首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Voltage-sensing domains (VSDs) of voltage-gated potassium (Kv) channels undergo a series of conformational changes upon membrane depolarization, from a down state when the channel is at rest to an up state, all of which lead to the opening of the channel pore. The crystal structures reported to date reveal the pore in an open state and the VSDs in an up state. To gain insights into the structure of the down state, we used a set of experiment-based restraints to generate a model of the down state of the KvAP VSD using molecular-dynamics simulations of the VSD in a lipid bilayer in excess water. The equilibrated VSD configuration is consistent with the biotin-avidin accessibility and internal salt-bridge data used to generate it, and with additional biotin-avidin accessibility data. In the model, both the S3b and S4 segments are displaced ∼10 Å toward the intracellular side with respect to the up-state configuration, but they do not move as a rigid body. Arginine side chains that carry the majority of the gating charge also make large excursions between the up and down states. In both states, arginines interact with water and participate in salt bridges with acidic residues and lipid phosphate groups. An important feature that emerges from the down-state model is that the N-terminal half of the S4 segment adopts a 310-helical conformation, which appears to be necessary to satisfy a complex salt-bridge network.  相似文献   

2.
RT—PCR测定大鼠妊娠早期子宫孕激素受体基因的表达   总被引:3,自引:1,他引:3  
孕激素在妊娠的建立和维持过程中起着非常重要的作用,但目前为止未见有关大鼠子宫 激素受体(PR)基因在该过程中表达情况的系统报道。本和反转偶联聚合酶链式反应(RT-PCR)方法测定了大鼠动情周期和妊娠早期子宫孕激素受体基因的转录,结果表明:1.动情周期中,子吕PRmRNA水平在动情期最高,在动情后期最低,动情期水平约为动情后期的2倍。2.妊娠开始后,子宫PRmRNA水平迅速上地d3-d4(着床前)达  相似文献   

3.
Loss or "gain" of function mutations in voltage-gated ion channels often results in an adverse neurological phenotype. We have examined the electrical characteristics of hippocampal pyramidal cells in a transgenic mouse model to determine how overexpression of a Shaker-type potassium channel subunit during early postnatal development might alter excitability properties of developing neurons. We found that in CA3 neurons potassium channel overexpression led to a transient shortening in duration of single action potentials during the first two postnatal weeks. There was an increase in maximal repolarization rate, without significant effect on the rate of rise. Transgenic CA3 neurons also showed a decrease of firing frequency in response to sustained depolarizing current injection. In contrast, repolarization of action potentials in CA1 neurons was not significantly altered by trangene expression. Western Blot Analysis of membrane-associated transgene protein indicated that transgene protein levels decreased during development, in agreement with functional measures of spike width. Our data indicate that the functional consequences of potassium channel transgene expression are dependent on cellular environment and developmental stage. A transient period of hypoexcitability during a critical period of development for CA3 neurons may contribute to the hyperexcitable phenotype observed in adult animals.  相似文献   

4.
Apoptosis is an essential process in organ development, tissue homeostasis, somatic cell turnover, and the pathogenesis of degenerative diseases. Apoptotic cell death occurs in response to a variety of stimuli in physiological and pathological circumstances. Efflux of K+ and Cl leads to apoptotic volume decrease (AVD) of the cell. Both mitochondrion-mediated intrinsic, and death receptor-mediated extrinsic, apoptotic stimuli have been reported to rapidly activate Cl conductances in a large variety of cell types. In epithelial cells and cardiomyocytes, the AVD-inducing anion channel was recently determined to be the volume-sensitive outwardly rectifying (VSOR) Cl channel which is usually activated by swelling under non-apoptotic conditions. Blocking the VSOR Cl channel prevented cell death in not only epithelial and cardiac cells, but also other cell types, by inhibiting the induction of AVD and subsequent apoptotic events. Ischemia-reperfusion-induced apoptotic death in cardiomyocytes and brain neurons was also prevented by Cl channel blockers. Furthermore, cancer cell apoptosis induced by the anti-cancer drug cisplatin was recently found to be associated with augmented activity of the VSOR Cl channel and to be inhibited by a Cl channel blocker. The apoptosis-inducing VSOR Cl channel is distinct from ClC-3 and its molecular identity remains to be determined.  相似文献   

