首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Escherichia coli chemotaxis network is a model system for biological signal processing. In E. coli, transmembrane receptors responsible for signal transduction assemble into large clusters containing several thousand proteins. These sensory clusters have been observed at cell poles and future division sites. Despite extensive study, it remains unclear how chemotaxis clusters form, what controls cluster size and density, and how the cellular location of clusters is robustly maintained in growing and dividing cells. Here, we use photoactivated localization microscopy (PALM) to map the cellular locations of three proteins central to bacterial chemotaxis (the Tar receptor, CheY, and CheW) with a precision of 15 nm. We find that cluster sizes are approximately exponentially distributed, with no characteristic cluster size. One-third of Tar receptors are part of smaller lateral clusters and not of the large polar clusters. Analysis of the relative cellular locations of 1.1 million individual proteins (from 326 cells) suggests that clusters form via stochastic self-assembly. The super-resolution PALM maps of E. coli receptors support the notion that stochastic self-assembly can create and maintain approximately periodic structures in biological membranes, without direct cytoskeletal involvement or active transport.  相似文献   

2.
An allosteric model for transmembrane signaling in bacterial chemotaxis   总被引:4,自引:0,他引:4  
Bacteria are able to sense chemical gradients over a wide range of concentrations. However, calculations based on the known number of receptors do not predict such a range unless receptors interact with one another in a cooperative manner. A number of recent experiments support the notion that this remarkable sensitivity in chemotaxis is mediated by localized interactions or crosstalk between neighboring receptors. A number of simple, elegant models have proposed mechanisms for signal integration within receptor clusters. What is a lacking is a model, based on known molecular mechanisms and our accumulated knowledge of chemotaxis, that integrates data from multiple, heterogeneous sources. To address this question, we propose an allosteric mechanism for transmembrane signaling in bacterial chemotaxis based on the "trimer of dimers" model, where three receptor dimers form a stable complex with CheW and CheA. The mechanism is used to integrate a diverse set of experimental data in a consistent framework. The main predictions are: (1) trimers of receptor dimers form the building blocks for the signaling complexes; (2) receptor methylation increases the stability of the active state and retards the inhibition arising from ligand-bound receptors within the signaling complex; (3) trimer of dimer receptor complexes aggregate into clusters through their mutual interactions with CheA and CheW; (4) cooperativity arises from neighboring interaction within these clusters; and (5) cluster size is determined by the concentration of receptors, CheA, and CheW. The model is able to explain a number of seemingly contradictory experiments in a consistent manner and, in the process, explain how bacteria are able to sense chemical gradients over a wide range of concentrations by demonstrating how signals are integrated within the signaling complex.  相似文献   

3.
Stochastic assembly of chemoreceptor clusters in Escherichia coli   总被引:1,自引:0,他引:1  
Chemoreceptors and cytoplasmic chemotaxis proteins in Escherichia coli form clusters that play a key role in signal processing. These clusters localize at cell poles and at specific positions along the cell body which correspond to future division sites, but the details of cluster formation and the mechanism of cluster distribution remain unclear. Here, we used fluorescence microscopy to investigate how the numbers and sizes of receptor clusters depend on the expression level of chemotaxis proteins and on the cell length. We show that the average cluster number saturates at high levels of protein expression at approximately 3.7 clusters per cell, well below the number of available positioning sites. Correspondingly, distances between clusters in filamentous cells saturate at an average of 1 mum but, even at saturating expression levels, individual cluster numbers and distances show a broad distribution around the mean. Our data imply a stochastic mode of cluster assembly, where a defined average interval between clusters along the cell body arises from competition between nucleation of new clusters and growth of existing clusters. Upon subsequent anchorage to defined lateral sites, clusters grow with rates that inversely depend on their size, and become polar upon several rounds of cell division.  相似文献   

