首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The running behavior and biochemical markers of oxidative and glycolytic activities associated with voluntary running activity were studied in male Sprague-Dawley rats after 6 wk of training in exercise wheel cages. Twenty-four-hour recordings of running activity were used to quantify the number of individual running bouts, their duration and running speed, and the distance run per day. We then established three categories of voluntary running activity based on the mean distance run per day during the last 3 wk of training: low-activity runners averaged 2-5 km/day, medium runners 6-9 km/day, and high runners greater than 11 km/day. Each group demonstrated an intermittent, nocturnal running pattern, at relatively high intensities, with a similar mean running speed for all groups (avg approximately 45 m/min). Differences in total distance run per day were the result of variations in both the number and duration of individual running bouts. Specifically, high runners (n = 7) had 206 +/- 30 individual running bouts per 24 h, each lasting 87 +/- 7 s; medium runners (n = 7) 221 +/- 22 running bouts, lasting 47 +/- 5 s; and low runners (n = 7) 113 +/- 7 bouts, each lasting 40 +/- 7 s. Voluntary running depressed the rate of body weight gain compared with sedentary control rats, despite an increased food and water intake for all runners. Furthermore, drinking activity was temporally associated with running periods.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
To determine whether voluntary exercise would lower resting blood pressure in spontaneously hypertensive rats (SHR) and stroke-prone spontaneously hypertensive rats (SP-SHR), two separate but interrelated investigations were undertaken. The studies were initiated when the animals were 28-35 days of age and after they were assigned to either activity or sedentary cages. The activity cages were connected to transducers and recorders that allowed the monitoring and calculation of frequency, duration, and running speed. The SHR group ran 3-7 km/day intermittently for 12 wk at high speeds (48-68 m/min), which resulted in heart rates in excess of 500 beats/min. When the SHR exercised, they seldom exceeded 33 revolutions/bout (37 m) with the majority being less than 22 revolutions/bout. This type of exercise training significantly lowered, but did not normalize, resting blood pressure by approximately 20 mmHg [nontrained (NT) = 185 +/- 5; trained (T) = 163 +/- 5 mmHg] while increasing maximum O2 consumption (VO2max) (NT = 78 +/- 2.6; T = 95 +/- 2.2 ml X min-1 X kg-1) and endurance run time (NT = 62 +/- 9.0; T = 286 +/- 15.0 min), respectively. Although SP-SHR exhibited comparable patterns of voluntary activity, the effects were not similar. First, after approximately 5 wk of consuming a special Japanese rat chow and a 1% NaCl drinking solution, cerebrovascular lesions occurred and deaths ultimately resulted in both exercising and sedentary groups. Second, although there was statistical evidence for a training effect (higher VO2max, longer VO2 test run times), voluntary exercise had no advantage in either male or female runners in lowering resting blood pressures or in improving their life-spans. Whereas voluntary activity wheel exercise or moderate forced treadmill exercise will lower resting blood pressures in young SHR populations, similar generalizations cannot be made with young SP-SHR rats.  相似文献   

3.
In this study, we assessed the effects of chronic exercise training (12 wk) on atherosclerotic lesion formation in hypercholesterolemic apolipoprotein E-deficient mice (n = 31). At the age of 9 wk, mice were assigned to the following groups: sedentary (Sed; n = 9); exercise (Ex; n = 12); sedentary and oral NG-nitro-L-arginine (L-NNA, Sed-NA; n = 4), or exercise and oral L-NNA (Ex-NA; n = 6). Chronic exercise training was performed on a treadmill for 12 wk (6 times/wk and twice for 1 h/day) at a final speed of 22 m/min, and an 8 degrees grade. L-NNA was discontinued 5 days before final treadmill testing. The farthest distance run to exhaustion was observed in Ex-NA mice (Sed: 306 +/- 32 m; Ex: 640 +/- 87; Sed-NA: 451 +/- 109 m; Ex-NA: 820 +/- 49 m; all P < 0.05). Lesion formation was assessed in the proximal ascending aorta by dissection microscopy after oil red O staining. The aortas of Sed-NA mice manifested a threefold increase in lesion formation compared with the other groups. This L-NNA-induced lesion formation was reduced by chronic exercise training (Sed, 786 +/- 144; Ex, 780 +/- 206; Sed-NA, 2,147 +/- 522; Ex-NA, 851 +/- 253; Sed-NA vs. all other groups: P < 0.001). In conclusion, treatment with oral L-NNA (an nitric oxide synthase antagonist) leads to accelerated atherogenesis in genetically determined hypercholesterolemic mice. This adverse effect can be overcome by chronic exercise training.  相似文献   

