首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of trimannoside, α?benzyl 3, 6‐di‐O‐(α‐D ‐mannopyranosyl)‐α‐D ‐mannopyranoside, 1 with ASAI (Allium sativam agglutinin I, garlic lectin) was studied to reveal the conformational preferences of this ligand in bound‐state and detailed binding mode at atomic level. The binding phenomenon was then compared with another well‐known mannose‐binding lectin, ConA (Concanavalin A). Structural studies of the ligand in free state were done using NMR spectroscopy and Molecular Dynamics simulations. It is found that the substituted‐trimannoside can undergo conformational transitions in solution, with one major and one minor conformation per glycosidic linkage (α 1→3 and α 1→6). On the other hand in the bound‐state only one of the two major conformations was significantly populated. The role of phenyl ring in the binding process was explored. An extended binding site was observed for the trimannoside in ASAI utilizing the aromatic substituent, which is not seen in ConA. Binding data from difference absorption spectroscopy supported this fact that the binding of benzyl‐substituted ligand is tighter with ASAI than ConA. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 952–967, 2010.  相似文献   

2.
Spatholobus parviflorus seed lectin (SPL) is a heterotetrameric lectin, with two α and two β monomers. In the crystal structure of SPL α monomer, two residues at positions 240 and 241 are missing. This region was modeled based on the positional and sequence similarities. The role of metal ions in SPL structure was analyzed by 10 ns molecular dynamics simulation. MD simulations were performed in the presence and absence of metal ions to explain the loss of haemagglutinating property of the lectin due to demetallization. Demetallized structure was found to deviate drastically at the metal binding loop region. Affinity of different sugars like N-acetyl galactosamine (GalNAc), D-galactose and lactose towards the native and demetallized protein was calculated by molecular docking studies. It was found that the sugar binding site got severely distorted in demetallized lectin. Consequently, sugar binding ability of lectin might be decreasing in the demetallized condition. Isothermal titration calorimetric (ITC) analysis of the sugars in the presence of native and demetallized protein confirmed the in silico results. It was observed after molecular dynamics simulations, that significant structural deviations were not caused in the quaternary structure of demetallized lectin. It was confirmed that the structural changes modified the sugar binding ability, as well as sugar specificity of the present lectin. The role of metal ions in sugar binding is described based on the in silico studies and ITC analysis. A comprehensive analysis of the ITC data suggests that the sugar specificity of the metal bound lectin and the loss of sugar specificity due to metal chelation are not linear.
Figure
Role of metal ions in sugar binding of Spatholobus parviflorus seed lectin  相似文献   

3.
Glucosamine-6-phosphate synthase (GlmS) channels ammonia from glutamine at the glutaminase site to fructose 6-phosphate (Fru6P) at the synthase site. Escherichia coli GlmS is composed of two C-terminal synthase domains that form the dimer interface and two N-terminal glutaminase domains at its periphery. We report the crystal structures of GlmS alone and in complex with the glucosamine-6-phosphate product at 2.95 Å and 2.9 Å resolution, respectively. Surprisingly, although the whole protein is present in this crystal form, no electron density for the glutaminase domain was observed, indicating its mobility. Comparison of the two structures with that of the previously reported GlmS-Fru6P complex shows that, upon sugar binding, the C-terminal loop, which forms the major part of the channel walls, becomes ordered and covers the synthase site. The ordering of the glutaminase domains likely follows Fru6P binding by the anchoring of Trp74, which acts as the gate of the channel, on the closed C-terminal loop. This is accompanied by a major conformational change of the side chain of Lys503# of the neighboring synthase domain that strengthens the interactions of the synthase domain with the C-terminal loop and completely shields the synthase site. The concomitant conformational change of the Lys503#-Gly505# tripeptide places catalytic His504# in the proper position to open the sugar and buries the linear sugar, which is now in the vicinity of the catalytic groups involved in the sugar isomerization reaction. Together with the previously reported structures of GlmS in complex with Fru6P or glucose 6-phosphate and a glutamine analogue, the new structures reveal the structural changes occurring during the whole catalytic cycle.  相似文献   