4.
Trans interactions of erythropoietin-producing human hepatocellular (Eph) receptors with their membrane-bound ephrin ligands generate higher-order clusters that can form extended signaling arrays. The functional relevance of the cluster size for repulsive signaling is not understood. We used chemical dimerizers and fluorescence anisotropy to generate and visualize specific EphB2 cluster species in living cells. We find that cell collapse responses are induced by small-sized EphB2 clusters, suggesting that extended EphB2 arrays are dispensable and that EphB2 activation follows an ON–OFF switch with EphB2 dimers being inactive and trimers and tetramers being fully functional. Moreover, the strength of the collapse response is determined by the abundance of multimers over dimers within a cluster population: the more dimers are present, the weaker the response. Finally, we show that the C-terminal modules of EphB2 have negative regulatory effects on ephrin-induced clustering. These results shed new light on the mechanism and regulation of EphB2 activation and provide a model on how Eph signaling translates into graded cellular responses.  相似文献   

5.
Chemoreceptors are central to bacterial chemotaxis. These transmembrane homodimers form trimers of dimers. Trimers form clusters of a few to thousands of receptors. A crucial receptor function is 100‐fold activation, in signalling complexes, of sensory histidine kinase CheA. Significant activation has been shown to require more than one receptor dimer but the number required for full activation was unknown. We investigated this issue using Nanodiscs, soluble, nanoscale (~10 nm diameter) plugs of lipid bilayer, to limit the number of neighbouring receptors contributing to activation. Utilizing size‐exclusion chromatography, we separated primary preparations of receptor‐containing Nanodiscs, otherwise heterogeneous for number and orientation of inserted receptors, into fractions enriched for specific numbers of dimers per disc. Fractionated, clarified Nanodiscs carrying approximately five dimers per disc were as effective in activating kinase as native membrane vesicles containing many neighbouring dimers. At five independently inserted dimers per disc, every disc would have at least three dimers oriented in parallel and thus able act together as they would in native membrane. We conclude full kinase activation involves interaction of CheA with groups of three receptor dimers, presumably as a trimer of dimers, and that more extensive interactions among receptors are not necessary for full kinase activation.  相似文献   

6.
Bacteria employ a modified two-component system for chemotaxis, where the receptors form ternary complexes with CheA histidine kinases and CheW adaptor proteins. These complexes are arranged in semi-ordered arrays clustered predominantly at the cell poles. The prevailing models assume that these arrays are static and reorganize only locally in response to attractant binding. Recent studies have shown, however, that these structures may in fact be much more fluid. We investigated the localization of the chemotaxis signaling arrays in Bacillus subtilis using immunofluorescence and live cell fluorescence microscopy. We found that the receptors were localized in clusters at the poles in most cells. However, when the cells were exposed to attractant, the number exhibiting polar clusters was reduced roughly 2-fold, whereas the number exhibiting lateral clusters distinct from the poles increased significantly. These changes in receptor clustering were reversible as polar localization was reestablished in adapted cells. We also investigated the dynamic localization of CheV, a hybrid protein consisting of an N-terminal CheW-like adaptor domain and a C-terminal response regulator domain that is known to be phosphorylated by CheA, using immunofluorescence. Interestingly, we found that CheV was localized predominantly at lateral clusters in unstimulated cells. However, upon exposure to attractant, CheV was found to be predominantly localized to the cell poles. Moreover, changes in CheV localization are phosphorylation-dependent. Collectively, these results suggest that the chemotaxis signaling arrays in B. subtilis are dynamic structures and that feedback loops involving phosphorylation may regulate the positioning of individual proteins.  相似文献   

