首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
 Fluorescein isothiocyanate (FITC) is largely used in immunofluorescence methods. We propose to analyse the quality of some recent fluorochromes using image analysis. Fluorochromes tested include FITC and dichlorotriazinylaminofluorescein (DTAF), dipyrrometheneboron difluoride (BODIPY), Rhodol Green and cyanine 2. RAMOS cells were immunolabelled against the proliferating cell nuclear antigen (PCNA) revealed by the biotin-streptavidin technique. Slides were mounted in anhydrous glycerol or in buffered glycerol (pH 7.0 or pH 8.5). No antifading medium was added. Cell fluorescence emission intensity and bleaching characteristics were measured. Rhodol Green exhibited the highest fluorescence intensity and the best photobleaching resistance. Although BODIPY also resisted well during the photobleaching assay, its fluorescence intensity was weak. FITC, DTAF and cyanine 2 showed intermediate fluorescence intensity and a fast decay of fluorescence. Among the green emitting fluorochromes tested, Rhodol Green appeared to be the best. Accepted: 1 April 1996  相似文献   

2.
We present a comprehensive and analytical treatment of continuous photobleaching in a compartment, under single photon excitation. In the very short time regime (t<0.1 ms), the diffusion does not play any role. After a transition (or short time regime), one enters in the long time regime (t>0.1-5 s), for which the diffusion and the photobleaching balance each other. In this long time regime, the diffusion is either fast (i.e., the photobleaching probability of a molecule diffusing through the laser beam is low) so that the photobleaching rate is independent of the diffusion constant and dependent only of the laser power, or the diffusion is slow (i.e., the photobleaching probability is high) and the photobleaching rate is mainly dependent on the diffusion constant. We illustrate our theory by using giant unilamellar vesicles ranging from approximately 10 to 100 microm in diameter, loaded with molecules of various diffusion constants (from 20 to 300 microm2/s) and various photobleaching cross sections, illuminated under laser powers between 3 and 100 microW. We also demonstrated that information about compartmentation can be obtained by this method in living cells expressing enhanced green fluorescent proteins or that were loaded with small FITC-dextrans. Our quantitative approach shows that molecules freely diffusing in a cellular compartment do experience a continuous photobleaching. We provide a generic theoretical framework that should be taken into account when studying, under confocal microscopy, molecular interactions, permeability, etc.  相似文献   

3.
BACKGROUND: Slide-based cytometry is a key technology for polychromatic cytomic investigations. Here we exploit the relocalization and merge feature of Laser Scanning Cytometry for distinguishing fluorochromes of comparable emission spectra but different photostabilities. METHODS: Blood specimens were stained with the fluorochrome pairs: FITC/ALEXA488, PE/ALEXA532, or APC/ALEXA633. Bleaching was performed by repeated laser excitation. RESULTS: Since ALEXA dyes are photostable as compared to the conventional fluorochromes FITC, PE, and APC, a differentiation within one fluorochrome pair is possible. CONCLUSION: The sequential photobleaching method results in an increased information density on a single cell level and represents an important component to perform polychromatic cytometry.  相似文献   

4.
BACKGROUND: Polychromatic analysis of biological specimens has become increasingly important because of the emerging new fields of high-content and high-throughput single cell analysis for systems biology and cytomics. Combining different technologies and staining methods, multicolor analysis can be pushed forward to measure anything stainable in a cell. We term this approach hyperchromatic cytometry and present different components suitable for achieving this task. For cell analysis, slide based cytometry (SBC) technologies are ideal as, unlike flow cytometry, they are non-consumptive, i.e. the analyzed sample is fixed on the slide and can be reanalyzed following restaining of the object. METHODS AND RESULTS: We demonstrate various approaches for hyperchromatic analysis on a SBC instrument, the Laser Scanning Cytometer. The different components demonstrated here include (1) polychromatic cytometry (staining of the specimen with eight or more different fluorochromes simultaneously), (2) iterative restaining (using the same fluorochrome for restaining and subsequent reanalysis), (3) differential photobleaching (differentiating fluorochromes by their different photostability), (4) photoactivation (activating fluorescent nanoparticles or photocaged dyes), and (5) photodestruction (destruction of FRET dyes). Based on the ability to relocate cells that are immobilized on a microscope slide with a precision of approximately 1 microm, identical cells can be reanalyzed on the single cell level after manipulation steps. CONCLUSION: With the intelligent combination of several different techniques, the hyperchromatic cytometry approach allows to quantify and analyze all components of relevance on the single cell level. The information gained per specimen is only limited by the number of available antibodies and sterical hindrance.  相似文献   

