首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Biophysical journal》2020,118(1):254-261
Ion channels like KcsA enable ions to move across cell membranes at near diffusion-limited rates and with very high selectivity. Various mechanisms have been proposed to explain this phenomenon. Broadly, there is disagreement among the proposed mechanisms about whether ions occupy adjacent sites in the channel during the transport process. Here, using a mixed quantum-classical approach to calculate theoretical infrared spectra, we propose a set of infrared spectroscopy experiments that can discriminate between mechanisms with and without adjacent ions. These experiments differ from previous ones in that they independently probe specific ion binding sites within the selectivity filter. When ions occupy adjacent sites in the selectivity filter, the predicted spectra are significantly redshifted relative to when ions do not occupy adjacent sites. Comparisons between theoretical and experimental peak frequencies will therefore discriminate the mechanisms.  相似文献   

2.
A membrane potential stabilizing mechanism is proposed. Permeability is portrayed as controlled by a potential sensor. The active transport system is suggested to be a Maxwell demon able to recognize different ions, and modulate their passage into and out of the cell, without apparent reliance on energy. The idea that information is equivalent to entropy is used to resolve that paradox and construct a model of the active transport system. The non-steady ionic state of muscle cell is deduced; that ionic concentration may determine the condition of muscle is also suggested.  相似文献   

3.
In the absence of x-ray structures of sodium and calcium channels their homology models are used to rationalize experimental data and design new experiments. A challenge is to model the outer-pore region that folds differently from potassium channels. Here we report a new model of the outer-pore region of the NaV1.4 channel, which suggests roles of highly conserved residues around the selectivity filter. The model takes from our previous study (Tikhonov, D. B., and Zhorov, B. S. (2005) Biophys. J. 88, 184-197) the general disposition of the P-helices, selectivity filter residues, and the outer carboxylates, but proposes new intra- and inter-domain contacts that support structural stability of the outer pore. Glycine residues downstream from the selectivity filter are proposed to participate in knob-into-hole contacts with the P-helices and S6s. These contacts explain the adapted tetrodotoxin resistance of snakes that feed on toxic prey through valine substitution of isoleucine in the P-helix of repeat IV. Polar residues five positions upstream from the selectivity filter residues form H-bonds with the ascending-limb backbones. Exceptionally conserved tryptophans are engaged in inter-repeat H-bonds to form a ring whose π-electrons would facilitate passage of ions from the outer carboxylates to the selectivity filter. The outer-pore model of CaV1.2 derived from the NaV1.4 model is also stabilized by the ring of exceptionally conservative tryptophans and H-bonds between the P-helices and ascending limbs. In this model, the exceptionally conserved aspartate downstream from the selectivity-filter glutamate in repeat II facilitates passage of calcium ions to the selectivity-filter ring through the tryptophan ring. Available experimental data are discussed in view of the models.  相似文献   

4.
We have explored the permeation and blockage of ions in sodium channels, relating the channel structure to function using electrostatic profiles and Brownian dynamics simulations. The model used resembles the KcsA potassium channel with an added external vestibule and a shorter selectivity filter. The electrostatic energy landscape seen by permeating ions is determined by solving Poisson's equation. The two charged amino acid rings of Glu-Glu-Asp-Asp (EEDD) and Asp-Glu-Lys-Ala (DEKA) around the selectivity filter region are seen to play a crucial role in making the channel sodium selective, and strongly binding calcium ions such that they block the channel. Our model closely reproduces a range of experimental data including the current-voltage curves, current-concentration curves and blockage of monovalent ions by divalent ions.  相似文献   

5.
Data from the literature and results from a mathematical model of steady state fluid-electrolyte balance are used to support the observation that a relationship exists between the concentration gradients of K+ and H+ in the fluids of skeletal muscle over a range of acid-base disturbances. This relationship is shown to be consistent with the premise that the steady state electrochemical potential gradients for these ions remain constant under these conditions. Using a pump-leak model of ion transport, and the constant electric field assumption, it is also demonstrated that the steady state rates of active transport of K+ and H+ are related. These results suggest that the relations between both the steady state concentration gradients and the active transport rates for these ions are not necessarily the result of fixed biochemical mechanisms, but may come about simply from coupling through macroscopic thermodynamic processes.  相似文献   