7.
Chemotaxis signalling complexes of Escherichia coli, composed of chemoreceptors, CheA and CheW, form clusters located predominantly at cell poles. As the only kind of receptor in a cell, high-abundance receptors are polar and clustered whereas low-abundance chemoreceptors are polar but largely unclustered. We found that clustering was a function of the cytoplasmic, carboxyl-terminal domain and that effective clustering was conferred on low-abundance receptors by addition of the approximately 20-residue sequence from the carboxyl terminus of either high-abundance receptor. These sequences are different but share a carboxyl-terminal pentapeptide that enhances adaptational covalent modification and allows a physiological balance between modified and unmodified methyl-accepting sites, implying that receptor modification might influence clustering. Thus we investigated directly effects of modification state on chemoreceptor clustering. As the sole receptor type in a cell, low-abundance receptors were clustered only if modified, but high-abundance receptors were clustered independent of extent of modification. This difference could mean that the two receptor types are fundamentally different or that they are poised at different positions in the same conformational equilibrium. Notably, no receptor perturbation we tested altered a predominant location at cell poles, emphasizing a distinction between determinants of clustering and polar localization.  相似文献   

8.
Chemoreceptors of the bacterium Escherichia coli are thought to form trimers of homodimers that undergo conformational changes upon ligand binding and thereby signal a cytoplasmic kinase. We monitored the physical responses of trimers in living cells lacking other chemotaxis proteins by fluorescently tagging receptors and measuring changes in fluorescence anisotropy. These changes were traced to changes in energy transfer between fluorophores on different dimers of a trimer: attractants move these fluorophores farther apart, and repellents move them closer together. These measurements allowed us to define the responses of bare receptor oligomers to ligand binding and compare them to the corresponding response in kinase activity. Receptor responses could be fit by a simple "two-state" model in which receptor dimers are in either active or inactive conformations, from which energy bias and dissociation constants could be estimated. Comparison with responses in kinase-activity indicated that higher-order interactions are dominant in receptor clusters.  相似文献   

9.
The bacterium Escherichia coli exhibits chemotactic behavior at temperatures ranging from approximately 20 °C to at least 42 °C. This behavior is controlled by clusters of transmembrane chemoreceptors made from trimers of dimers that are linked together by cross-binding to cytoplasmic components. By detecting fluorescence energy transfer between various components of this system, we studied the underlying molecular behavior of these receptors in vivo and throughout their operating temperature range. We reveal a sharp modulation in the conformation of unclustered and clustered receptor trimers and, consequently, in kinase activity output. These modulations occurred at a characteristic temperature that depended on clustering and were lower for receptors at lower adaptational states. However, in the presence of dynamic adaptation, the response of kinase activity to a stimulus was sustained up to 45 °C, but sensitivity notably decreased. Thus, this molecular system exhibits a clear thermal sensitivity that emerges at the level of receptor trimers, but both receptor clustering and adaptation support the overall robust operation of the system at elevated temperatures.  相似文献   

10.
Gephyrin is a bifunctional modular protein that, in neurons, clusters glycine receptors and gamma-aminobutyric acid, type A receptors in the postsynaptic membrane of inhibitory synapses. By x-ray crystallography and cross-linking, the N-terminal G-domain of gephyrin has been shown to form trimers and the C-terminal E-domain dimers, respectively. Gephyrin therefore has been proposed to form a hexagonal submembranous lattice onto which inhibitory receptors are anchored. Here, crystal structure-based substitutions at oligomerization interfaces revealed that both G-domain trimerization and E-domain dimerization are essential for the formation of higher order gephyrin oligomers and postsynaptic gephyrin clusters. Insertion of the alternatively spliced C5' cassette into the G-domain inhibited clustering by interfering with trimerization, and mutation of the glycine receptor beta-subunit binding region prevented the localization of the clusters at synaptic sites. Together our findings show that domain interactions mediate gephyrin scaffold formation.  相似文献   

11.
Chemotaxis receptors and associated signalling proteins in Escherichia coli form clusters that consist of thousands of molecules and are the largest native protein complexes described to date in bacteria. Clusters are located at the cell poles and laterally along the cell body, and play an important role in signal transduction. Much work has been done to study the structure and function of receptor clusters, but the significance of their positioning and the underlying mechanisms are not understood. Here, we used fluorescence imaging to study cluster distribution and follow cluster dynamics during cell growth. Our data show that lateral clusters localise to specific periodic positions along the cell body, which mark future division sites and are involved in the localisation of the replication machinery. The chemoreceptor cluster positioning is thus intricately related to the overall structure and division of an E. coli cell.  相似文献   

