首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The three-dimensional organization of the ubiquitous extracellular matrix glycoprotein fibronectin regulates cell fate and morphogenesis during development; in particular tubule formation that constitutes the vasculature, lung and kidney. Tenascin-C is a matrix protein with a restricted expression pattern; it is specifically up-regulated at sites of fibronectin fibril assembly during development and in remodeling adult tissues. Here we demonstrate that specific domains of tenascin-C inhibit fibronectin matrix assembly whereas full-length tenascin-C does not. These domains act via distinct mechanisms: TNfn1-8 blocks fibrillogenesis by binding to fibronectin fibrils and preventing intermolecular fibronectin interactions whilst FBG acts independently of binding to fibronectin and instead is internalized and causes cytoskeletal re-organization. We also show that TNfn1-8 disrupts epithelial cell tubulogenesis. Our data demonstrate that tenascin-C contains cryptic sites which can control tissue levels of fibrillar fibronectin either by preventing de novo fibril assembly or reducing levels of deposited fibronectin. Exposure of these domains during tissue remodeling may provide a novel means of controlling fibronectin assembly and tubulogenic processes dependent on the assembly of this matrix.  相似文献   

2.
Fibronectin fragments and domain-specific antibodies have been used to study the mechanism by which cells reorganize exogenous fibronectin substrata into fibrils. Fibroblasts prevented from protein synthesis, and hence not secreting endogenous fibronectin or other matrix components, reorganized exogenous fibronectin substrata into arrays resembling the matrix of normally cultured cells. Cells also formed fibrils from substrata containing mixtures of cell- and either of two different heparin-binding fibronectin fragments but not from either fragment alone. The gelatin-binding fragment alone or in conjunction with the cell-binding fragment did not promote fibril formation. Antibodies recognizing cell- and either heparin- or the gelatin-binding domains labeled fibrils formed by cells under normal culture conditions or when a substratum of intact fibronectin was used as the sole exogenous source. However, only antibodies recognizing the cell- or either heparin-binding fragment reduced fibrillogenesis from intact fibronectin substrates when added during cell spreading. These data suggest that formation of fibronectin fibrils can occur at the cell surface and that membrane components recognizing the cell- and the heparin-binding domains in fibronectin may cooperate in the assembly process  相似文献   

3.
A number of studies have suggested that externally applied mechanical forces and alterations in the intrinsic cell-extracellular matrix (ECM) force balance equivalently induce changes in cell phenotype. However, this possibility has never been directly tested. To test this hypothesis, we directly investigated the response of the microtubule (MT) cytoskeleton in smooth muscle cells to both mechanical signals and alterations in the ECM. A tensile force that resulted in a positive 10% step change in substrate strain increased MT mass by 34 +/- 10% over static controls, independent of the cell adhesion ligand and tyrosine phosphorylation. Conversely, a compressive force that resulted in a negative 10% step change in substrate strain decreased MT mass by 40 +/- 6% over static controls. In parallel, increasing the density of the ECM ligand fibronectin from 50 to 1,000 ng/cm(2) in the absence of any applied force increased the amount of polymeric tubulin in the cell from 59 +/- 11% to 81 +/- 13% of the total cellular tubulin. These data are consistent with a model in which MT assembly is, in part, controlled by forces imposed on these structures, and they suggest a novel control point for MT assembly by altering the intrinsic cell-ECM force balance and applying external mechanical forces.  相似文献   

4.
To adhere and migrate, cells generate forces through the cytoskeleton that are transmitted to the surrounding matrix. While cellular force generation has been studied on 2D substrates, less is known about cytoskeletal-mediated traction forces of cells embedded in more in vivo-like 3D matrices. Recent studies have revealed important differences between the cytoskeletal structure, adhesion, and migration of cells in 2D and 3D. Because the cytoskeleton mediates force, we sought to directly compare the role of the cytoskeleton in modulating cell force in 2D and 3D. MDA-MB-231 cells were treated with agents that perturbed actin, microtubules, or myosin, and analyzed for changes in cytoskeletal organization and force generation in both 2D and 3D. To quantify traction stresses in 2D, traction force microscopy was used; in 3D, force was assessed based on single cell-mediated collagen fibril reorganization imaged using confocal reflectance microscopy. Interestingly, even though previous studies have observed differences in cell behaviors like migration in 2D and 3D, our data indicate that forces generated on 2D substrates correlate with forces within 3D matrices. Disruption of actin, myosin or microtubules in either 2D or 3D microenvironments disrupts cell-generated force. These data suggest that despite differences in cytoskeletal organization in 2D and 3D, actin, microtubules and myosin contribute to contractility and matrix reorganization similarly in both microenvironments.  相似文献   