4.
Anhydro-sugar kinases are unique from other sugar kinases in that they must cleave the 1,6-anhydro ring of their sugar substrate to phosphorylate it using ATP. Here we show that the peptidoglycan recycling enzyme 1,6-anhydro-N-acetylmuramic acid kinase (AnmK) from Pseudomonas aeruginosa undergoes large conformational changes during its catalytic cycle, with its two domains rotating apart by up to 32° around two hinge regions to expose an active site cleft into which the substrates 1,6-anhydroMurNAc and ATP can bind. X-ray structures of the open state bound to a nonhydrolyzable ATP analog (AMPPCP) and 1,6-anhydroMurNAc provide detailed insight into a ternary complex that forms preceding an operative Michaelis complex. Structural analysis of the hinge regions demonstrates a role for nucleotide binding and possible cross-talk between the bound ligands to modulate the opening and closing of AnmK. Although AnmK was found to exhibit similar binding affinities for ATP, ADP, and AMPPCP according to fluorescence spectroscopy, small angle x-ray scattering analyses revealed that AnmK adopts an open conformation in solution in the absence of ligand and that it remains in this open state after binding AMPPCP, as we had observed for our crystal structure of this complex. In contrast, the enzyme favored a closed conformation when bound to ADP in solution, consistent with a previous crystal structure of this complex. Together, our findings show that the open conformation of AnmK facilitates binding of both the sugar and nucleotide substrates and that large structural rearrangements must occur upon closure of the enzyme to correctly align the substrates and residues of the enzyme for catalysis.  相似文献   

5.
BackgroundTim21, a subunit of a highly dynamic translocase of the inner mitochondrial membrane (TIM23) complex, translocates proteins by interacting with subunits in the translocase of the outer membrane (TOM) complex and Tim23 channel in the TIM23 complex. A loop segment in Tim21, which is in close proximity of the binding site of Tim23, has different conformations in X-ray, NMR and new crystal contact-free space (CCFS) structures. MD simulations can provide information on the structure and dynamics of the loop in solution.MethodsThe conformational ensemble of the loop was characterized using loop modeling and molecular dynamics (MD) simulations.ResultsMD simulations confirmed mobility of the loop. Multidimensional scaling and clustering were used to characterize the dynamic conformational ensemble of the loop. Free energy landscape showed that the CCFS crystal structure occupied a low energy region as compared to the conventional X-ray crystal structure. Analysis of crystal packing indicates that the CCFS provides larger conformational space for the motions of the loop.ConclusionsOur work reported the conformational ensemble of the loop in solution, which is in agreement with the structure obtained from CCFS approach. The combination of the experimental techniques and computational methods is beneficial for studying highly flexible regions of proteins.General significanceComputational methods, such as loop modeling and MD simulations, have proved to be useful for studying conformational flexibility of proteins. These methods in integration with experimental techniques such as CCFS has the potential to transform the studies on flexible regions of proteins.  相似文献   

6.
OpcA is an integral outer membrane adhesin protein from Neisseria meningitidis, the causative agent of meningococcal meningitis and septicemia. It binds to sialic acid (SA)-containing polysaccharides on the surface of epithelial cells. The crystal structure of OpcA showed that the protein adopts a 10-stranded beta-barrel structure, with five extensive loop regions on the extracellular side of the membrane. These form a crevice structure, lined with basic residues, which was hypothesized to act as the binding site for polysaccharide ligands. In the current study, a distinctly different OpcA structure has been obtained using crystals grown from a lipidic mesophase. Comparison of the two structures shows that the largest loop (L2), which closes over the end of the beta-barrel in the original crystal form, adopts a much more extended structure by reaching outward and away from the protein. The difference in conformation may be attributable to the absence of zinc ions from the crystallization conditions for the in meso crystal form: in the original structure, two zinc ions were bound to the external loops. Molecular dynamics (MD) simulations performed on the two OpcA models in a lipid bilayer environment demonstrated pronounced loop mobility. These observations support the view that the loop regions of OpcA are capable of a high degree of conformational flexibility. The original binding site for polysaccharide is not present in the in meso crystal form, and is disrupted during MD simulations. Docking analysis suggests a putative alternative location for the SA ligand in the new crystal form of OpcA.  相似文献   