5.
The inward rectifier voltage-gated potassium channel hERG is of primary importance for the regulation of the membrane potential of cardiomyocytes. Unlike most voltage-gated K+-channels, hERG shows a low elementary conductance at physiological voltage and potassium concentration. To investigate the molecular features underlying this unusual behavior, we simulated the ion conduction through the selectivity filter at a fully atomistic level by means of molecular dynamics-based methods, using a homology-derived model. According to our calculations, permeation of potassium ions can occur along two pathways, one involving site vacancies inside the filter (showing an energy barrier of about 6 kcal mol−1), and the other characterized by the presence of a knock-on intermediate (about 8 kcal mol−1). These barriers are indeed in accordance with a low conductance behavior, and can be explained in terms of a series of distinctive structural features displayed by the hERG ion permeation pathway.  相似文献   

6.
The atomic models of the Kv1.2 potassium channel in the active and resting state, originally presented elsewhere, are here refined using molecular dynamics simulations in an explicit membrane-solvent environment. With a minor adjustment of the orientation of the first arginine along the S4 segment, the total gating charge of the channel determined from >0.5 μs of molecular dynamics simulation is ∼12-12.7 e, in good accord with experimental estimates for the Shaker potassium channel, indicating that the final models offer a realistic depiction of voltage-gating. In the resting state of Kv1.2, the S4 segment in the voltage-sensing domain (VSD) spontaneously converts into a 310 helix over a stretch of 10 residues. The 310 helical conformation orients the gating arginines on S4 toward a water-filled crevice within the VSD and allows salt-bridge interactions with negatively charged residues along S2 and S3. Free energy calculations of the fractional transmembrane potential, acting upon key charged residues of the VSD, reveals that the applied field varies rapidly over a narrow region of 10-15 Å corresponding to the outer leaflet of the bilayer. The focused field allows the transfer of a large gating charge without translocation of S4 across the membrane.  相似文献   

7.
We develop a simplified model of themultiply occupied Kcsa-like selectivityfilter based on the best availablestructural data. The existence of hierarchyof motions in the selectivity filter isshown. Fast fluctuations of the ion-iondistances may be considered adiabaticallydecoupled from the slow diffusive motion ofthe ions' center of masses. The latter canbe considered as a quasi-particle, called aquasi-ion, moving in an effectivepotential. In the Kcsa-like selectivityfilter occupied by three ions the effectivepotential allows free barrier-lessdiffusional motion of the quasi-ions. Theconcept of the quasi-ions performing iontranslocation through the channel may bevital in explaining barrier-less `knock-on' conduction postulated for real channels.  相似文献   

