首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pancreas disease (PD) of Atlantic salmon is an emerging disease caused by Salmonid alphavirus (SAV) which mainly affects salmonid aquaculture in Western Europe. Although genome structure of SAV has been characterized and each individual viral protein has been identified, the role of 6K protein in viral replication and infectivity remains undefined. The 6K protein of alphaviruses is a small and hydrophobic protein which is involved in membrane permeabilization, protein processing and virus budding. Because these common features are shared across many viral species, they have been named viroporins. In the present study, we applied reverse genetics to generate SAV3 6K-deleted (Δ6K) variant and investigate the role of 6K protein. Our findings show that the 6K-deletion variant of salmonid alphavirus is non-viable. Despite viral proteins of Δ6K variant are detected in the cytoplasm by immunostaining, they are not found on the cell surface. Further, analysis of viral proteins produced in Δ6K cDNA clone transfected cells using radioimmunoprecipitation (RIPA) and western blot showed a protein band of larger size than E2 of wild-type SAV3. When Δ6K cDNA was co-transfected with SAV3 helper cDNA encoding the whole structural genes including 6K, the infectivity was rescued. The development of CPE after co-transfection and resolved genome sequence of rescued virus confirmed full-length viral genome being generated through RNA recombination. The discovery of the important role of the 6K protein in virus production provides a new possibility for the development of antiviral intervention which is highly needed to control SAV infection in salmonids.  相似文献   

2.
Viruses must efficiently and specifically package their genomes while excluding cellular nucleic acids and viral subgenomic fragments. Some viruses use specific packaging signals, which are conserved sequence or structure motifs present only in the full-length genome. Recent work has shown that viral proteins important for packaging can undergo liquid-liquid phase separation (LLPS), in which one or two viral nucleic acid binding proteins condense with the genome. The compositional simplicity of viral components lends itself well to theoretical modeling compared with more complex cellular organelles. Viral LLPS can be limited to one or two viral proteins and a single genome that is enriched in LLPS-promoting features. In our previous study, we observed that LLPS-promoting sequences of severe acute respiratory syndrome coronavirus 2 are located at the 5′ and 3′ ends of the genome, whereas the middle of the genome is predicted to consist mostly of solubilizing elements. Is this arrangement sufficient to drive single genome packaging, genome compaction, and genome cyclization? We addressed these questions using a coarse-grained polymer model, LASSI, to study the LLPS of nucleocapsid protein with RNA sequences that either promote LLPS or solubilization. With respect to genome cyclization, we find the most optimal arrangement restricts LLPS-promoting elements to the 5′ and 3′ ends of the genome, consistent with the native spatial patterning. Genome compaction is enhanced by clustered LLPS-promoting binding sites, whereas single genome packaging is most efficient when binding sites are distributed throughout the genome. These results suggest that many and variably positioned LLPS-promoting signals can support packaging in the absence of a singular packaging signal which argues against necessity of such a feature. We hypothesize that this model should be generalizable to multiple viruses as well as cellular organelles such as paraspeckles, which enrich specific long RNA sequences in a defined arrangement.  相似文献   

3.
The genomes of RNA viruses present an astonishing source of both sequence and structural diversity. From intracellular viral RNA-host interfaces to interactions between the RNA genome and structural proteins in virus particles themselves, almost the entire viral lifecycle is accompanied by a myriad of RNA–protein interactions that are required to fulfill their replicative potential. It is therefore important to characterize such rich and dynamic collections of viral RNA–protein interactions to understand virus evolution and their adaptation to their hosts and environment. Recent advances in next-generation sequencing technologies have allowed the characterization of viral RNA–protein interactions, including both transient and conserved interactions, where molecular and structural approaches have fallen short. In this review, we will provide a methodological overview of the high-throughput techniques used to study viral RNA–protein interactions, their biochemical mechanisms, and how they evolved from classical methods as well as one another. We will discuss how different techniques have fueled virus research to characterize how viral RNA and proteins interact, both locally and on a global scale. Finally, we will present examples on how these techniques influence the studies of clinically important pathogens such as HIV-1 and SARS-CoV-2.  相似文献   