5.
Fluorescence recovery after photobleaching has been an established technique of quantifying the mobility of molecular species in cells and cell membranes for more than 30 years. However, under nonideal experimental conditions, the current methods of analysis still suffer from occasional problems; for example, when the signal/noise ratio is low, when there are temporal fluctuations in the illumination, or when there is bleaching during the recovery process. We here present a method of analysis that overcomes these problems, yielding accurate results even under nonideal experimental conditions. The method is based on circular averaging of each image, followed by spatial frequency analysis of the averaged radial data, and requires no prior knowledge of the shape of the bleached area. The method was validated using both simulated and experimental fluorescence recovery after photobleaching data, illustrating that the diffusion coefficient of a single diffusing component can be determined to within ∼1%, even for small signal levels (100 photon counts), and that at typical signal levels (5000 photon counts) a system with two diffusion coefficients can be analyzed with <10% error.  相似文献   

6.
Photostability is one of the most important characteristic of a dye for fluorescence microscopy. Recently we demonstrated that vitamins present in imaging media dramatically accelerate photobleaching of Enhanced Green Fluorescent Protein (EGFP) and many other green fluorescent and photoactivatable proteins. Here we tested all vitamins of commonly used media (such as Dulbecco''s Modified Eagle Medium, DMEM) one-by-one and found that only two vitamins, riboflavin and pyridoxal, decrease photostability of EGFP. Thus, DMEM without riboflavin and pyridoxal can be used as an imaging medium, which ensures high photostability of GFPs at the expense of minimal biochemical disturbance. Then, we tested some antioxidants and found that a plant flavonoid rutin greatly enhances photostability of EGFP during live cell microscopy. In complete DMEM, rutin increased EGFP photostability up to the level of vitamin-depleted DMEM. Moreover, being added to vitamin-depleted DMEM, rutin was able to further suppress EGFP photobleaching. Potentially, new medium formulations can be widely used for fluorescence microscopy of GFP-expressing cells and model multicellular organisms in a variety of imaging applications, where photostability represents a challenge.  相似文献   

7.
A polarized photobleaching study of DNA reorientation in agarose gels   总被引:3,自引:0,他引:3  
Polarized fluorescence recovery after photobleaching (pFRAP) has been used to study the internal dynamics of relatively long DNA molecules embedded in gels that range in concentration from 1% to 5% agarose. The data indicate that, even in very congested gels, rapid internal relaxation of DNA is largely unhindered; however, interactions with gel matrices apparently do perturb the larger amplitude, more slowly (microseconds to milliseconds) relaxing internal motions of large DNAs. The relationship between this work and recent studies which indicate that internal motions of DNA play an important role in the separation achieved with pulsed-field gel electrophoresis techniques is discussed. The polarized photobleaching technique is also analyzed in some detail. In particular, it is shown that "reversible" photobleaching phenomena are probably related to depletion of the ground state by intersystem crossing to the triplet state.  相似文献   