7.
Density functional theory (DFT) calculations were performed at the B3LYP level with a 6-311++G(d,p) basis set to systematically explore the geometrical multiplicity and binding strength for complexes formed by Li+, Na+, and K+ with cytidine and 2′-deoxycytidine. All computational studies indicate that the metal ion affinity (MIA) decreases from Li+ to Na+ and K+ for cytosine nucleosides. For example, for cytidine the affinity for the above metal ions are 79.5, 55.2, and 41.8 and for 2′-deoxycytidine, 82.8, 57.4, and 42.2 kcal/mol, respectively. It is also interesting to mention that linear correlations between calculated MIA values and the atomic numbers (Z) of the above metal ions were found. The influence of metal cationization on the coordination modes and the strength of the N-glycosidic bond in cytosine nucleosides have been studied. In all cases, the N1-C1′ bond distance changes upon introducing a positive charge in the nucleosides. It has been found that metal binding significantly changes the values of the phase angle of pseudorotation P in the sugar unit of these nucleosides. With respect to the sugar ring, metal binding changes the values of the glycosyl torsion angle and sugar ring conformation. The present calculations in the gas phase provide the first clues on the intrinsic chemistry of these systems and may be of value for studies of the influence of metal cations on the conformational behavior and function of nucleic acids.  相似文献   

8.

Background

Actinidin, a protease from kiwifruit, belongs to the C1 family of cysteine proteases. Cysteine proteases were found to be involved in many disease states and are valid therapeutic targets. Actinidin has a wide pH activity range and wide substrate specificity, which makes it a good model system for studying enzyme–substrate interactions.

Methods

The influence of inhibitor (E-64) binding on the conformation of actinidin was examined by 2D PAGE, circular dichroism (CD) spectroscopy, hydrophobic ligand binding assay, and molecular dynamics simulations.

Results

Significant differences were observed in electrophoretic mobility of proteolytically active and E-64-inhibited actinidin. CD spectrometry and hydrophobic ligand binding assay revealed a difference in conformation between active and inhibited actinidin. Molecular dynamics simulations showed that a loop defined by amino-acid residues 88–104 had greater conformational mobility in the inhibited enzyme than in the active one. During MD simulations, the covalently bound inhibitor was found to change its conformation from extended to folded, with the guanidino moiety approaching the carboxylate.

Conclusions

Conformational mobility of actinidin changes upon binding of the inhibitor, leading to a sequence of events that enables water and ions to protrude into a newly formed cavity of the inhibited enzyme. Drastic conformational mobility of E-64, a common inhibitor of cysteine proteases found in many crystal structures stored in PDB, was also observed.

General significance

The analysis of structural changes which occur upon binding of an inhibitor to a cysteine protease provides a valuable starting point for the future design of therapeutic agents.  相似文献   

9.
Considerable progress has been made in recent years in our understanding of the structural basis of glycosyl transfer. Yet the nature and relevance of the conformational changes associated with substrate recognition and catalysis remain poorly understood. We have focused on the glucosyl-3-phosphoglycerate synthase (GpgS), a "retaining" enzyme, that initiates the biosynthetic pathway of methylglucose lipopolysaccharides in mycobacteria. Evidence is provided that GpgS displays an unusually broad metal ion specificity for a GT-A enzyme, with Mg(2+), Mn(2+), Ca(2+), Co(2+), and Fe(2+) assisting catalysis. In the crystal structure of the apo-form of GpgS, we have observed that a flexible loop adopts a double conformation L(A) and L(I) in the active site of both monomers of the protein dimer. Notably, the L(A) loop geometry corresponds to an active conformation and is conserved in two other relevant states of the enzyme, namely the GpgS·metal·nucleotide sugar donor and the GpgS·metal·nucleotide·acceptor-bound complexes, indicating that GpgS is intrinsically in a catalytically active conformation. The crystal structure of GpgS in the presence of Mn(2+)·UDP·phosphoglyceric acid revealed an alternate conformation for the nucleotide sugar β-phosphate, which likely occurs upon sugar transfer. Structural, biochemical, and biophysical data point to a crucial role of the β-phosphate in donor and acceptor substrate binding and catalysis. Altogether, our experimental data suggest a model wherein the catalytic site is essentially preformed, with a few conformational changes of lateral chain residues as the protein proceeds along the catalytic cycle. This model of action may be applicable to a broad range of GT-A glycosyltransferases.  相似文献   