4.
The hepatitis C virus (HCV) is an important human pathogen causing chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. HCV is an enveloped virus with a positive-sense, single-stranded RNA genome encoding a single polyprotein that is processed to generate viral proteins. Several hundred molecules of the structural Core protein are thought to coat the genome in the viral particle, as do nucleocapsid (NC) protein molecules in Retroviruses, another class of enveloped viruses containing a positive-sense RNA genome. Retroviral NC proteins also possess nucleic acid chaperone properties that play critical roles in the structural remodelling of the genome during retrovirus replication. This analogy between HCV Core and retroviral NC proteins prompted us to investigate the putative nucleic acid chaperoning properties of the HCV Core protein. Here we report that Core protein chaperones the annealing of complementary DNA and RNA sequences and the formation of the most stable duplex by strand exchange. These results show that the HCV Core is a nucleic acid chaperone similar to retroviral NC proteins. We also find that the Core protein directs dimerization of HCV (+) RNA 3' untranslated region which is promoted by a conserved palindromic sequence possibly involved at several stages of virus replication.  相似文献   

5.
We have solved the three-dimensional crystal structure of the stem-loop II motif (s2m) RNA element of the SARS virus genome to 2.7-Å resolution. SARS and related coronaviruses and astroviruses all possess a motif at the 3′ end of their RNA genomes, called the s2m, whose pathogenic importance is inferred from its rigorous sequence conservation in an otherwise rapidly mutable RNA genome. We find that this extreme conservation is clearly explained by the requirement to form a highly structured RNA whose unique tertiary structure includes a sharp 90° kink of the helix axis and several novel longer-range tertiary interactions. The tertiary base interactions create a tunnel that runs perpendicular to the main helical axis whose interior is negatively charged and binds two magnesium ions. These unusual features likely form interaction surfaces with conserved host cell components or other reactive sites required for virus function. Based on its conservation in viral pathogen genomes and its absence in the human genome, we suggest that these unusual structural features in the s2m RNA element are attractive targets for the design of anti-viral therapeutic agents. Structural genomics has sought to deduce protein function based on three-dimensional homology. Here we have extended this approach to RNA by proposing potential functions for a rigorously conserved set of RNA tertiary structural interactions that occur within the SARS RNA genome itself. Based on tertiary structural comparisons, we propose the s2m RNA binds one or more proteins possessing an oligomer-binding-like fold, and we suggest a possible mechanism for SARS viral RNA hijacking of host protein synthesis, both based upon observed s2m RNA macromolecular mimicry of a relevant ribosomal RNA fold.  相似文献   

6.
M Kohara  S Abe  T Komatsu  K Tago  M Arita    A Nomoto 《Journal of virology》1988,62(8):2828-2835
Biological tests including the monkey neurovirulence test performed on recombinants between the virulent Mahoney and attenuated Sabin 1 strains of type 1 poliovirus indicated that the genome region encoding mainly the viral capsid proteins had little correlation with the neurovirulence or attenuation phenotype of the virus. The results suggested that new vaccine strains of type 2 and type 3 polioviruses may be constructed in vitro by replacing the sequence encoding the antigenic determinants in viral capsid proteins of the Sabin 1 genome by the corresponding sequences of the type 2 and type 3 genome, respectively. Accordingly, we constructed recombinants between the Sabin 1 and Sabin 3 strains of poliovirus in which genome sequences of the Sabin 1 strain encoding most or all capsid proteins were replaced by the corresponding genome sequences of the Sabin 3 strain. One of the recombinant viruses thus constructed was fully viable and showed antigenicity and immunogenicity identical to those of type 3 poliovirus. The monkey neurovirulence tests and in vitro phenotypic marker tests (temperature sensitivity of growth, sodium bicarbonate concentration dependency of growth under agar overlay, and size of plaque) were performed on the recombinant virus. The stability of the virus in regard to the temperature sensitivity phenotype was also tested. The results suggested that the recombinant virus is a possible candidate for a new type 3 poliovirus vaccine strain.  相似文献   