8.
We demonstrate theoretically and experimentally the quantification of Förster resonance energy transfer (FRET) by direct and systematic saturation of the excited state of acceptor molecules. This version of acceptor depletion methods for FRET estimation, denoted as “satFRET” is reversible and suitable for time-resolved measurements. The technique was investigated theoretically using the steady-state solution of the differential equation system of donor and acceptor molecular states. The influence of acceptor photobleaching during measurement was included in the model. Experimental verification was achieved with the FRET-pair Alexa 546- Alexa 633 loaded on particles in different stoichiometries and measured in a confocal microscope. Estimates of energy transfer efficiency by excited state saturation were compared to those obtained by measurements of sensitised emission and acceptor photobleaching. The results lead to a protocol that allows time-resolved FRET measurements of fixed and living cells on a conventional confocal microscope. This procedure was applied to fixed Chinese hamster ovary cells containing a cyan fluorescent protein and yellow fluorescent protein pair. The time resolution of the technique was demonstrated in a live T cell activation assay comparing the FRET efficiencies measured using a genetically encoded green and red fluorescent protein biosensor for GTP/GDP turnover to those measured by acceptor photobleaching of fixed cells.  相似文献   

9.
A variation of fluorescence photobleaching recovery (FPR) suitable for measuring the rate of rotational molecular diffusion in solution and cell membranes is presented in theory and experimental practice for epi-illumination microscopy. In this technique, a brief flash of polarized laser light creates an anisotropic distribution of unbleached fluorophores which relaxes by rotational diffusion, leading to a time-dependent postbleach fluorescence. Polarized FPR (PFPR) is applicable to any time scales from seconds to microseconds. However, at fast (microsecond) time scales, a partial recovery independent of molecular orientation tends to obscure rotational effects. The theory here presents a method for overcoming this reversible photobleaching, and includes explicit results for practical geometries, fast wobble of fluorophores, and arbitrary bleaching depth. This variation of a polarized luminescence "pump-and-probe" technique is compared with prior ones and with "pump-only" time-resolved luminescence anisotropy decay methods. The technique is experimentally verified on small latex beads with a variety of diameters, common fluorophore labels, and solvent viscosities. Preliminary measurements on a protein (acetylcholine receptor) in the membrane of nondeoxygenated cells in live culture (rat myotubes) show a difference in rotational diffusion between clustered and nonclustered receptors. In most experiments, signal averaging, high laser power, and automated sample translation must be employed to achieve adequate statistical accuracy.  相似文献   

10.
Multiphoton fluorescence recovery after photobleaching is a well-established microscopy technique used to measure the diffusion of macromolecules in biological systems. We have developed an improved model of the fluorescence recovery that includes the effects of convective flows within a system. We demonstrate the validity of this two-component diffusion-convection model through in vitro experimentation in systems with known diffusion coefficients and known flow speeds, and show that the diffusion-convection model broadens the applicability of the multiphoton fluorescence recovery after photobleaching technique by enabling accurate determination of the diffusion coefficient, even when significant flows are present. Additionally, we find that this model allows for simultaneous measurement of the flow speed in certain regimes. Finally, we demonstrate the effectiveness of the diffusion-convection model in vivo by measuring the diffusion coefficient and flow speed within tumor vessels of 4T1 murine mammary adenocarcinomas implanted in the dorsal skinfold chamber.  相似文献   

11.
Reliable double immunofluorescence labeling for confocal laser scanning microscopy requires good separation of the signals generated by the fluorochromes. We have successfully overcome the limitation of a single argon ion laser in achieving effective excitation of dyes with well-separated emission spectra by employing the novel sulfonated rhodamine fluorochromes designated Alexa 488 and Alexa 568. The more abundant antigen was visualized using the red-emitting Alexa 568, with amplification of the signal by a biotinylated bridging antibody and labeled streptavidin. This was combined with the green-emitting Alexa 488, which yielded brighter images than fluorescein but exhibited comparable photodegradation. With appropriate controls to ensure the absence of crosstalk between fluorescence channels, these dyes permitted unequivocal demonstration of co-localization. This combination of fluorochromes may also offer advantages for users of instruments equipped with alternative laser systems.  相似文献   