6.
We have explored the permeation and blockage of ions in sodium channels, relating the channel structure to function using electrostatic profiles and Brownian dynamics simulations. The model used resembles the KcsA potassium channel with an added external vestibule and a shorter selectivity filter. The electrostatic energy landscape seen by permeating ions is determined by solving Poisson's equation. The two charged amino acid rings of Glu-Glu-Asp-Asp (EEDD) and Asp-Glu-Lys-Ala (DEKA) around the selectivity filter region are seen to play a crucial role in making the channel sodium selective, and strongly binding calcium ions such that they block the channel. Our model closely reproduces a range of experimental data including the current-voltage curves, current-concentration curves and blockage of monovalent ions by divalent ions.  相似文献   

7.
Modeling diverse range of potassium channels with Brownian dynamics   总被引:6,自引:0,他引:6       下载免费PDF全文
Using the experimentally determined KcsA structure as a template, we propose a plausible explanation for the diversity of potassium channels seen in nature. A simplified model of KcsA is constructed from its atomic resolution structure by smoothing out the protein-water boundary and representing the atoms forming the channel protein as a homogeneous, low dielectric medium. The properties of the simplified and atomic-detail models, deduced from electrostatic calculations and Brownian dynamics simulations, are shown to be qualitatively similar. We then study how the current flowing across the simplified model channel changes as the shape of the intrapore region is modified. This is achieved by increasing the radius of the intracellular pore systematically from 1.5 to 5 A while leaving the dimensions of the selectivity filter and inner chamber unaltered. The strengths of the dipoles located near the entrances of the channel, the carbonyl groups lining the selectivity filter, and the helix macrodipoles are kept constant. The channel conductance increases steadily as the radius of the intracellular pore is increased. The rate-limiting step for both the outward and inward current is the time it takes for an ion to cross the residual energy barrier located in the intrapore region. The current-voltage relationship obtained with symmetrical solutions is linear when the applied potential is less than approximately 100 mV but deviates slightly from Ohm's law at higher applied potentials. The nonlinearity in the current-voltage curve becomes less pronounced as the radius of the intracellular pore is increased. When the strengths of the dipoles near the intracellular entrance are reduced, the channel shows a pronounced inward rectification. Finally, the conductance exhibits the saturation property observed experimentally. We discuss the implications of these findings on the transport of ions across the potassium channels and membrane channels in general.  相似文献   

8.
1. Bicarbonate ions stimulate the transport of serine and alanine into isolated hepatocytes. 2. The effect of bicarbonate is to increase the Vmax. of the transport process without changing the apparent Km. 3. The intracellular pH was estimated from the distribution of the weak base methylamine and the weak acid 5,5'-dimethyloxazolidine-2,4-dione (DMO) across the plasma membrane. 4. The addition of bicarbonate to a cell suspension caused the internal pH to become more acid. 5. The initial rate of serine, alanine and glycine transport was a linear function of the initial difference in pH across the membrane. 6. It is concluded that bicarbonate activates the transport of these amino acids primarily by increasing the pH difference across the plasma membrane. 7. It is suggested that the uptake of serine together with Na+ ions occurs in exchange for H+ ions, which are translocated outwards on the same carrier system. Some preliminary evidence consistent with this model is presented.  相似文献   

9.
Light-driven sodium-pumping rhodopsins are able to actively transport sodium ions. Structure/function studies of Krokinobacter eikastus rhodopsin 2 (KR2) identified N61 and G263 at the cytoplasmic surface constituting the “Ion-selectivity filter” for sodium ions, while retinal Schiff base acts as the light “Switch and Gate” for transport of sodium ions. Q123 is located between the two regions, and plays an important role for the pump function, which was implicated by functional, spectroscopic, X-ray crystallographic and computational studies. According to the atomic structure of KR2, Q123 is involved in the hydrogen-bonding network at the cytoplasmic region, together with S64, protein-bound waters, and peptide carbonyl of K255 bound to the chromophore. To gain the detailed structural information around Q123, here we compared light-induced difference Fourier-transform infrared (FTIR) spectra at 77?K between the wild-type (WT) and mutant proteins of KR2, such as Q123A, Q123V, and S64A. The obtained spectra were very similar between WT and these mutants, whereas the observed mutation effects enabled us to identify vibrations of the hydrogen-bonding network at the Q123 and S64 region. This is unique for KR2, not for the corresponding mutations in a light-driven proton-pump bacteriorhodopsin (BR). Hydrogen-bonding alteration is absent for the mutants of KR2, suggesting that proper inter-helical connectivity of helices B, C, and G is important for protein structural changes for sodium-pump function, which is controlled by the region around Q123.  相似文献   