7.
8.
Porcine epidemic diarrhea virus (PEDV) causes severe economic losses in the swine industry in China and other Asian countries. Infection usually leads to an acute, often lethal diarrhea in piglets. Despite the impact of the disease, no system is yet available to manipulate the viral genome which has severely hampered research on this virus until today. We have established a reverse genetics system for PEDV based on targeted RNA recombination that allows the modification of the 3′-end of the viral genome, which encodes the structural proteins and the ORF3 protein. Using this system, we deleted the ORF3 gene entirely from the viral genome and showed that the ORF3 protein is not essential for replication of the virus in vitro. In addition, we inserted heterologous genes (i.e. the GFP and Renilla luciferase genes) at two positions in the viral genome, either as an extra expression cassette or as a replacement for the ORF3 gene. We demonstrated the expression of both GFP and Renilla luciferase as well as the application of these viruses by establishing a convenient and rapid virus neutralization assay. The new PEDV reverse genetics system will enable functional studies of the structural proteins and the accessory ORF3 protein and will allow the rational design and development of next generation PEDV vaccines.  相似文献   

9.
A fundamental step in the replication of a viral particle is the self-assembly of its rigid shell (capsid) from its constituent proteins. Capsids play a vital role in genome replication and intercellular movement of viruses, and as such, understanding viral assembly has great potential in the development of new antiviral therapies and a systematic treatment of viral infection. In this article, we assume that nucleation is the underlying mechanism for self-assembly and combine the theoretical methods of the physics of equilibrium polymerization with those of the classical nucleation to develop a theory for the kinetics of virus self-assembly. We find expressions for the size of the critical capsid, the lag time, and the steady-state nucleation rate of capsids, and how they depend on both protein concentration and binding energy. The latter is a function of the acidity of the solution, the ionic strength, and the temperature, explaining why capsid nucleation is a sensitive function of the ambient conditions.  相似文献   

10.
Ribonucleoprotein complexes of hepatitis delta virus.   总被引:14,自引:13,他引:1       下载免费PDF全文
W S Ryu  H J Netter  M Bayer    J Taylor 《Journal of virology》1993,67(6):3281-3287
Human hepatitis delta virus (HDV) is a subviral satellite agent of hepatitis B virus (HBV). The envelope proteins of HDV are provided by the helper virus, HBV, but very little is known about the internal structure of HDV. The particles contain multiple copies of the delta antigen and an unusual RNA genome that is small, about 1,700 nucleotides in length, single stranded, and circular. By using UV cross-linking, equilibrium density centrifugation, and immunoprecipitation, we obtained evidence consistent with the interpretation that delta antigen and genomic RNA form a stable ribonucleoprotein (RNP) complex within the virion. Furthermore, electron-microscopic examination of the purified viral RNP revealed a roughly spherical core-like structure with a diameter of 18.7 +/- 2.5 nm. We also isolated HDV-specific RNP structures from the nuclei of cells undergoing HDV genome replication; both the genome and antigenome (a complement of the genome) of HDV were found to be in such complexes. From the equilibrium density analyses of the viral and nuclear RNPs, we were able to deduce the number of molecules of delta antigen per molecule of HDV RNA. For virions, this number was predominantly ca. 70, which was larger than for the nuclear RNPs, which were more heterogeneous, with an average value of ca. 30.  相似文献   