12.
Although many proteins are known to localize in bacterial cells, for the most part our understanding of how such localization takes place is limited. Recent evidence that the phospholipid cardiolipin localizes to the poles of rod-shaped bacteria suggests that targeting of some proteins may rely on the heterogeneous distribution of membrane lipids. Membrane curvature has been proposed as a factor in the polar localization of high-intrinsic-curvature lipids, but the small size of lipids compared to the dimensions of the cell means that single molecules cannot stably localize. At the other extreme, phase separation of the membrane energetically favors a single domain of such lipids at one pole. We have proposed a physical mechanism in which osmotic pinning of the membrane to the cell wall naturally produces microphase separation, i.e., lipid domains of finite size, whose aggregate sensitivity to cell curvature can support spontaneous and stable localization to both poles. Here, we demonstrate that variations in the strength of pinning of the membrane to the cell wall can also act as a strong localization mechanism, in agreement with observations of cardiolipin relocalization from the poles to the septum during sporulation in the bacterium Bacillus subtilis. In addition, we rigorously determine the relationship between localization and the domain-size distribution including the effects of entropy, and quantify the strength of domain-domain interactions. Our model predicts a critical concentration of cardiolipin below which domains will not form and hence polar localization will not take place. This observation is consistent with recent experiments showing that in Escherichia coli cells with reduced cardiolipin concentrations, cardiolipin and the osmoregulatory protein ProP fail to localize to the poles.  相似文献   

13.
B lymphocytes play a critical role in adaptive immunity. On antigen binding, B cell receptors (BCR) cluster on the plasma membrane and are internalized by endocytosis. In this process, B cells capture diverse antigens in various contexts and concentrations. However, it is unclear whether the mechanism of BCR endocytosis changes in response to these factors. Here, we studied the mechanism of soluble antigen-induced BCR clustering and internalization in a cultured human B cell line using correlative superresolution fluorescence and platinum replica electron microscopy. First, by visualizing nanoscale BCR clusters, we provide direct evidence that BCR cluster size increases with F(ab’)2 concentration. Next, we show that the physical mechanism of internalization switches in response to BCR cluster size. At low concentrations of antigen, B cells internalize small BCR clusters by classical clathrin-mediated endocytosis. At high antigen concentrations, when cluster size increases beyond the size of a single clathrin-coated pit, B cells retrieve receptor clusters using large invaginations of the plasma membrane capped with clathrin. At these sites, we observed early and sustained recruitment of actin and an actin polymerizing protein FCHSD2. We further show that actin recruitment is required for the efficient generation of these novel endocytic carriers and for their capture into the cytosol. We propose that in B cells, the mechanism of endocytosis switches to accommodate large receptor clusters formed when cells encounter high concentrations of soluble antigen. This mechanism is regulated by the organization and dynamics of the cortical actin cytoskeleton.  相似文献   

14.
Like many sensory receptors, bacterial chemotaxis receptors form clusters. In bacteria, large‐scale clusters are subdivided into signaling teams that act as ‘antennas’ allowing detection of ligands with remarkable sensitivity. The range of sensitivity is greatly extended by adaptation of receptors to changes in concentrations through covalent modification. However, surprisingly little is known about the sizes of receptor signaling teams. Here, we combine measurements of the signaling response, obtained from in vivo fluorescence resonance energy transfer, with the statistical method of principal component analysis, to quantify the size of signaling teams within the framework of the previously successful Monod–Wyman–Changeux model. We find that size of signaling teams increases 2‐ to 3‐fold with receptor modification, indicating an additional, previously unrecognized level of adaptation of the chemotaxis network. This variation of signaling‐team size shows that receptor cooperativity is dynamic and likely optimized for sensing noisy ligand concentrations.  相似文献   