4.
Moderate-intensity treadmill running can alter male Apc(Min/+) mouse polyp formation. This purpose of this study was to examine whether exercise mode differentially affects Apc(Min/+) mouse intestinal polyp development in male and female mice. Male and female Apc(Min/+) mice were randomly assigned to control, treadmill (18 m/min; 60 min/day; 6 days/wk), or voluntary wheel running (24-h access) groups. Nine weeks of training decreased total intestinal polyps by 29% in male treadmill runners (66 +/- 9; P = 0.038) compared with male controls (93 +/- 7). The number of large polyps (>/=1-mm diameter) were also reduced by 38% in male treadmill runners (49 +/- 6; P = 0.005) compared with male controls (79 +/- 6). Treadmill running in female Apc(Min/+) mice and wheel running in both genders did not affect polyp number or size. Spleen weight decreased in male treadmill runners (91 +/- 9 mg; P = 0.011) and wheel runners (75 +/- 6 mg; P = 0.004) compared with controls (141 +/- 13 mg). Plasma IL-6 was reduced by 96% in male treadmill runners (1.2 +/- 0.6 pg/ml) and 78% in male wheel runners (6.6 +/- 3.3 pg/ml) compared with control mice (27.9 +/- 2.8 pg/ml; P < 0.05). Female mice responded similarly with an 86% decrease in plasma IL-6 with treadmill running (3.2 +/- 1.2 pg/ml) and 90% decrease with wheel running (2.9 +/- 2.0 pg/ml) compared with control mice (21.1 +/- 5.3 pg/ml; P < 0.05). The crypt depth-to-villus height ratio in the intestine, an indirect marker of intestinal inflammation, decreased by 21 (P = 0.024) and 24% (P = 0.029), respectively, in male and female treadmill runners but not wheel runners. Physical activity-induced attenuation of intestinal polyp number and size is dependent on exercise mode and differs between genders. The modulation of systemic and intestinal inflammation may also depend on exercise mode.  相似文献   

5.
Both a large heart rate (HR) increase at exercise onset and a slow heart rate (HR) recovery following the termination of exercise have been linked to an increased risk for ventricular fibrillation (VF) in patients with coronary artery disease. Endurance exercise training can alter cardiac autonomic regulation. Therefore, it is possible that this intervention could restore a more normal HR regulation in high-risk individuals. To test this hypothesis, HR and HR variability (HRV, 0.24- to 1.04-Hz frequency component; an index of cardiac vagal activity) responses to submaximal exercise were measured 30, 60, and 120 s after exercise onset and 30, 60, and 120 s following the termination of exercise in dogs with healed myocardial infarctions known to be susceptible (n = 19) to VF (induced by a 2-min coronary occlusion during the last minute of a submaximal exercise test). These studies were then repeated after either a 10-wk exercise program (treadmill running, n = 10) or an equivalent sedentary period (n = 9). After 10 wk, the response to exercise was not altered in the sedentary animals. In contrast, endurance exercise increased indexes of cardiac vagal activity such that HR at exercise onset was reduced (30 s after exercise onset: HR pretraining 179 +/- 8.4 vs. posttraining 151.4 +/- 6.6 beats/min; HRV pretraining 4.0 +/- 0.4 vs. posttraining 5.8 +/- 0.4 ln ms(2)), whereas HR recovery 30 s after the termination of exercise increased (HR pretraining 186 +/- 7.8 vs. posttraining 159.4 +/- 7.7 beats/min; HRV pretraining 2.4 +/- 0.3 vs. posttraining 4.0 +/- 0.6 ln ms(2)). Thus endurance exercise training restored a more normal HR regulation in dogs susceptible to VF.  相似文献   