10.
Optical melting was used to determine the stabilities of 11 small RNA oligomers of defined secondary structure as a function of magnesium ion concentration. The oligomers included helices composed of Watson-Crick base pairs, GA tandem base pairs, GU tandem base pairs, and loop E motifs (both eubacterial and eukaryotic). The effect of magnesium ion concentration on stability was interpreted in terms of two simple models. The first assumes an uptake of metal ion upon duplex formation. The second assumes nonspecific electrostatic attraction of metal ions to the RNA oligomer. For all oligomers, except the eubacterial loop E, the data could best be interpreted as nonspecific binding of metal ions to the RNAs. The effect of magnesium ions on the stability of the eubacterial loop E was distinct from that seen with the other oligomers in two ways. First, the extent of stabilization by magnesium ions (as measured by either change in melting temperature or free energy) was three times greater than that observed for the other helical oligomers. Second, the presence of magnesium ions produces a doubling of the enthalpy for the melting transition. These results indicate that magnesium ion stabilizes the eubacterial loop E sequence by chelating the RNA specifically. Further, these results on a rather small system shed light on the large enthalpy changes observed upon thermal unfolding of large RNAs like group I introns. It is suggested that parts of those large enthalpy changes observed in the folding of RNAs may be assigned to variations in the hydration states and types of coordinating atoms in some specifically bound magnesium ions and to an increase in the observed cooperativity of the folding transition due to the binding of those magnesium ions coupling the two stems together. Brownian dynamic simulations, carried out to visualize the metal ion binding sites, reveal rather delocalized ionic densities in all oligomers, except for the eubacterial loop E, in which precisely located ion densities were previously calculated.  相似文献   

11.
The Edema Factor (EF), one of the virulence factors of anthrax, is an adenylyl cyclase that promotes the overproduction of cyclic‐AMP (cAMP) from ATP, and therefore perturbs cell signaling. Crystallographic structures of EF bound to ATP analogs and reaction products, cyclic‐AMP, and Pyrophosphate (PPi), revealed different substrate conformations and catalytic‐cation binding modes, one or two cations being observed in the active site. To shed light into the biological significance of these crystallographic structures, the energetics, geometry, and dynamics of the active site are analyzed using molecular dynamics simulations. The ATP conformation observed in the one‐metal‐ion structure allows stronger interactions with the catalytic ion, and ATP is more restrained than in the structure containing two Mg2+ ions. Therefore, we propose that the conformation observed in the one‐ion crystal structure is a more probable starting point for the reaction. The simulations also suggest that a C3′‐endo sugar pucker facilitates nucleophilic attack. Additionally, the two‐cation binding mode restrains the mobility of the reaction products, and thus their tendency to dissociate. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
The structural X-ray map of a pig pancreatic α-amylase crystal soaked (and flash-frozen) with a maltopentaose substrate showed a pattern of electron density corresponding to the binding of oligosaccharides at the active site and at three surface binding sites. The electron density region observed at the active site, filling subsites ?3 through ?1, was interpreted in terms of the process of enzyme-catalyzed hydrolysis undergone by maltopentaose. Because the expected conformational changes in the “flexible loop” that constitutes the surface edge of the active site were not observed, the movement of the loop may depend on aglycone site being filled. The crystal structure was refined at 2.01 å resolution to an R factor of 17.0% (R free factor of 19.8%). The final model consists of 3910 protein atoms, one calcium ion, two chloride ions, 103 oligosaccharide atoms, 761 atoms of water molecules, and 23 ethylene glycol atoms.  相似文献   