8.
The inwardly rectifying potassium channel (Kir) regulates resting membrane potential, K+ homeostasis, heart rate, and hormone secretion. The outward current is blocked in a voltage-dependent manner, upon the binding of intracellular polyamines or Mg2+ to the transmembrane pore domain. Meanwhile, electrophysiological studies have shown that mutations of several acidic residues in the intracellular regions affected the inward rectification. Although these acidic residues are assumed to bind polyamines, the functional role of the binding of polyamines and Mg2+ to the intracellular regions of Kirs remains unclear. Here, we report thermodynamic and structural studies of the interaction between polyamines and the cytoplasmic pore of mouse Kir3.1/GIRK1, which is gated by binding of G-protein βγ-subunit (Gβγ). ITC analyses showed that two spermine molecules bind to a tetramer of Kir3.1/GIRK1 with a dissociation constant of 26 μm, which is lower than other blockers. NMR analyses revealed that the spermine binding site is Asp-260 and its surrounding area. Small but significant chemical shift perturbations upon spermine binding were observed in the subunit-subunit interface of the tetramer, suggesting that spermine binding alters the relative orientations of the four subunits. Our ITC and NMR results postulated a spermine binding mode, where one spermine molecule bridges two Asp-260 side chains from adjacent subunits, with rearrangement of the subunit orientations. This suggests the functional roles of spermine binding to the cytoplasmic pore: stabilization of the resting state conformation of the channel, and instant translocation to the transmembrane pore upon activation through the Gβγ-induced conformational rearrangement.The inwardly rectifying K+ channel (Kir)3 plays a pivotal role in controlling resting membrane potential, K+ homeostasis, heart rate, and hormone secretion (1). The inward rectification property of Kir is reportedly due to the voltage-dependent blockade of the outward current by intracellular polyamines and Mg2+ (26). The importance of the electrostatic interactions of polyamines and Mg2+ with the acidic residues in Kirs has been indicated by electrophysiological studies in combination with site-directed mutagenesis, which have been accelerated by the recent progress in the structural analyses of Kirs (710). The crystal structures revealed that they form a symmetric tetramer, in which the transmembrane pore, containing the K+-selective filter and the cytoplasmic pore consisting of the N- and C-terminal regions form a long pore for the K+ pathway.In Kir2.1/IRK1, the strongest inward rectifier in the Kir family, negatively charged acidic residues that influence the inward rectification have been identified, including Asp-172 (11) in the transmembrane pore and Glu-224, Asp-255, Asp-259, and Glu-299 in the cytoplasmic pore (9, 1219). These acidic residues are assumed to be responsible for the electrostatic interaction with polyamines, in which the nitrogen atoms are positively charged at neutral pH (20).In other members of the Kir family, some of the electronegative residues are replaced by neutral ones, such as Gly and Ser. Although the total number of acidic residues correlates with the strength of inward rectification, the correlation cannot be completely explained for the strong rectifiers (9). In Kir3.1/GIRK1, which exhibits relatively strong inward rectification among the Kir family proteins, two of the four important acidic residues in Kir2.1 (Glu-224 and Asp-255) are replaced by Ser (Ser-225 and Ser-256 in Kir3.1, respectively). This suggests that the binding site(s) and stoichiometry of polyamine binding differ among the Kir proteins.Although the binding of polyamines to the cytoplasmic pore of Kirs is considered to be required for the blockade of the transmembrane pore to enable the inward rectification (16, 19, 21), the functional role of the polyamine binding to the cytoplasmic pore is still unclear. In particular, Kir3/GIRK is activated by the binding of G-protein βγ-subunits (Gβγ) to the cytoplasmic pore through the conformational rearrangement of the channel (22). Thus, the elucidation of the binding mode of Kir and polyamines based on the detection of their direct interaction as well as the effects of the binding on the protein conformation provides insights into the functional roles of the cytoplasmic pore in the gating and the inward rectifying property of the channel.Here, we report the thermodynamic and structural analyses of the interaction between spermine and the intracellular regions of Kir3.1/GIRK1. Our isothermal titration calorimetry (ITC) results indicated that two spermine molecules bind to a tetramer of Kir3.1/GIRK1, with a dissociation constant (Kd) value of 26 μm. NMR analyses together with ITC results revealed the spermine binding mode, in which one spermine molecule bridges two Asp-260 side chains of two adjacent subunits, with the alteration of the relative orientations of the four subunits. The spermine binding mode revealed here suggests the functional roles of the spermine binding to the cytoplasmic pore: in the resting state of the channel, spermine stabilizes a certain channel conformation, and upon activation, spermine is dissociated from the cytoplasmic pore through the Gβγ-induced conformational rearrangement, leading to rapid translocation to the transmembrane pore to block the outward K+ current.  相似文献   

