuss some of the new developments attributed to this molecule and its unique roles in biology.  相似文献   

15.
Atomic force microscopy was used to investigate the cellular response to histamine, one of the major inflammatory mediators that cause endothelial hyperpermeability and vascular leakage. AFM probes were labeled with fibronectin and used to measure binding strength between alpha5beta1 integrin and fibronectin by quantifying the force required to break single fibronectin-integrin bonds. The cytoskeletal changes, binding probability, and adhesion force before and after histamine treatment on endothelial cells were monitored. Cell topography measurements indicated that histamine induces cell shrinkage. Local cell stiffness and binding probability increased twofold after histamine treatment. The force necessary to rupture single alpha5beta1-fibronectin bond increased from 34.0 +/- 0.5 pN in control cells to 39 +/- 1 pN after histamine treatment. Experiments were also conducted to confirm the specificity of the alpha5beta1-fibronectin interaction. In the presence of soluble GRGDdSP the probability of adhesion events decreased >50% whereas the adhesion force between alpha5beta1 and fibronectin remained unchanged. These data indicate that extracellular matrix-integrin interactions play an important role in the endothelial cell response to changes of external chemical mediators. These changes can be recorded as direct measurements on live endothelial cells by using atomic force microscopy.  相似文献   

16.
The role of leukocyte function-associated Ag-1 (LFA-1) (CD11a/CD18) in T cell-endothelial cell (EC) interactions was assessed by utilizing CD11a/CD18-deficient T cell clones generated from a patient with leukocyte adhesion deficiency (LAD). The ability of these clones to bind to and migrate through monolayers of EC in vitro was compared with that of clones generated in a similar manner from normal controls. The LAD clones bound to EC to a similar extent as the controls. The contribution of other cell surface adhesion molecules was assessed with mAb blocking experiments. It was found that part of the EC binding by these CD11a/CD18-deficient clones was mediated by an interaction of very late Ag-4 (VLA-4) with vascular cell adhesion molecule-1 (VCAM-1) on the EC. In contrast to their normal ability to bind to EC, the capacity of the LAD clones to migrate through EC monolayers was significantly less than that of the control clones. This impairment in migration was not related to decreased intrinsic motility. Moreover, neither phorbol ester stimulation of the LAD clones nor IL-1 stimulation of the EC increased the capacity of the clones to migrate through EC monolayers, although binding to EC was augmented by both treatments. Only a minimal percentage of the migration of either control or LAD clones was inhibited by mAb to VLA-4 or VCAM-1. These data demonstrate that LFA-1 plays a central role in the transendothelial migration of T cells. In the absence of LFA-1, T cells retain the ability to bind to EC because of the activity of other receptor/ligand pairs, including VLA-4/VCAM-1. Finally, it is likely that, during both binding and transendothelial migration of T cells, additional cell surface molecules play a role.  相似文献   

17.
The neural cell adhesion molecule NCAM is capable of mediating cell-cell adhesion via homophilic interactions. In this study, three strategies have been combined to identify regions of NCAM that participate directly in NCAM-NCAM binding: analysis of domain deletion mutations, mapping of epitopes of monoclonal antibodies, and use of synthetic peptides to inhibit NCAM activity. Studies on L cells transfected with NCAM mutant cDNAs using cell aggregation and NCAM-covasphere binding assays indicate that the third immunoglobulin-like domain is involved in homophilic binding. The epitopes of four monoclonal antibodies that have been previously shown to affect cell-cell adhesion mediated by NCAM were also mapped to domain 3. Overlapping hexapeptides were synthesized on plastic pins and assayed for binding with these monoclonal antibodies. One of them (PP) reacted specifically with the sequence KYSFNY. Synthetic oligopeptides containing the PP epitope were potent and specific inhibitors of NCAM binding activity. A substratum containing immobilized peptide conjugates also exhibited adhesiveness for neural retinal cells. Cell attachment was specifically inhibited by peptides that contained the PP-epitope and by anti-NCAM univalent antibodies. The shortest active peptide has the sequence KYSFNYDGSE, suggesting that this site is directly involved in NCAM homophilic interaction.  相似文献   