5.
Cell migration relies on traction forces in order to propel a cell. Several computational models have been developed that help explain the trajectory that cells take during migration, but little attention has been placed on traction forces during this process. Here, we investigated the spatiotemporal dynamics of cell migration by using a bio-chemical-mechanical contractility model that incorporates the first steps of cell migration on an array of posts. In the model, formation of a new adhesion causes a reactivation of stress fibre assembly within a cell. The model was able to predict the spatial distribution of traction forces observed with previous experiments. Moreover, the model found that the strain energy exerted by the traction forces of a migrating cell underwent a cyclic relationship that rose with the formation of a new adhesion and fell with the release of an adhesion at its rear.  相似文献   

6.
Fibronectin (FN) assembly into extracellular matrix is tightly regulated and essential to embryogenesis and wound healing. FN fibrillogenesis is initiated by cytoskeleton-derived tensional forces transmitted across transmembrane integrins onto RGD binding sequences within the tenth FN type III (10FNIII) domains. These forces unfold 10FNIII to expose cryptic FN assembly sites; however, a specific sequence has not been identified in 10FNIII. Our past steered molecular dynamics simulations modeling 10FNIII unfolding by force at its RGD loop predicted a mechanical intermediate with a solvent-exposed N terminus spanning the A and B β-strands. Here, we experimentally confirm that the predicted 23-residue cryptic peptide 1 (CP1) initiates FN multimerization, which is mediated by interactions with 10FNIII that expose hydrophobic surfaces that support 8-anilino-1-napthalenesulfonic acid binding. Localization of multimerization activity to the C terminus led to the discovery of a minimal 7-amino acid “multimerization sequence” (SLLISWD), which induces polymerization of FN and the clotting protein fibrinogen in addition to enhancing FN fibrillogenesis in fibroblasts. A point mutation at Trp-6 that reduces exposure of hydrophobic sites for 8-anilino-1-napthalenesulfonic acid binding and β-structure formation inhibits FN multimerization and prevents physiological cell-based FN assembly in culture. We propose a model for cell-mediated fibrillogenesis whereby cell traction force initiates a cascade of intermolecular exchange starting with the unfolding of 10FNIII to expose the multimerization sequence, which interacts with strand B of another 10FNIII domain via a Trp-mediated β-strand exchange to stabilize a partially unfolded intermediate that propagates FN self-assembly.  相似文献   

7.
Biochemical and mechanical cues of the extracellular matrix have been shown to play important roles in cell-matrix and cell-cell interactions. We have experimentally tested the combined influence of these cues to better understand cell motility, force generation, cell-cell interaction, and assembly in an in vitro breast cancer model. MCF-10A non-tumorigenic mammary epithelial cells were observed on surfaces with varying fibronectin ligand concentration and polyacrylamide gel rigidity. Our data show that cell velocity is biphasic in both matrix rigidity and adhesiveness. The maximum cell migration velocity occurs only at specific combination of substrate stiffness and ligand density. We found cell-cell interactions reduce migration velocity. However, the traction forces cells exert onto the substrate increase linearly with both cues, with cells in pairs exerting higher maximum tractions observed over single cells. A relationship between force and motility shows a maximum in single cell velocity not observed in cell pairs. Cell-cell adhesion becomes strongly favored on softer gels with elasticity ≤ 1250 Pascals (Pa), implying the existence of a compliance threshold that promotes cell-cell over cell-matrix adhesion. Finally on gels with stiffness similar to pre-malignant breast tissue, 400 Pa, cells undergo multicellular assembly and division into 3D spherical aggregates on a 2D surface.  相似文献   