9.
10.
Elucidation of the structure-function relationship of a small number of prokaryotic ion channels characterized so far greatly contributed to our knowledge on basic mechanisms of ion conduction. We identified a new potassium channel (SynK) in the genome of the cyanobacterium Synechocystis sp. PCC6803, a photosynthetic model organism. SynK, when expressed in a K+-uptake-system deficient E.coli strain, was able to recover growth of these organisms. The protein functions as a potassium selective ion channel when expressed in Chinese Hamster Ovary cells. The location of SynK in cyanobacteria in both thylakoid and plasmamembranes was revealed by immunogold electron microscopy and Western blotting of isolated membrane fractions. SynK seems to be conserved during evolution, giving rise to a TPK (two-pore K+ channel) family member which is shown here to be located in the thylakoid membrane of Arabidopsis. Our work characterizes a novel cyanobacterial potassium channel and indicates the molecular nature of the first higher plant thylakoid cation channel, opening the way to functional studies.  相似文献   

11.
12.
Elevated intraocular pressure (IOP) is the most prevalent and only treatable risk factor for glaucoma, a leading cause of irreversible blindness worldwide. Unfortunately, all current therapeutics used to treat elevated IOP and glaucoma have significant and sometimes irreversible side effects necessitating the development of novel compounds. We evaluated the IOP lowering ability of the broad spectrum KATP channel opener cromakalim. Cultured human anterior segments when treated with 2 μM cromakalim showed a decrease in pressure (19.33 ± 2.78 mmHg at 0 hours to 13.22 ± 2.64 mmHg at 24 hours; p<0.001) when compared to vehicle treated controls (15.89 ± 5.33 mmHg at 0 h to 15.56 ± 4.88 mmHg at 24 hours; p = 0.89). In wild-type C57BL/6 mice, cromakalim reduced IOP by 18.75 ± 2.22% compared to vehicle treated contralateral eyes (17.01 ± 0.32 mmHg at 0 hours to 13.82 ± 0.37 mmHg at 24 hours; n = 10, p = 0.002). Cromakalim demonstrated an additive effect when used in conjunction with latanoprost free acid, a common ocular hypotensive drug prescribed to patients with elevated IOP. To examine KATP channel subunit specificity, Kir6.2(-/-) mice were treated with cromakalim, but unlike wild-type animals, no change in IOP was noted. Histologic analysis of treated and control eyes in cultured human anterior segments and in mice showed similar cell numbers and extracellular matrix integrity within the trabecular meshwork, with no disruptions in the inner and outer walls of Schlemm’s canal. Together, these studies suggest that cromakalim is a potent ocular hypotensive agent that lowers IOP via activation of Kir6.2 containing KATP channels, its effect is additive when used in combination with the commonly used glaucoma drug latanoprost, and is not toxic to cells and tissues of the aqueous humor outflow pathway, making it a candidate for future therapeutic development.  相似文献   

13.
KAT1 is a cloned voltage-gated K+ channel from the plant Arabidopsis thaliana L., which displays an inward rectification reminiscent of `anomalous' rectification of the i f pacemaker current recorded in animal cells. Macroscopic conductance of KAT1 expressed in Xenopus oocytes was 5-fold less in pure Rb+ solution than in pure K+ solution, and negligible in pure Na+ solution. Experiments in different K+/Na+ or K+/Rb+ mixtures revealed deviations from the principle of independence and notably two anomalous effects of the K+/Rb+ mole fraction (i.e., the ratio [K+]/([K+]+[Rb+])). First, the KAT1 deactivation time constant was both voltage- and mole fraction-dependent (a so-called `foot in the door' effect was thus observed in KAT1 channel). Second, when plotted against the K+/Rb+ mole fraction, KAT1 conductance values passed through a minimum. This minimum is more important for two pore mutants of KAT1 (T259S and T260S) that displayed an increase in PRb/PK. These results are consistent with the idea that KAT1 conduction requires several ions to be present simultaneously within the pore. Therefore, this atypical `green' member of the Shaker superfamily of K+ channels further shows itself to be an interesting model as well for permeation as for gating mechanism studies. Received: 9 February 1998/Revised: 28 July 1998  相似文献   