18.
Neural cell adhesion molecules composed of immunoglobulin and fibronectin type III-like domains have been implicated in cell adhesion, neurite outgrowth, and fasciculation. Axonin-1 and Ng cell adhesion molecule (NgCAM), two molecules with predominantly axonal expression exhibit homophilic interactions across the extracellular space (axonin- 1/axonin-1 and NgCAM/NgCAM) and a heterophilic interaction (axonin-1–NgCAM) that occurs exclusively in the plane of the same membrane (cis-interaction). Using domain deletion mutants we localized the NgCAM homophilic binding in the Ig domains 1-4 whereas heterophilic binding to axonin-1 was localized in the Ig domains 2-4 and the third FnIII domain. The NgCAM–NgCAM interaction could be established simultaneously with the axonin-1–NgCAM interaction. In contrast, the axonin-1–NgCAM interaction excluded axonin-1/axonin-1 binding. These results and the examination of the coclustering of axonin-1 and NgCAM at cell contacts, suggest that intercellular contact is mediated by a symmetric axonin-12/NgCAM2 tetramer, in which homophilic NgCAM binding across the extracellular space occurs simultaneously with a cis-heterophilic interaction of axonin-1 and NgCAM. The enhanced neurite fasciculation after overexpression of NgCAM by adenoviral vectors indicates that NgCAM is the limiting component for the formation of the axonin-12/NgCAM2 complexes and, thus, neurite fasciculation in DRG neurons.  相似文献   

19.
In response to external stimuli, cells modulate their adhesive state by regulating the number and intrinsic affinity of receptor/ligand bonds. A number of studies have shown that cell adhesion is dramatically reduced at room or lower temperatures as compared with physiological temperature. However, the underlying mechanism that modulates adhesion is still unclear. Here, we investigated the adhesion of the monocytic cell line THP-1 to a surface coated with intercellular adhesion molecule-1 (ICAM-1) as a function of temperature. THP-1 cells express the integrin lymphocyte function-associated antigen-1 (LFA-1), a receptor for ICAM-1. Direct force measurements of cell adhesion and cell elasticity were carried out by atomic force microscopy. Force measurements revealed an increase of the work of de-adhesion with temperature that was coupled to a gradual decrease in cellular stiffness. Of interest, single-molecule measurements revealed that the rupture force of the LFA-1/ICAM-1 complex decreased with temperature. A detailed analysis of the force curves indicated that temperature-modulated cell adhesion was mainly due to the enhanced ability of cells to deform and to form a greater number of longer membrane tethers at physiological temperatures. Together, these results emphasize the importance of cell mechanics and membrane-cytoskeleton interaction on the modulation of cell adhesion.  相似文献   

20.
The comparative roles of the endothelial cell (EC) adhesion receptors VCAM-1 and ICAM-1 during the adhesion and transendothelial migration of T cells were examined. The adhesion of T cells to IL-1-activated EC was markedly, but not completely, inhibited by mAb to VCAM-1 as well as to its counter-receptor, VLA-4, whereas, T cell binding to IL-1-activated EC was not blocked by mAb to ICAM-1 or to its counter-receptor, LFA-1. In contrast, LFA-1/ICAM-1, but not VLA-4/VCAM-1, mediated much, but not all, of the binding of T cells to unstimulated EC. Activation of T cells with phorbol dibutyrate and ionomycin alter the receptor-counter-receptor pairs used for binding to EC. Regardless of the activation status of the EC, the binding of activated T cells was not blocked by mAb to VLA-4 or VCAM-1. Moreover, the binding of activated T cells to EC was blocked to a lesser degree by mAb to LFA-1 than that of resting T cells, and mAb to ICAM-1 blocked binding only modestly. The role of VCAM-1 and ICAM-1 during the transendothelial migration of T cells was also examined. Regardless of the activation status of the T cells or the EC, VCAM-1 was never found to function during transendothelial migration, even when it mediated the binding of resting T cells to IL-1-activated EC. In contrast, ICAM-1 played an important role in transendothelial migration under all of the conditions examined, including situations when T cell-EC binding was not mediated by ICAM-1. Immunoelectron microscopic analysis of transendothelial migration supported the conclusion that ICAM-1 but not VCAM-1 played a central role in this process. Thus, ICAM-1 was prominently and uniformly expressed at all EC membrane sites that were in contact with bound and migrating T cells, whereas VCAM-1 was localized to the luminal surface of IL-1-activated EC, but was often absent from the surface of the EC in contact with T cells undergoing transendothelial migration. These studies confirm that ICAM-1 and VCAM-1 play reciprocal roles in the binding of resting T cells to resting and IL-1-activated EC, respectively, but a less prominent role in the binding of activated T cells. Moreover, ICAM-1 but not VCAM-1 plays a role in transendothelial migration, regardless of the receptor-counter-receptor pairs used for initial binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号