8.
The force balance between the extracellular microenvironment and the intracellular cytoskeleton controls the cell fate. We report a new (to our knowledge) mechanism of receptor force control in cell adhesion originating from friction between cell adhesion ligands and the supporting substrate. Adherent human endothelial cells have been studied experimentally on polymer substrates noncovalently coated with fluorescent-labeled fibronectin (FN). The cellular traction force correlated with the mobility of FN during cell-driven FN fibrillogenesis. The experimental findings have been explained within a mechanistic two-dimensional model of the load transfer at focal adhesion sites. Myosin motor activity in conjunction with sliding of FN ligands noncovalently coupled to the surface of the polymer substrates is shown to result in a controlled traction force of adherent cells. We conclude that the friction of adhesion ligands on the supporting substrate is important for mechanotransduction and cell development of adherent cells in vitro and in vivo.  相似文献   

9.
The physical structure of the extracellular matrix (ECM) is tissue-specific and fundamental to normal tissue function. Proper alignment of ECM fibers is essential for the functioning of a variety of tissues. While matrix assembly in general has been intensively investigated, little is known about the mechanisms required for formation of aligned ECM fibrils. We investigated the initiation of fibronectin (FN) matrix assembly using fibroblasts that assemble parallel ECM fibrils and found that matrix assembly sites, where FN fibrillogenesis is initiated, were oriented in parallel at the cell poles. We show that these polarized matrix assembly sites progress into fibrillar adhesions and ultimately into aligned FN fibrils. Cells that assemble an unaligned meshwork matrix form matrix assembly sites around the cell periphery, but the distribution of matrix assembly sites in these cells could be modulated through micropatterning or mechanical stretch. While an elongated cell shape corresponds with a polarized matrix assembly site distribution, these two features are not absolutely linked, since we discovered that transforming growth factor beta (TGF-β1) enhances matrix assembly site polarity and assembly of aligned fibrils independent of cell elongation. We conclude that the ultimate orientation of FN fibrils is determined by the alignment and distribution of matrix assembly sites that form during the initial stages of cell–FN interactions.  相似文献   

10.
F1 is an adhesin of Streptococcus pyogenes which binds the N-terminal 70-kDa region of fibronectin with high affinity. The fibronectin binding region of F1 is comprised of a 43-residue upstream domain and a repeat domain comprised of five tandem 37-residue sequences. We investigated the effects of these domains on the assembly of fibronectin matrix by human dermal fibroblasts, MG63 osteosarcoma cells, or fibroblasts derived from fibronectin-null stem cells. Subequimolar or equimolar concentrations of recombinant proteins containing both the upstream and repeat domains or just the repeat domain enhanced binding of fibronectin or its N-terminal 70-kDa fragment to cell layers; higher concentrations of these recombinant proteins inhibited binding. The enhanced binding did not result in greater matrix assembly and was caused by increased ligand binding to substratum. In contrast, recombinant or synthetic protein containing the 43 residues of the upstream domain and the first 6 residues from the repeat domain exhibited monophasic inhibition with an IC(50) of approximately 10 nm. Truncation of the 49-residue sequence at its N or C terminus caused loss of inhibitory activity. The 49-residue upstream sequence blocked incorporation of both endogenous cellular fibronectin and exogenous plasma fibronectin into extracellular matrix and inhibited binding of 70-kDa fragment to fibronectin-null cells in a fibronectin-free system. Inhibition of matrix assembly by the 49-mer had no effect on cell adhesion to substratum, cell growth, formation of focal contacts, or formation of stress fibers. These results indicate that the 49-residue upstream sequence of F1 binds in an inhibitory mode to N-terminal parts of exogenous and endogenous fibronectin which are critical for fibronectin fibrillogenesis.  相似文献   

11.
During extracellular matrix assembly, fibronectin (FN) binds to cell surface receptors and initiates fibrillogenesis. As described in this report, matrix assembly has been dissected using recombinant FN polypeptides (recFNs) expressed in mammalian cells via retroviral vectors. RecFNs were assayed for incorporation into the detergent-insoluble cell matrix fraction and for formation of fibrils at the cell surface as detected by indirect immunofluorescence. Biochemical and immunocytochemical data are presented defining the minimum domain requirements for FN fibrillogenesis. The smallest functional recFN is half the size of native FN and contains intact amino- and carboxy-terminal regions with a large internal deletion spanning the collagen binding domain and the first seven type III repeats. Five type I repeats at the amino terminus are required for assembly and have FN binding activity. The dimer structure mediated by the carboxy-terminal interchain disulfide bonds is also essential. Surprisingly, recFNs lacking the RGDS cell binding site formed a significant fibrillar matrix. Therefore, FN-FN interactions and dimeric structure appear to be the major determinants of fibrillogenesis.  相似文献   