14.
A new model is proposed to account for the apparent conductance changes of the sodium, or early, channel in nerve fiber membranes. In this model it is assumed that the channels are gated at the interior side of the membrane and are resistively limited at the exterior side by sodium selective barriers of high resistance to ion flow. Under resting conditions the closed channels accumulate a store of sodium ions, dependent on the exterior sodium concentration. With the application of a depolarizing clamp the interior gates open allowing the stored ions to discharge into the interior low sodium concentration solution. In this model the initial rise in the early current results from the opening of more and more gates in response to the depolarizing clamp. The subsequent fall in the early current results from the “capacitative” discharge of the opened channels, limited by the high resistive barrier at the exterior end. Upon repolarization, the gates reclose and sodium ions reaccumulate in the channels from the high concentration external solution, but at a slow rate determined by the resistive barrier. Preliminary tests of this model, using a number of simplifying assumptions, show that it has the ability to account, at least semiquantitatively, for the major characteristics of the experimental clamp results.  相似文献   

15.
Journal of Evolutionary Biochemistry and Physiology - Epilepsy is one of the widespread neurological human diseases, and nearly a third of patients are not completely relieved from epileptic...  相似文献   

16.
The viral potassium channel Kcv comprises only 94 amino acids, which represent the pore module of more complex K+ channels. As for Kir-type channels, Kcv also has a short N-terminal helix exposed to the cytoplasm, upstream of the first transmembrane domain. Here we show that this helix is relevant for Kcv function. The presence of charged amino acids, which form dynamic inter- and intra-subunit salt bridges is crucial. Electrophysiological measurements, yeast rescue experiments and molecular dynamics simulations show that mutants in which the critical salt bridge formation is impaired have no or reduced channel activity. We conclude that these salt bridges destabilise the complexation of K+ ions by negative charges on the inner transmembrane domain at the entrance into the cavity. This feature facilitates a continuous and coordinated transfer of ions between the cavity and the cytoplasm for channels without the canonical bundle crossing.  相似文献   

17.
The mechanism of mechanosensitive gating of ion channels underlies many physiological processes, including the sensations of touch, hearing, and pain perception. TREK-2 is the best-studied mechanosensitive member of the two-pore domain potassium channel family. Apart from pressure sensing, it responds to a diverse range of stimuli. Two states, termed “up” and “down,” are known from x-ray structural crystallographic studies and have been suggested to differ in conductance. However, the structural details of the gating behavior are largely unknown. In this work, we used molecular dynamics simulations to study the conductance of the states as well as the effect of mechanical membrane stretch on the channel. We find that the down state is less conductive than the up state. The introduction of membrane stretch in the simulations shifts the state of the channel toward an up configuration, independent of the starting configuration, and also increases its conductance. The correlation of the selectivity filter state and the conductance supports a model in which the selectivity filter gates by a carbonyl flip. This gate is stabilized by the pore helices. We suggest a modulation of these helices by an interface to the transmembrane helices. Membrane pressure changes the conformation of the transmembrane helices directly and consequently also influences the channel conductance.  相似文献   

18.
Loss of function mutations in the hERG (human ether-a-go-go related gene or KCNH2) potassium channel underlie the proarrhythmic cardiac long QT syndrome type 2. Most often this is a consequence of defective trafficking of hERG mutants to the cell surface, with channel retention and degradation at the endoplasmic reticulum. Here, we identify the Hsp40 type 1 chaperones DJA1 (DNAJA1/Hdj2) and DJA2 (DNAJA2) as key modulators of hERG degradation. Overexpression of the DJAs reduces hERG trafficking efficiency, an effect eliminated by the proteasomal inhibitor lactacystin or with DJA mutants lacking their J domains essential for Hsc70/Hsp70 activation. Both DJA1 and DJA2 cause a decrease in the amount of hERG complexed with Hsc70, indicating a preferential degradation of the complex. Similar effects were observed with the E3 ubiquitin ligase CHIP. Both the DJAs and CHIP reduce hERG stability and act differentially on folding intermediates of hERG and the disease-related trafficking mutant G601S. We propose a novel role for the DJA proteins in regulating degradation and suggest that they act at a critical point in secretory pathway quality control.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号