12.
Color variants of green fluorescent protein (GFP) are increasingly used for multicolor imaging, fluorescence resonance energy transfer (FRET), and fluorescence recovery after photobleaching (FRAP). Here we show that experimental settings commonly used in these imaging experiments may induce an as yet uncharacterized reversible photobleaching of fluorescent proteins, which is more pronounced at acidic pH. Whereas the reversible photobleaching spectrum of eCFP corresponds to its absorption spectrum, reversible photobleaching spectra of yellow variants resemble absorption spectra of their protonated states. Fluorescence intensities recover spontaneously with time constants of 25-58 s. The recovery of eCFP can be further accelerated by illumination. The resulting steady-state fluorescence reflects a variable equilibrium between reversible photobleaching, spontaneous recovery, and light-induced recovery. These processes can cause significant artifacts in commonly applied imaging techniques, photobleach-based FRET determinations, and FRAP assays.  相似文献   

13.
Fluorescence recovery after photobleaching (FRAP) experiments to measure the mobility of cell surface components require a brief, but intense, pulse of light to photobleach the fluorescence in a restricted area of the cell. We studied possible photodamage to the cell surface during the photobleaching step using light and scanning electron microscopy (SEM) and various FRAP measurements themselves. The cell membrane was left impermeable to trypan blue after photobleaching. SEM studies show that the morphology of the cell surface is not altered by photobleaching. Cells can be repeatedly photobleached and/or photobleached using longer bleach times and greater intensities without systematically altering FRAP kinetics. Singlet oxygen quenchers or free radical traps designed to inhibit putative photoreagents produced during photobleaching do not markedly affect the results. Fluorescein and rhodamine labels give similar results. All of these results, obtained with several different monolayer cultures, suggest that photodamage induced during photobleaching is not a serious artefact in the cellular FRAP results obtained to date.  相似文献   

14.
A generally applicable technique is described that permits easy identification and isolation of heterokaryons a few hours after fusion. It is based on the labelling of living cells with different fluorochromes, which, at appropriate concentrations do not affect viability or gene expression. Both fluorochromes are relatively stable and do not cross-contaminate unlabelled cells. The technique has a powerful potential in studies on gene regulation in somatic cell hybrids since heterofluorescent hybrids between any type of cells can be isolated directly from large populations of monofluorescent parental cells by using a cell sorter equipped with a single laser. Thus the technique avoids the need for genetically marked parental cells for selection.  相似文献   

15.
“PEG-like Nanoprobes” (PN’s) are pharmacokinetically and optically tunable nanomaterials whose disposition in biological systems can be determined by fluorescence or radioactivity. PN’s feature a unique design where a single PEG polymer surrounds a short fluorochrome and radiometal bearing peptide, and endows the resulting nanoprobe with pharmacokinetic control (based on molecular weight of the PEG selected) and optical tunability (based on the fluorochrome selected), while the chelate provides a radiolabeling option. PN’s were used to image brain capillary angiography (intravital 2-photon microscopy), tumor capillary permeability (intravital fluorescent microscopy), and the tumor enhanced permeability and retention (EPR) effect (111In-PN and SPECT). Clinical applications of PN’s include use as long blood half-life fluorochromes for intraoperative angiography, for measurements of capillary permeability in breast cancer lesions, and to image EPR by SPECT, for stratifying patient candidates for long-circulating nanomedicines that may utilize the EPR mechanism.  相似文献   

16.
We utilized fluorescence recovery after photobleaching (FRAP) and fluorescence correlation spectroscopy (FCS) to examine the role of gallbladder mucin (GBM) in promoting the aggregation and/or fusion of cholesterol enriched vesicles. By fluorescent labeling either the vesicle or the mucin, we could examine the change in vesicle size as well as changes in mucin's diffusion constant. Both FRAP and FCS show that GBM has a profound effect in inducing vesicles to aggregate/fuse, particularly after overnight incubation. GBM mucin domains (either protease digested or reduced GBM) are not as effective as native GBM. Intact GBM alone was able to shorten crystal appearance time and increase the number of crystals nucleated by polarized optical microscopy. In summary, our findings would suggest that both glycosylated and nonglycosylated domains of GBM are involved in early aggregation of cholesterol enriched vesicles but that this effect is reversible in the absence of nonglycosylated domains.  相似文献   