11.
Ma HC  Hearing P 《Journal of virology》2011,85(15):7849-7855
The packaging of the adenovirus (Ad) genome into a capsid displays serotype specificity. This specificity has been attributed to viral packaging proteins, the IVa2 protein and the L1-52/55K protein. We previously found that the Ad17 L1-52/55K protein was not able to complement the growth of an Ad5 L1-52/55K mutant virus, whereas two other Ad17 packaging proteins, IVa2 and L4-22K, could complement the growth of Ad5 viruses with mutations in the respective genes. In this report, we investigated why the Ad17 L1-52/55K protein was not able to complement the Ad5 L1-52/55K mutant virus. We demonstrate that the Ad17 L1-52/55K protein binds to the Ad5 IVa2 protein in vitro and the Ad5 packaging domain in vivo, activities previously associated with packaging function. The Ad17 L1-52/55K protein also associates with empty Ad5 capsids. Interestingly, we find that the Ad17 L1-52/55K protein is able to complement the growth of an Ad5 L1-52/55K mutant virus in conjunction with the Ad17 structural protein IIIa. The same result was found with the L1-52/55K and IIIa proteins of several other Ad serotypes, including Ad3 and Ad4. The Ad17 IIIa protein associates with empty Ad5 capsids. Consistent with the complementation results, we find that the IIIa protein interacts with the L1-52/55K protein in vitro and associates with the viral packaging domain in vivo. These results underscore the complex nature of virus assembly and genome encapsidation and provide a new model for how the viral genome may tether to the empty capsid during the encapsidation process.  相似文献   

12.
Grubisha O  Traktman P 《Journal of virology》2003,77(20):10929-10942
The linear, double-stranded DNA genome of vaccinia virus contains covalently closed hairpin termini. These hairpin termini comprise a terminal loop and an A+T-rich duplex stem that has 12 extrahelical bases. DeMasi et al. have shown previously that proteins present in infected cells and in virions form distinct complexes with the telomeric hairpins and that these interactions require the extrahelical bases. The vaccinia virus I6 protein was identified as the protein showing the greatest specificity and affinity for interaction with the viral hairpins (J. DeMasi, S. Du, D. Lennon, and P. Traktman, J. Virol. 75:10090-10105, 2001). To gain insight into the role of I6 in vivo, we generated eight recombinant viruses bearing altered alleles of I6 in which clusters of charged amino acids were changed to alanine residues. One allele (temperature-sensitive I6-12 [tsI6-12]) conferred a tight ts phenotype and was used to examine the stage(s) of the viral life cycle that was affected at the nonpermissive temperature. Gene expression, DNA replication, and genome resolution proceeded normally in this mutant. However, proteolytic processing of structural proteins, which accompanies virus maturation, was incomplete. Electron microscopic studies confirmed a severe block in morphogenesis in which immature, but no mature, virions were observed. Instead, aberrant spherical virions and large crystalloids were seen. When purified, these aberrant virions were found to have normal protein content but to be devoid of viral DNA. We propose that the binding of I6 to viral telomeres directs genome encapsidation into the virus particle.  相似文献   

13.
When NIH/3T3 mouse fibroblasts were infected with the Moloney strain of murine leukemia virus, part of the viral genome RNA molecules were detected in polyribosomes of the infected cells early in the infectious cycle. The binding appears to be specific, since we could demonstrate the release of viral RNA from polyribosomes with EDTA. Moreover, when infection occurred in the presence of cycloheximide, most viral RNA molecules were detected in the free cytoplasm. Size analysis on polyribosomal viral RNA molecules indicated that two size class molecules, 38S and 23S, are present in polyribosomes at 3 h after infection. Analysis of the polyriboadenylate [poly(rA)] content of viral RNA extracted from infected polyribosomes demonstrated that such molecules bind with greatest abundance at 3 h after infection, as has been detected with total viral RNA. No molecules lacking poly(rA) stretches could be detected in polyribosomes. Furthermore, when a similar analysis was performed on unbound molecules present in the free cytoplasm, identical results were obtained. We conclude that no selection towards poly(rA)-containing viral molecules is evident on binding to polyribosomes. These findings suggest that the incoming viral genome of the Moloney strain of murine leukemia virus may serve as a messenger for the synthesis of one or more virus-specific proteins early after infection of mouse fibroblasts.  相似文献   