15.
A 34-amino acid synthetic peptide was derived from the third domain of human alpha-fetoprotein, and the peptide was shown to inhibit estrogen-stimulated growth. Under certain conditions, however, the peptide lost growth-inhibitory activity. A biophysical study of the peptide was undertaken with a goal of obtaining completely reliable preparations. The peptide was studied using gel-filtration column chromatography as a function of peptide concentration and age of solution, and was found to exhibit complex aggregation behaviors. During the early period (0-3 h) after dissolving lyophilized peptide into pH 7.4 buffer, solutions were composed mostly of trimers. At higher peptide concentrations (> or = 3.0 g/L), the trimers aggregated extensively to a large aggregate (minimum size approximately 102 peptides). At 5.0-8.0 g/L, these large aggregates increased in size (up to approximately 146 peptides) until trimers were largely exhausted from solution. During the later times (>3 h) after sample preparation, the trimeric oligomer of the peptide dissociated slowly to form dimers for samples at 0.10-3.0 g/L. After their build-up, a very small number of dimers associated to form hexamers. Disulfide bonds stabilized the dimers as indicated by the conversion of dimers to trimers upon the addition of a reducing agent, and the failure of dimers to form in the presence of reducing agent. Reducing agent did not affect trimer or large aggregate formation. Trimers were found to be active in an assay monitoring inhibition of estrogen-stimulated growth, whereas dimers and large aggregates were inactive. The two cysteines in the peptide were modified to either S-methylcysteine or S-(2-aminoethyl)cysteine, and both derivatives showed significant growth-inhibition activity. A serine analog in which both cysteines were replaced had very different aggregation behavior than the cysteine peptide and lacked its growth inhibitory ability. Peptide aggregation is critically important in establishing the ability of the peptide to inhibit growth and have anticancer activity, but the state of its two cysteines is of little influence.  相似文献   

16.
Subcellular protein localization is a universal feature of eukaryotic cells, and the ubiquity of protein localization in prokaryotic species is now acquiring greater appreciation. Though some targeting anchors are known, the origin of polar and division-site localization remains mysterious for a large fraction of bacterial proteins. Ultimately, the molecular components responsible for such symmetry breaking must employ a high degree of self-organization. Here we propose a novel physical mechanism, based on the two-dimensional curvature of the membrane, for spontaneous lipid targeting to the poles and division site of rod-shaped bacterial cells. If one of the membrane components has a large intrinsic curvature, the geometrical constraint of the plasma membrane by the more rigid bacterial cell wall naturally leads to lipid microphase separation. We find that the resulting clusters of high-curvature lipids are large enough to spontaneously and stably localize to the two cell poles. Recent evidence of localization of the phospholipid cardiolipin to the poles of bacterial cells suggests that polar targeting of some proteins may rely on the membrane's differential lipid content. More generally, aggregates of lipids, proteins, or lipid-protein complexes may localize in response to features of cell geometry incapable of localizing individual molecules.  相似文献   

17.
Eph receptors and their cell membrane-bound ephrin ligands regulate cell positioning and thereby establish or stabilize patterns of cellular organization. Although it is recognized that ephrin clustering is essential for Eph function, mechanisms that relay information of ephrin density into cell biological responses are poorly understood. We demonstrate by confocal time-lapse and fluorescence resonance energy transfer microscopy that within minutes of binding ephrin-A5-coated beads, EphA3 receptors assemble into large clusters. While remaining positioned around the site of ephrin contact, Eph clusters exceed the size of the interacting ephrin surface severalfold. EphA3 mutants with compromised ephrin-binding capacity, which alone are incapable of cluster formation or phosphorylation, are recruited effectively and become phosphorylated when coexpressed with a functional receptor. Our findings reveal consecutive initiation of ephrin-facilitated Eph clustering and cluster propagation, the latter of which is independent of ephrin contacts and cytosolic Eph signaling functions but involves direct Eph-Eph interactions.  相似文献   