13.
14.
Fifteen independent 1-nsec MD simulations of fully solvated Ca(2+) saturated calmodulin (CaM) mutant D129N were performed from different initial conditions to provide a sufficient statistical basis to gauge the significance of observed dynamical properties. In all MD simulations the four Ca(2+) ions remained in their binding sites, and retained a single water ligand as observed in the crystal structure. The coordination of Ca(2+) ions in EF-hands I, II, and III was sevenfold. In EF-hand IV, which was perturbed by the mutation of a highly conserved Asp129, an anomalous eightfold Ca(2+) coordination was observed. The Ca(2+) binding loop in EF-hand II was observed to dynamically sample conformations related to the Ca(2+)-free form. Repeated MD simulations implicate two well-defined conformations of Ca(2+) binding loop II, whereas similar effect was not observed for loops I, III, and IV. In 8 out of 15 MD simulations Ca(2+) binding loop II adopted an alternative conformation in which the Thr62 >C=O group was displaced from the Ca(2+) coordination by a water molecule, resulting in the Ca(2+) ion ligated by two water molecules. The alternative conformation of the Ca(2+) binding loop II appears related to the "closed" state involved in conformational exchange previously detected by NMR in the N-terminal domain fragment of CaM and the C-terminal domain fragment of the mutant E140Q. MD simulations suggest that conformations involved in microsecond exchange exist partially preformed on the nanosecond time scale.  相似文献   

15.
Abstract

The ubiquitously occurring chaperonins consist of a large tetradecameric Chaperonin-60, forming a cylindrical assembly, and a smaller heptameric Chaperonin-10. For a functional protein folding cycle, Chaperonin-10 caps the cylindrical Chaperonin-60 from one end forming an asymmetric complex. The oligomeric assembly of Chaperonin-10 is known to be highly plastic in nature. In Mycobacterium tuberculosis, the plasticity has been shown to be modulated by reversible binding of divalent cations. Binding of cations confers rigidity to the metal binding loop, and also promotes stability of the oligomeric structure. We have probed the conformational effects of cation binding on the Chaperonin-10 structure through fluorescence studies and molecular dynamics simulations. Fluorescence studies show that cation binding induces reduced exposure and flexibility of the dome loop. The simulations corroborate these results and further indicate a complex landscape of correlated motions between different parts of the molecule. They also show a fascinating interplay between two distantly spaced loops, the metal binding “dome loop” and the GroEL-binding “mobile loop”, suggesting an important cation-mediated role in the recognition of Chaperonin-60. In the presence of cations the mobile loop appears poised to dock onto the Chaperonin-60 structure. The divalent metal ions may thus act as key elements in the protein folding cycle, and trigger a conformational switch for molecular recognition.  相似文献   

16.
The β-1,4-galactosyltransferase 7 (β4GalT7) enzyme is involved in proteoglycan synthesis. In the presence of a manganese ion, it transfers galactose from UDP-galactose to xylose on a proteoglycan acceptor substrate. We present here the crystal structures of human β4GalT7 in open and closed conformations. A comparison of these crystal structures shows that, upon manganese and UDP or UDP-Gal binding, the enzyme undergoes conformational changes involving a small and a long loop. We also present the crystal structures of Drosophila wild-type β4GalT7 and D211N β4GalT7 mutant enzymes in the closed conformation in the presence of the acceptor substrate xylobiose and the donor substrate UDP-Gal, respectively. To understand the catalytic mechanism, we have crystallized the ternary complex of D211N β4GalT7 mutant enzyme in the presence of manganese with the donor and the acceptor substrates together in the same crystal structure. The galactose moiety of the bound UDP-Gal molecule forms seven hydrogen bonds with the protein molecule. The nonreducing end of the xylose moiety of xylobiose binds to the hydrophobic acceptor sugar binding pocket created by the conformational changes, whereas its extended xylose moiety forms hydrophobic interactions with a Tyr residue. In the ternary complex crystal structure, the nucleophile O4 oxygen atom of the xylose molecule is found in close proximity to the C1 and O5 atoms of the galactose moiety. This is the first time that a Michaelis complex of a glycosyltransferase has been described, and it clearly suggests an SN2 type catalytic mechanism for the β4GalT7 enzyme.  相似文献   