14.
Viruses have to encapsidate their own genomes during the assembly process. For most RNA viruses, there are sequences within the viral RNA and virion proteins needed for high efficiency of genome encapsidation. However, the roles of host proteins in this process are not understood. Here we find that the cellular DEAD-box RNA helicase DDX6 is required for efficient genome packaging of foamy virus, a spumaretrovirus. After infection, a significant amount of DDX6, normally concentrated in P bodies and stress granules, re-localizes to the pericentriolar site where viral RNAs and Gag capsid proteins are concentrated and capsids are assembled. Knockdown of DDX6 by siRNA leads to a decreased level of viral nucleic acids in extracellular particles, although viral protein expression, capsid assembly and release, and accumulation of viral RNA and Gag protein at the assembly site are little affected. DDX6 does not interact stably with Gag proteins nor is it incorporated into particles. However, we find that the ATPase/helicase motif of DDX6 is essential for viral replication. This suggests that the ATP hydrolysis and/or the RNA unwinding activities of DDX6 function in moderating the viral RNA conformation and/or viral RNA-Gag ribonucleoprotein complex in a transient manner to facilitate incorporation of the viral RNA into particles. These results reveal a unique role for a highly conserved cellular protein of RNA metabolism in specifically re-locating to the site of viral assembly for its function as a catalyst in retroviral RNA packaging.  相似文献   

15.
病毒复制子 (Replicon) 是指来源于病毒基因组的能够自主复制的RNA分子,保留了病毒非结构蛋白基因,而结构蛋白基因缺失或由外源基因替代。昆津病毒 (Kunjun virus) 为黄病毒科黄病毒属成员,其复制子具有表达效率高、细胞毒性低、遗传稳定等特点,在病毒基因组复制调控机制、外源蛋白表达、新型疫苗和基因治疗等领域得到了广泛应用。以下就昆津病毒复制子系统的构建、特性及应用方面的研究进展作一综述。  相似文献   

16.
We have studied the organization of mature infectious Rous sarcoma virus (RSV), suspended in vitreous ice, using transmission electron microscopy. The enveloped virions are spherical in shape, have a mean diameter of 127 nm, and vary significantly in size. Image processing reveals the presence of the viral matrix protein underlying the lipid bilayer and the viral envelope proteins external to the lipid bilayer. In the interior of the virus, the characteristic mature retroviral core is clearly imaged. In contrast to lentiviruses, such as human immunodeficiency virus, the core of RSV is essentially isometric. The capsid, or external shell of the core, has a faceted, almost polygonal appearance in electron micrographs, but many capsids also exhibit continuous surface curvature. Cores are not uniform in size or shape. Serrations observed along the projected faces of the core suggest a repetitive molecular structure. Some isolated cores were observed in the sample, confirming that cores are at least transiently stable in the absence of the viral envelope. Using an approach grounded in geometric probability, we estimate the size of the viral core from the projection data. We show that the size of the core is not tightly controlled and that core size and virion size are positively correlated. From estimates of RNA packing density we conclude that either the RNA within the core is loosely packed or, more probably, that it does not fill the core.  相似文献   