18.
Clayton AH  Tavarnesi ML  Johns TG 《Biochemistry》2007,46(15):4589-4597
Characterization of the association states of the unligated epidermal growth factor receptor (EGFR) is important in understanding the mechanism of EGFR tyrosine kinase activation in a tumor cell environment. We analyzed, in detail, the association states of unligated, immunotagged EGFR on the surface of intact epidermoid carcinoma A431 cells, using AlexaFluor488 and AlexaFluor546 anti-EGFR antibody, mAb528, as probes. Image correlation microscopy revealed the presence of unligated EGFR in submicron scale clusters containing an average of 10-30 receptors (mean cluster density = 32 +/- 9 clusters per square micron). Lifetime-based F?rster resonance energy transfer (FRET) techniques as a function of acceptor:donor labeling ratio disclosed a clustering of the unligated EGFR in clusters containing an average of four receptors on the nanometer (<10 nm) scale. The relationship between the nanoscale and submicron scale associations was determined using a new analysis that combines nanoscale information from lifetime-detected FRET imaging with submicron scale information obtained with image correlation microscopy. This analysis revealed the presence of monomers (or small oligomers) and larger clusters containing 15-30 receptors that were partially associated on the sub-10 nm scale. Pretreatment of the cells with the tyrosine kinase inhibitor AG1478 caused a partial dispersal of the submicron clusters (mean cluster density = 85 +/- 15 clusters per square micron; mean degree of association = 4-10 receptors per cluster) and reduced the level of FRET down to our limit of detection. These results are consistent with a higher order nanoscale receptor organization of the unligated receptor population that is partially controlled by the kinase domains. The ramifications of the results to mechanisms of EGFR activation in a tumor cell environment are discussed.  相似文献   

19.
Bacterial chemoreceptors form mixed trimers of homodimers that cluster further in the presence of other cytoplasmic components. The physical proximity between receptors is thought to promote conformational coupling that enhances sensitivity, dynamic range, and collaboration between receptors of different types. We investigated conformational coupling between neighboring dimers by co-expressing two types of receptors, only one of which was labeled with yellow fluorescent protein. The two types of receptors were stimulated independently, and changes in the relative orientation of the labeled receptors were followed by fluorescence anisotropy. Possible coupling via cytoplasmic components of the taxis system was avoided by working with strains lacking those components. We find that binding of ligand to one type of receptor affects the conformation of the other type of receptor but not in the same way as binding of ligand to that receptor directly does. Thus, different receptors are coupled but not as simply as previously thought.  相似文献   

20.
BACKGROUND: The localization of glutamate receptors is essential for the formation and plasticity of excitatory synapses. These receptors cluster opposite neurotransmitter release sites of glutamatergic neurons, but these release sites have heterogeneous structural and functional properties. At the Drosophila neuromuscular junction, receptors expressed in a single postsynaptic cell are confronted with an array of hundreds of apposed active zones. Hence, this is an ideal preparation for the investigation of whether receptor clustering is sensitive to the morphological and physiological properties of the apposed active zones. RESULTS: To investigate the relationship between the localization of glutamate receptors and the properties of the apposed active zones, we investigated receptor localization in mutants in which receptors are limited. We find that receptors are not uniformly distributed opposite the full array of active zones but that some active zones have a disproportionately large share of receptors as assayed by receptor levels and response to transmitter. The active zones at which receptors preferentially cluster are larger and have a higher neurotransmitter release probability than the average active zone. We find a similar relationship between glutamate receptor clusters and active-zone size at wild-type synapses. CONCLUSIONS: When confronted with an array of active zones, glutamate receptors preferentially cluster opposite the largest and most physiologically active sites. These results suggest an activity-dependent matching of pre- and postsynaptic function at the level of a single active zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号