17.
Surface labelling of plant protoplasts was tested for use in mass fusion systems and heterokaryon detection. Parameters have been established for biotinylation and subsequent incubation with avidin-coupled fluorochromes. The procedure is rapid (less than 3 hours) and does not affect viability. Fusion responses were the same as with unlabelled protoplasts. From a range of fluorochromes tested, fluorescein and phycoerythrin proved best suited for detection experiments with protoplasts of both suspension and leaf origin. With this standard combination of labels, as applied in experiments with animal cells, heterokaryons from fused plant protoplasts could clearly be discriminated from other protoplasts by means of fluorescence microscopy or flow cytometry with a single combination of filters and wavelengths.  相似文献   

18.
Qifeng Li 《Biophysical journal》2009,97(12):3224-3228
We report applications of two-photon excitation fluorescence (2PEF) microscopy with subdiffraction-limit resolution for green-fluorescent-protein-tagged cell imaging. The microscope integrates 2PEF microscopy and stimulated emission depletion microscopy in one microscope that has the benefits of both techniques: intrinsic three-dimensional resolution, confined photobleaching, and subdiffraction-limit resolution. The subdiffraction-limit resolution was demonstrated by resolving green-fluorescent-protein-tagged caveolar vesicles located within a distance shorter than the diffraction limit of a regular 2PEF microscope, which is ∼250 nm even with the best optics. The full width at half-maximum of the effective point-spread function for the 2PEF microscope was estimated to be ∼54 nm.  相似文献   

19.
Photoconvertible fluorescent proteins (PCFPs) are widely used in super-resolution microscopy and studies of cellular dynamics. However, our understanding of their photophysics is still limited, hampering their quantitative application. For example, we do not know the optimal sample preparation methods or imaging conditions to count protein molecules fused to PCFPs by single-molecule localization microscopy in live and fixed cells. We also do not know how the behavior of PCFPs in live cells compares with fixed cells. Therefore, we investigated how formaldehyde fixation influences the photophysical properties of the popular green-to-red PCFP mEos3.2 in fission yeast cells under a wide range of imaging conditions. We estimated photophysical parameters by fitting a three-state model of photoconversion and photobleaching to the time course of fluorescence signal per yeast cell expressing mEos3.2. We discovered that formaldehyde fixation makes the fluorescence signal, photoconversion rate, and photobleaching rate of mEos3.2 sensitive to the buffer conditions likely by permeabilizing the yeast cell membrane. Under some imaging conditions, the time-integrated mEos3.2 signal per yeast cell is similar in live cells and fixed cells imaged in buffer at pH 8.5 with 1 mM DTT, indicating that light chemical fixation does not destroy mEos3.2 molecules. We also discovered that 405-nm irradiation drove some red-state mEos3.2 molecules to enter an intermediate dark state, which can be converted back to the red fluorescent state by 561-nm illumination. Our findings provide a guide to quantitatively compare conditions for imaging mEos3.2-tagged molecules in yeast cells. Our imaging assay and mathematical model are easy to implement and provide a simple quantitative approach to measure the time-integrated signal and the photoconversion and photobleaching rates of fluorescent proteins in cells.  相似文献   

20.
Fluorescence recovery after photobleaching (FRAP) is a widely used imaging technique for measuring the mobility of fluorescently tagged proteins in living cells. Although FRAP presumes that high-intensity illumination causes only irreversible photobleaching, reversible photoswitching of many fluorescent molecules, including GFP, can also occur. Here, we show that this photoswitching is likely to contaminate many FRAPs of GFP, and worse, the size of its contribution can be up to 60% under different experimental conditions, making it difficult to compare FRAPs from different studies. We develop a procedure to correct FRAPs for photoswitching and apply it to FRAPs of the GFP-tagged histone H2B, which, depending on the precise photobleaching conditions exhibits apparent fast components ranging from 9-36% before correction and ~1% after correction. We demonstrate how this ~1% fast component of H2B-GFP can be used as a benchmark both to estimate the role of photoswitching in previous FRAP studies of TATA binding proteins (TBP) and also as a tool to minimize the contribution of photoswitching to tolerable levels in future FRAP experiments. In sum, we show how the impact of photoswitching on FRAP can be identified, minimized, and corrected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号