10.
We have found that herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) has the ability to increase the rate of transport of positive ions of several kinds, and to inhibit transport of negatively charged tetraphenylborate ions in lipid bilayer membranes. It has been found that only the neutral form of 2,4-D is transport active, whereas the ionized from of 2,4-D does not modify transport of ions, and does not by itself permeate through lipid membranes. The results suggest that the enhancement of transport of positively charged ions such as tetraphenylarsonium + and nonactin-K+ is dominated by the increase of the ion translocation rate constant. It has been shown that the enhancement of nonactin-mediated transport of K+ by 2,4-D can be accounted for by a simple carrier model. We have observed that a 2,4-D concentration above 3 X 10(-4) M the potassium ion transport in phosphatidylcholine-cholesterol as well as in cholesterol-free glycerolmonooleate membranes is enhanced to such a degree that, depending upon the concentration of potassium ions, it becomes limited by the rate of recombination of K+ with nonactin, and/or by backdiffusion of unloaded nonactin molecules. Furthermore, the effect of 2,4-D is enhanced by ionic strength of aqueous solution. From the changes of kinetic parameters of nonactin-K+ transport, as well as from the changes of membranes conductance due to tetraphenylarsonium + ions, we have estimated the changes of the electrical potential of the membrane interior. We have found that the potential of the interior of the membrane becomes more negative in the presence of 2,4-D, and that its change is proportional to the aqueous concentration of 2,4-D. The effect of 2,4-D on ion transport has been attributed to a layer of 2,4-D molecules absorbed within the interfacial region, and having a dipole moment directed toward the aqueous medium. The results of kinetic studied of nonactin-K+ transport suggest that this layer is located on the hydrocarbon side of the interface.  相似文献   

11.
Qiu H  Shen R  Guo W 《Biochimica et biophysica acta》2012,1818(11):2529-2535
The stability and ion binding properties of the homo-tetrameric pore domain of a prokaryotic, voltage-gated sodium channel are studied by extensive all-atom molecular dynamics simulations, with the channel protein being embedded in a fully hydrated lipid bilayer. It is found that Na(+) ion presents in a mostly hydrated state inside the wide pore of the selectivity filter of the sodium channel, in sharp contrast to the nearly fully dehydrated state for K(+) ions in potassium channels. Our results also indicate that Na(+) ions make contact with only one or two out of the four polypeptide chains forming the selectivity filter, and surprisingly, the selectivity filter exhibits robust stability for various initial ion configurations even in the absence of ions. These findings are quite different from those in potassium channels. Furthermore, an electric field above 0.5V/nm is suggested to be able to induce Na(+) permeation through the selectivity filter.  相似文献   

12.
A mathematical model of the active transport of main ions in cells of archaebacteria has been constructed. A set of equations has been developed and solved for ion fluxes through the bacterium membrane. The model is based on the principle “one ion—one transport system.” Considering experimental data, the major transport mechanism was determined for each ion and the balance equation was written on the basis of this mechanism in the stationary state. This allowed calculating values of the membrane potential and intracellular concentrations of the ions independently. The calculated values of the intracellular concentrations and resting potential are in qualitative agreement with the corresponding experimental values for cells of extremely halophilic archaea.  相似文献   

13.
Ion-binding properties of the ClC chloride selectivity filter   总被引:1,自引:0,他引:1  
The ClC channels are members of a large protein family of chloride (Cl-) channels and secondary active Cl- transporters. Despite their diverse functions, the transmembrane architecture within the family is conserved. Here we present a crystallographic study on the ion-binding properties of the ClC selectivity filter in the close homolog from Escherichia coli (EcClC). The ClC selectivity filter contains three ion-binding sites that bridge the extra- and intracellular solutions. The sites bind Cl- ions with mM affinity. Despite their close proximity within the filter, the three sites can be occupied simultaneously. The ion-binding properties are found conserved from the bacterial transporter EcClC to the human Cl- channel ClC-1, suggesting a close functional link between ion permeation in the channels and active transport in the transporters. In resemblance to K+ channels, ions permeate the ClC channel in a single file, with mutual repulsion between the ions fostering rapid conduction.  相似文献   