12.
We have developed two rat mAbs that recognize different subunits of the human fibroblast fibronectin receptor complex and have used them to probe the function of this cell surface heterodimer. mAb 13 recognizes the integrin class 1 beta polypeptide and mAb 16 recognizes the fibronectin receptor alpha polypeptide. We tested these mAbs for their inhibitory activities in cell adhesion, spreading, migration, and matrix assembly assays using WI38 human lung fibroblasts. mAb 13 inhibited the initial attachment as well as the spreading of WI38 cells on fibronectin and laminin substrates but not on vitronectin. Laminin-mediated adhesion was particularly sensitive to mAb 13. In contrast, mAb 16 inhibited initial cell attachment to fibronectin substrates but had no effect on attachment to either laminin or vitronectin substrates. When coated on plastic, both mAbs promoted WI38 cell spreading. However, mAb 13 (but not mAb 16) inhibited the radial outgrowth of cells from an explant on fibronectin substrates. mAb 16 also did not inhibit the motility of individual fibroblasts on fibronectin in low density culture and, in fact, substantially accelerated migration rates. In assays of the assembly of an extracellular fibronectin matrix by WI38 fibroblasts, both mAbs produced substantial inhibition in a concentration-dependent manner. The inhibition of matrix assembly resulted from impaired retention of fibronectin on the cell surface. Treatment of cells with mAb 16 also resulted in a striking redistribution of cell surface fibronectin receptors from a streak-like pattern to a relatively diffuse distribution. Concomitant morphological changes included decreases in thick microfilament bundle formation and reduced adhesive contacts of the streak-like and focal contact type. Our results indicate that the fibroblast fibronectin receptor (a) functions in initial fibroblast attachment and in certain types of adhesive contact, but not in the later steps of cell spreading; (b) is not required for fibroblast motility but instead retards migration; and (c) is critically involved in fibronectin retention and matrix assembly. These findings suggest a central role for the fibronectin receptor in regulating cell adhesion and migration.  相似文献   

13.
COMP acts as a catalyst in collagen fibrillogenesis   总被引:1,自引:0,他引:1  
We have previously reported that COMP (cartilage oligomeric matrix protein) is prominent in cartilage but is also present in tendon and binds to collagens I and II with high affinity. Here we show that COMP influences the fibril formation of these collagens. Fibril formation in the presence of pentameric COMP was much faster, and the amount of collagen in fibrillar form was markedly increased. Monomeric COMP, lacking the N-terminal coiled-coil linker domain, decelerated fibrillogenesis. The data show that stimulation of collagen fibrillogenesis depends on the pentameric nature of COMP and not only on collagen binding. COMP interacts primarily with free collagen I and II molecules, bringing several molecules to close proximity, apparently promoting further assembly. These assemblies further join in discrete steps to a narrow distribution of completed fibril diameters of 149 +/- 16 nm with a banding pattern of 67 nm. COMP is not found associated with the mature fibril and dissociates from the collagen molecules or their early assemblies. However, a few COMP molecules are found bound to more loosely associated molecules at the tip/end of the growing fibril. Thus, COMP appears to catalyze the fibril formation by promoting early association of collagen molecules leading to increased rate of fibrillogenesis and more distinct organization of the fibrils.  相似文献   