17.
The methionine S-sulfoxide reductase MsrA catalyzes the reduction of methionine sulfoxide, a ubiquitous reaction depending on the thioredoxin system. To investigate interactions between MsrA and thioredoxin (Trx), we determined the crystal structures of yeast MsrA/Mxr1 in their reduced, oxidized, and Trx2-complexed forms, at 2.03, 1.90, and 2.70 Å, respectively. Comparative structure analysis revealed significant conformational changes of the three loops, which form a plastic “cushion” to harbor the electron donor Trx2. The flexible C-terminal loop enabled Mxr1 to access the methionine sulfoxide on various protein substrates. Moreover, the plasticity of the Trx binding site on Mxr1 provides structural insights into the recognition of diverse substrates by a universal catalytic motif of Trx.  相似文献   

18.
19.
Hexokinase catalyzes the phosphorylation of glucose to glucose 6-phosphate by using ATP as a phosphoryl donor. Recently, we identified and characterized an ATP-dependent hexokinase (StHK) from the hyperthermophilic archaeon Sulfolobus tokodaii, which can phosphorylate a broad range of sugar substrates, including glucose, mannose, glucosamine, and N-acetylglucosamine. Here we present the crystal structures of StHK in four different forms: (i) apo-form, (ii) binary complex with glucose, (iii) binary complex with ADP, and (iv) quaternary complex with xylose, Mg(2+), and ADP. Forms i and iii are in the open state, and forms ii and iv are in the closed state, indicating that sugar binding induces a large conformational change, whereas ADP binding does not. The four different crystal structures of the same enzyme provide "snapshots" of the conformational changes during the catalytic cycle. StHK exhibits a core fold characteristic of the hexokinase family, but the structures of several loop regions responsible for substrate binding are significantly different from those of other known hexokinase family members. Structural comparison of StHK with human N-acetylglucosamine kinase and other hexokinases provides an explanation for the ability of StHK to phosphorylate both glucose and N-acetylglucosamine. A Mg(2+) ion and coordinating water molecules are well defined in the electron density of the quaternary complex structure. This structure represents the first direct visualization of the binding mode for magnesium to hexokinase and thus allows for a better understanding of the catalytic mechanism proposed for the entire hexokinase family.  相似文献   

20.
Tris-bipyridine ferrous and ruthenium complexes carrying various saccharide appendages have been investigated to develop sensory systems for monitoring saccharide-binding phenomena. Ferrous O-glycoclusters having spacer moieties inserted between saccharide appendages and the complex core showed enhanced affinities to lectins, but ferrous N-glycoclusters, in which the saccharide-appendages are directly linked to the complex core via amide linkage, had low lectin-affinities. Molecular dynamics calculation indicated that the O-glycoclusters have flexible and densely packed saccharide clusters, in contrast to the octahedrally fixed saccharide arrays of N-glycoclusters. Flexibility of saccharide clusters is essential for their enhanced affinity, probably to induce conformational change to fit the recognition sites of lectins. According to these insights, ruthenium O-glycoclusters have been designed as luminescence biosensors. The ruthenium complexes carrying alpha-manno clusters exhibited excellent affinities (IC(min) = 9.0 x 10(-)(8) M) to concanavalin A (ConA). It is suggested from conformational analysis that densely packed mannoclusters can be fit properly to the recognition site of ConA. The binding was enthalpicaly driven (deltaH degrees = -21.8 kcal/mol). This binding behavior is quite similar to that of 1-3/1-6 trimannoside to ConA. They have strongly amplified luminescence (Phi(em) = 0.15), and their luminescence intensities were changed (approximately 40%) upon binding to the specific lectins. The ruthenium glycoclusters can be a suitable sensory system for saccharide-binding phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号