17.
The genomes of defective-interfering (DI) particles derived from the Sabin strain of type 1 poliovirus (PV1(Sab] were characterized by nuclease S1 mapping using complementary DNA (cDNA) copies of PV1(Sab) genome as probes. The results demonstrated variety in the size and location of the deletions, which were compatible with our previous prediction. The results further indicated that the locations of the deletions were limited within the internal genome region encoding viral capsid proteins and that the deletion sites were clustered in certain areas on the genome. Sequence analysis of a number of cloned cDNAs to the DI genomes revealed that every DI genome retained the correct reading frame for viral protein synthesis. These results strongly suggested that one or all of the viral non-structural proteins might be cis-acting at least at a certain stage in viral replication. A computer search for secondary structures with regard to the deletion sites provided a possible common structure from which, supported by sequences existing on the plus or minus RNA strand of PV1(Sab), deletion regions looped out from the remaining sequences. Replicase might, therefore, skip these transiently formed loop structures with certain frequencies, resulting in the generation of DI genomes. This model could also be considered as a model for genetic recombination in these RNA genomes. Possible "supporting sequences" were also found for every rearranged site on the RNAs of influenza virus and sindbis virus. Thus, we propose a new copy-choice model, designated the "supporting sequence-loop model", for the generation of rearrangements occurring on single-stranded RNA genomes.  相似文献   

18.
Spindle‐shaped halovirus His2 and spherical halovirus SH1 represent ecologically dominant virus morphotypes in high‐salt environments. Both have linear dsDNA genomes with inverted terminal repeat sequences and terminal proteins, and probably replicate using protein priming. As a first step towards conventional genetic analyses on these viruses, we show that purified viral DNAs can transfect host cells. Intact terminal proteins were essential for this process. Despite the narrow host ranges of these viruses, at least under laboratory conditions, their DNAs were able to transfect a wide range of haloarchaeal species, demonstrating that the cytoplasms of diverse haloarchaea possess all the factors necessary for viral DNA synthesis and virion assembly. Transposon mutagenesis of viral DNAs was then used in conjunction with transfection to produce recombinant viruses, and to then map the insertion sites to identify non‐essential genes. The inserts in 34 His2 mutants were mapped precisely, and most clustered in a few, specific regions, particularly in the inverted terminal repeats and near the ends of ORFs. The results are consistent with the small genome size and densely packed, often overlapping ORFs that are transcribed as long operons. This study is the first demonstration of transfection and transposon mutagenesis in protein‐primed archaeal viruses.  相似文献   

19.
Single-molecule fluorescence methods remain a challenging yet information-rich set of techniques that allow one to probe the dynamics, stoichiometry and conformation of biomolecules one molecule at a time. Viruses are small (nanometers) in size, can achieve cellular infections with a small number of virions and their lifecycle is inherently heterogeneous with a large number of structural and functional intermediates. Single-molecule measurements that reveal the complete distribution of properties rather than the average can hence reveal new insights into virus infections and biology that are inaccessible otherwise. This article highlights some of the methods and recent applications of single-molecule fluorescence in the field of virology. Here, we have focused on new findings in virus–cell interaction, virus cell entry and transport, viral membrane fusion, genome release, replication, translation, assembly, genome packaging, egress and interaction with host immune proteins that underline the advantage of single-molecule approach to the question at hand. Finally, we discuss the challenges, outlook and potential areas for improvement and future use of single-molecule fluorescence that could further aid our understanding of viruses.  相似文献   

20.
A new cell-to-cell transport model for Potexviruses   总被引:1,自引:0,他引:1  
In the last five years, we have gained significant insight into the role of the Potexvirus proteins in virus movement and RNA silencing. Potexviruses require three movement proteins, named triple gene block (TGB)p1, TGBp2, and TGBp3, and the viral coat protein (CP) to facilitate viral cell-to-cell and vascular transport. TGBp1 is a multifunctional protein that has RNA helicase activity, promotes translation of viral RNAs, increases plasmodesmal size exclusion limits, and suppresses RNA silencing. TGBp2 and TGBp3 are membrane-binding proteins. CP is required for genome encapsidation and forms ribonucleoprotein complexes along with TGBp1 and viral RNA. This review considers the functions of the TGB proteins, how they interact with each other and CP, and how silencing suppression might be linked to viral transport. A new model of the mechanism for Potexvirus transport is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号