14.
ConclusionThe equilibrium ion-binding properties of ion channels and transporters can be difficult to discern from crystal structures alone, as proteins often adopt different lowest energy states depending on the ions bound. In cases where transport is slow, their inherent ion-binding preferences can be used to infer their transport preferences. However, in cases where transport is fast, the transport selectivity can hide their equilibrium preferences by accentuating the kinetics of ions hopping through a channel over its inherent ion-binding preferences. Thus, depending on the arrangement of ion-binding sites in a channel’s selectivity filter, one can achieve either selective or nonselective ion transport.The equilibrium K+ selectivity of some nonselective channels suggests a potential mechanism whereby they could evolve into a fast K+-selective channel. K+ channels and nonselective channels like CNG and HCN are related to one another in both sequence and structure, suggesting an evolutionary link between them. Swap experiments show that only a few mutations separate a nonselective channel from a K+-selective channel. One might imagine an evolutionary path between these channels in which the equilibrium preference for a K+ ion in a nonselective channel evolves into a K+-selective channel through these few mutations to create the selective ion queue. Alternatively, a slow single-ion channel with an equilibrium and transport preference for K+ ions could be transformed into a fast multi-ion channel through mutations that create a queue of K+-selective ion-binding sites, as is seen in most K+ channels studied to date.In the case of multi-ion selectivity filters, such as those found in K+ channels, the selectivity filter can be viewed as the active site that interacts with different queues of ions and water molecules. At least three properties emerge from multi-ion queues: (1) high conductance by reducing the affinity of multiple bound ions versus single ions; (2) high selectivity by allowing disfavored ions time to dissociate back into solution; and, consequently, (3) robust selectivity in an environment where ion concentrations can change. For transporters and carriers, the equilibrium preference and slow transport naturally create robust selectivity. In all these cases, equilibrium-based ion selectivity is achieved by slowing transport enough so that the disfavored ion is able to dissociate back into solution before transport takes place.  相似文献   

15.
《Biophysical journal》2022,121(7):1194-1204
Abnormal cellular copper levels have been clearly implicated in genetic diseases, cancer, and neurodegeneration. Ctr1, a high-affinity copper transporter, is a homotrimeric integral membrane protein that provides the main route for cellular copper uptake. Together with a sophisticated copper transport system, Ctr1 regulates Cu(I) metabolism in eukaryotes. Despite its pivotal role in normal cell function, the molecular mechanism of copper uptake and transport via Ctr1 remains elusive. In this study, electron paramagnetic resonance (EPR), UV-visible spectroscopy, and all-atom simulations were employed to explore Cu(I) binding to full-length human Ctr1 (hCtr1), thereby elucidating how metal binding at multiple distinct sites affects the hCtr1 conformational dynamics. We demonstrate that each hCtr1 monomer binds up to five Cu(I) ions and that progressive Cu(I) binding triggers a marked structural rearrangement in the hCtr1 C-terminal region. The observed Cu(I)-induced conformational remodeling suggests that the C-terminal region may play a dual role, serving both as a channel gate and as a shuttle mediating the delivery of copper ions from the extracellular hCtr1 selectivity filter to intracellular metallochaperones. Our findings thus contribute to a more complete understanding of the mechanism of hCtr1-mediated Cu(I) uptake and provide a conceptual basis for developing mechanism-based therapeutics for treating pathological conditions linked to de-regulated copper metabolism.  相似文献   

16.
Interactions of Na(+), K(+), Rb(+), and Cs(+) ions within the selectivity filter of a potassium channel have been investigated via multiple molecular dynamics simulations (total simulation time, 48 ns) based on the high resolution structure of KcsA, embedded in a phospholipid bilayer. As in simulations based on a lower resolution structure of KcsA, concerted motions of ions and water within the filter are seen. Despite the use of a higher resolution structure and the inclusion of four buried water molecules thought to stabilize the filter, this region exhibits a significant degree of flexibility. In particular, pronounced distortion of filter occurs if no ions are present within it. The two most readily permeant ions, K(+) and Rb(+), are similar in their interactions with the selectivity filter. In contrast, Na(+) ions tend to distort the filter by binding to a ring of four carbonyl oxygens. The larger Cs(+) ions result in a small degree of expansion of the filter relative to the x-ray structure. Cs(+) ions also appear to interact differently with the gate region of the channel, showing some tendency to bind within a predominantly hydrophobic pocket. The four water molecules buried between the back of the selectivity filter and the remainder of the protein show comparable mobility to the surrounding protein and do not exchange with water molecules within the filter or the central cavity. A preliminary comparison of the use of particle mesh Ewald versus cutoff protocols for the treatment of long-range electrostatics suggests some difference in the kinetics of ion translocation within the filter.  相似文献   