14.
Fibronectin matrix assembly is a multistep, integrin-dependent process. To investigate the role of integrin dynamics in fibronectin fibrillogenesis, we developed an antibody-chasing technique for simultaneous tracking of two integrin populations by different antibodies. We established that whereas the vitronectin receptor alpha(v)beta(3) remains within focal contacts, the fibronectin receptor alpha(5)beta(1) translocates from focal contacts into and along extracellular matrix (ECM) contacts. This escalator-like translocation occurs relative to the focal contacts at 6.5 +/- 0.7 microm/h and is independent of cell migration. It is induced by ligation of alpha(5)beta(1) integrins and depends on interactions with a functional actin cytoskeleton and vitronectin receptor ligation. During cell spreading, translocation of ligand-occupied alpha(5)beta(1) integrins away from focal contacts and along bundles of actin filaments generates ECM contacts. Tensin is a primary cytoskeletal component of these ECM contacts, and a novel dominant-negative inhibitor of tensin blocked ECM contact formation, integrin translocation, and fibronectin fibrillogenesis without affecting focal contacts. We propose that translocating alpha(5)beta(1) integrins induce initial fibronectin fibrillogenesis by transmitting cytoskeleton-generated tension to extracellular fibronectin molecules. Blocking this integrin translocation by a variety of treatments prevents the formation of ECM contacts and fibronectin fibrillogenesis. These studies identify a localized, directional, integrin translocation mechanism for matrix assembly.  相似文献   

15.
Mechanical forces play an important role in various cellular functions, such as tumor metastasis, embryonic development or tissue formation. Cell migration involves dynamics of adhesive processes and cytoskeleton remodelling, leading to traction forces between the cells and their surrounding extracellular medium. To study these mechanical forces, a number of methods have been developed to calculate tractions at the interface between the cell and the substrate by tracking the displacements of beads or microfabricated markers embedded in continuous deformable gels. These studies have provided the first reliable estimation of the traction forces under individual migrating cells. We have developed a new force sensor made of a dense array of soft micron-size pillars microfabricated using microelectronics techniques. This approach uses elastomeric substrates that are micropatterned by using a combination of hard and soft lithography. Traction forces are determined in real time by analyzing the deflections of each micropillar with an optical microscope. Indeed, the deflection is directly proportional to the force in the linear regime of small deformations. Epithelial cells are cultured on our substrates coated with extracellular matrix protein. First, we have characterized temporal and spatial distributions of traction forces of a cellular assembly. Forces are found to depend on their relative position in the monolayer : the strongest deformations are always localized at the edge of the islands of cells in the active areas of cell protrusions. Consequently, these forces are quantified and correlated with the adhesion/scattering processes of the cells.  相似文献   

16.
Endothelial cells respond to fluid shear stress through mechanotransduction responses that affect their cytoskeleton and cell-cell contacts. Here, endothelial cells were grown as monolayers on arrays of microposts and exposed to laminar or disturbed flow to examine the relationship among traction forces, intercellular forces, and cell-cell junctions. Cells under laminar flow had traction forces that were higher than those under static conditions, whereas cells under disturbed flow had lower traction forces. The response in adhesion junction assembly matched closely with changes in traction forces since adherens junctions were larger in size for laminar flow and smaller for disturbed flow. Treating the cells with calyculin-A to increase myosin phosphorylation and traction forces caused an increase in adherens junction size, whereas Y-27362 cause a decrease in their size. Since tugging forces across cell-cell junctions can promote junctional assembly, we developed a novel approach to measure intercellular forces and found that these forces were higher for laminar flow than for static or disturbed flow. The size of adherens junctions and tight junctions matched closely with intercellular forces for these flow conditions. These results indicate that laminar flow can increase cytoskeletal tension while disturbed flow decreases cytoskeletal tension. Consequently, we found that changes in cytoskeletal tension in response to shear flow conditions can affect intercellular tension, which in turn regulates the assembly of cell-cell junctions.  相似文献   

17.
Binding of the N-terminus of fibronectin to assembly sites on the cell surface is an essential step in fibronectin fibrillogenesis. Fibronectin matrix assembly sites have customarily been quantified using an iodinated 70 kDa N-terminal fibronectin fragment. The 125I-70 K fragment is a less than ideal reagent because its preparation requires large amounts of plasma fibronectin and it has a fairly short shelf life. An additional limitation is that the cells responsible for binding the 125I-70 K cannot be quantified or identified directly but must be assessed in parallel cultures. To overcome these disadvantages, we developed an ELISA-based assay using a recombinant HA-tagged 70 K fragment. This assay allows for the simultaneous quantification and localization of matrix assembly sites on the surface of adherent cells.  相似文献   

18.
Corneal scarring is a major cause of blindness worldwide and can result from the deposition of abnormal amounts of collagen fibers lacking the correct size and spacing required to produce a clear cornea. Collagen fiber formation requires a preformed fibronectin (FN) matrix. We demonstrate that the loss of syndecan1 (sdc1) in corneal stromal cells (CSC) impacts cell migration rates, the sizes and composition of focal and fibrillar adhesions, the activation of integrins, and the assembly of fibronectin into fibrils. Integrin and fibronectin expression are not altered on sdc1-null CSCs. Cell adhesion, spreading, and migration studies using low compared to high concentrations of FN and collagen I (CNI) or vitronectin (VN) with and without activation of integrins by manganese chloride show that the impact of sdc1 depletion on integrin activation varies depending on the integrin-mediated activity evaluated. Differences in FN fibrillogenesis and migration in sdc1-null CSCs are reversed by addition of manganese chloride but cell spreading differences remain. To determine if our findings on sdc1 were specific to the cornea, we compared the phenotypes of sdc1-null dermal fibroblasts with those of CSCs. We found that without sdc1, both cell types migrate faster; however, cell-type-specific differences in FN expression and its assembly into fibrils exist between these two cell types. Together, our data demonstrate that sdc1 functions to regulate integrin activity in multiple cell types. Loss of sdc1-mediated integrin function results in cell-type specific differences in matrix assembly. A better understanding of how different cell types regulate FN fibril formation via syndecans and integrins will lead to better treatments for scarring and fibrosis.  相似文献   

19.
Extracellular matrix fibronectin fibrils serve as passive structural supports for the organization of cells into tissues, yet can also actively stimulate a variety of cell and tissue functions, including cell proliferation. Factors that control and coordinate the functional activities of fibronectin fibrils are not known. Here, we compared effects of cell adhesion to vitronectin versus type I collagen on the assembly of and response to, extracellular matrix fibronectin fibrils. The amount of insoluble fibronectin matrix fibrils assembled by fibronectin-null mouse embryonic fibroblasts adherent to collagen- or vitronectin-coated substrates was not significantly different 20 h after fibronectin addition. However, the fibronectin matrix produced by vitronectin-adherent cells was ~ 10-fold less effective at enhancing cell proliferation than that of collagen-adherent cells. Increasing insoluble fibronectin levels with the fibronectin fragment, anastellin did not increase cell proliferation. Rather, native fibronectin fibrils polymerized by collagen- and vitronectin-adherent cells exhibited conformational differences in the growth-promoting, III-1 region of fibronectin, with collagen-adherent cells producing fibronectin fibrils in a more extended conformation. Fibronectin matrix assembly on either substrate was mediated by α5β1 integrins. However, on vitronectin-adherent cells, α5β1 integrins functioned in a lower activation state, characterized by reduced 9EG7 binding and decreased talin association. The inhibitory effect of vitronectin on fibronectin-mediated cell proliferation was localized to the cell-binding domain, but was not a general property of αvβ3 integrin-binding substrates. These data suggest that adhesion to vitronectin allows for the uncoupling of fibronectin fibril formation from downstream signaling events by reducing α5β1 integrin activation and fibronectin fibril extension.  相似文献   

20.
The interplay between cadherin- and integrin-dependent signals controls cell behavior, but the precise mechanisms that regulate the strength of adhesion to the extracellular matrix remains poorly understood. We deposited cells expressing a defined repertoire of cadherins and integrins on fibronectin (FN)-coated polyacrylamide gels (FN-PAG) and on FN-coated pillars used as a micro-force sensor array (μFSA), and analyzed the functional relationship between these adhesion receptors to determine how it regulates cell traction force. We found that cadherin-mediated adhesion stimulated cell spreading on FN-PAG, and this was modulated by the substrate stiffness. We compared S180 cells with cells stably expressing different cadherins on μFSA and found that traction forces were stronger in cells expressing cadherins than in parental cells. E-cadherin-mediated contact and mechanical coupling between cells are required for this increase in cell-FN traction force, which was not observed in isolated cells, and required Src and PI3K activities. Traction forces were stronger in cells expressing type I cadherins than in cells expressing type II cadherins, which correlates with our previous observation of a higher intercellular adhesion strength developed by type I compared with type II cadherins. Our results reveal one of the mechanisms whereby molecular cross talk between cadherins and integrins upregulates traction forces at cell-FN adhesion sites, and thus provide additional insight into the molecular control of cell behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号