17.
Steep rectification in IRK1 (Kir2.1) inward-rectifier K(+) channels reflects strong voltage dependence (valence of approximately 5) of channel block by intracellular cationic blockers such as the polyamine spermine. The observed voltage dependence primarily results from displacement, by spermine, of up to five K(+) ions across the narrow K(+) selectivity filter, along which the transmembrane voltage drops steeply. Spermine first binds, with modest voltage dependence, at a shallow site where it encounters the innermost K(+) ion and impedes conduction. From there, spermine can proceed to a deeper site, displacing several more K(+) ions and thereby producing most of the observed voltage dependence. Since in the deeper blocked state the leading amine group of spermine reaches into the cavity region (internal to the selectivity filter) and interacts with residue D172, its trailing end is expected to be near M183. Here, we found that mutation M183A indeed affected the deeper blocked state, which supports the idea that spermine is located in the region lined by the M2 and not deep in the narrow K(+) selectivity filter. As to the shallower site whose location has been unknown, we note that in the crystal structure of homologous GIRK1 (Kir3.1), four aromatic side chains of F255, one from each of the four subunits, constrict the intracellular end of the pore to approximately 10 A. For technical simplicity, we used tetraethylammonium (TEA) as an initial probe to test whether the corresponding residue in IRK1, F254, forms the shallower site. We found that replacing the aromatic side chain with an aliphatic one not only lowered TEA affinity of the shallower site approximately 100-fold but also eliminated the associated voltage dependence and, furthermore, confirmed that similar effects occurred also for spermine. These results establish the evidence for physically separate, sequential ion-binding loci along the long inner pore of IRK1, and strongly suggest that the aromatic side chains of F254 underlie the likely innermost binding locus for both blocker and K(+) ions in the cytoplasmic pore.  相似文献   

18.
Counterions are required for RNA folding, and divalent metal ions such as Mg(2+) are often critical. To dissect the role of counterions, we have compared global and local folding of wild-type and mutant variants of P4-P6 RNA derived from the Tetrahymena group I ribozyme in monovalent and in divalent metal ions. A remarkably simple picture of the folding thermodynamics emerges. The equilibrium folding pathway in monovalent ions displays two phases. In the first phase, RNA molecules that are initially in an extended conformation enforced by charge-charge repulsion are relaxed by electrostatic screening to a state with increased flexibility but without formation of long-range tertiary contacts. At higher concentrations of monovalent ions, a state that is nearly identical to the native folded state in the presence of Mg(2+) is formed, with tertiary contacts that involve base and backbone interactions but without the subset of interactions that involve specific divalent metal ion-binding sites. The folding model derived from these and previous results provides a robust framework for understanding the equilibrium and kinetic folding of RNA.  相似文献   

19.
Biological ion channels rely on a multi-ion transport mechanism for fast yet selective permeation of ions. The crystal structure of the KcsA potassium channel provided the first microscopic picture of this process. A similar mechanism is assumed to operate in all potassium channels, but the validity of this assumption has not been well investigated. Here, we examine the energetics of ion permeation in Shaker Kv1.2 and KcsA channels, which exemplify the six-transmembrane voltage-gated and two-transmembrane inward-rectifier channels. We study the feasibility of binding a third ion to the filter and the concerted motion of ions in the channel by constructing the potential of mean force for K+ ions in various configurations. For both channels, we find that a pair of K+ ions can move almost freely within the filter, but a relatively large free-energy barrier hinders the K+ ion from stepping outside the filter. We discuss the effect of the CMAP dihedral energy correction that was recently incorporated into the CHARMM force field on ion permeation dynamics.  相似文献   

20.
The two potassium ion channels KirBac1.1 and KcsA are compared in a Molecular Dynamics (MD) simulation study. The location and motion of the potassium ions observed in the simulations are compared to those in the X-ray structures and previous simulations. In our simulations several of the crystallography resolved ion sites in KirBac1.1 are occupied by ions. In addition to this, two in KirBac1.1 unresolved sites where occupied by ions at sites that are in close correspondence to sites found in KcsA. There is every reason to believe that the conserved alignment of the selectivity filter in the potassium ion channel family corresponds to a very similar mechanism for ion transport across the filter. The gate residues, Phe146 in KirBac1.1 and Ala111 in KcsA acted in the simulations as effective barriers which never were passed by ions nor water molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号