6.
Exercise training changes autonomic cardiovascular balance in mice.   总被引:1,自引:0,他引:1  
Experiments were performed to investigate the influence of exercise training on cardiovascular function in mice. Heart rate, arterial pressure, baroreflex sensitivity, and autonomic control of heart rate were measured in conscious, unrestrained male C57/6J sedentary (n = 8) and trained mice (n = 8). The exercise training protocol used a treadmill (1 h/day; 5 days/wk for 4 wk). Baroreflex sensitivity was evaluated by the tachycardic and bradycardic responses induced by sodium nitroprusside and phenylephrine, respectively. Autonomic control of heart rate and intrinsic heart rate were determined by use of methylatropine and propranolol. Resting bradycardia was observed in trained mice compared with sedentary animals [485 +/- 9 vs. 612 +/- 5 beats/min (bpm)], whereas mean arterial pressure was not different between the groups (106 +/- 2 vs. 108 +/- 3 mmHg). Baroreflex-mediated tachycardia was significantly enhanced in the trained group (6.97 +/- 0.97 vs. 1.6 +/- 0.21 bpm/mmHg, trained vs. sedentary), whereas baroreflex-mediated bradycardia was not altered by training. The tachycardia induced by methylatropine was significantly increased in trained animals (139 +/- 12 vs. 40 +/- 9 bpm, trained vs. sedentary), whereas the propranolol effect was significantly reduced in the trained group (49 +/- 11 vs. 97 +/- 11 bpm, trained vs. sedentary). Intrinsic heart rate was similar between groups. In conclusion, dynamic exercise training in mice induced a resting bradycardia and an improvement in baroreflex-mediated tachycardia. These changes are likely related to an increased vagal and decreased sympathetic tone, similar to the exercise response observed in humans.  相似文献   

7.
Circulating hematopoietic progenitor cells in runners.   总被引:1,自引:0,他引:1  
Because endurance exercise causes release of mediators and growth factors active on the bone marrow, we asked whether it might affect circulating hematopoietic progenitor cells (HPCs) in amateur runners [n = 16, age: 41.8 +/- 13.5 (SD) yr, training: 93.8 +/- 31.8 km/wk] compared with sedentary controls (n = 9, age: 39.4 +/- 10.2 yr). HPCs, plasma cortisol, interleukin (IL)-6, granulocyte colony-stimulating factor (G-CSF), and the growth factor fms-like tyrosine kinase-3 (flt3)-ligand were measured at rest and after a marathon (M; n = 8) or half-marathon (HM; n = 8). Circulating HPC counts (i.e., CD34(+) cells and their subpopulations) were three- to fourfold higher in runners than in controls at baseline. They were unaffected by HM or M acutely but decreased the morning postrace. Baseline cortisol, flt3-ligand, IL-6, and G-CSF levels were similar in runners and controls. IL-6 and G-CSF increased to higher levels after M compared with HM, whereas cortisol and flt3-ligand increased similarly postrace. Our data suggest that increased HPCs reflect an adaptation response to recurrent, exercise-associated release of neutrophils and stress and inflammatory mediators, indicating modulation of bone marrow activity by habitual running.  相似文献   

8.
Elite athletes show a high prevalence of symptoms and signs of asthma, but no study has assessed the acute effects of endurance exercise on airway cells in nonasthmatic athletes. We measured exhaled nitric oxide (NO) and collected samples of induced sputum after 3% NaCl aerosol administration for 20 min in nonasthmatic middle-aged amateur runners after the Fourth Palermo International Marathon and 6--9 wk later (habitual training period) at baseline. After the marathon, exhaled NO (n = 9 subjects) was higher [27 +/- 9 parts/billion (ppb)] than at baseline (12 +/- 4 ppb; P < 0.0005). Polymorphonuclear neutrophil (PMN) counts in induced sputum were much higher in runners (91.2 +/- 3.6% of total cells postmarathon and 78.7 +/- 9.1% at baseline) than in sedentary control subjects (9.9 +/- 5.9%; P < 0.001). Expression of L-selectin and CD11b/CD18 in sputum PMNs was lower after the race than at baseline and inversely related to the amount of exhaled NO (r = -0.66 and -0.69, respectively; P < 0.05). Our data indicate that sputum PMNs are increased in nonasthmatic runners both after a marathon and at baseline and suggest that NO may modulate exercise-associated inflammatory airway changes.  相似文献   

9.
Male heterozygous TG(mREN2)27 rats (TGR) overexpress a murine renin transgene, display marked hypertension, and have insulin resistance of skeletal muscle glucose transport and insulin signaling. We have shown previously that voluntary exercise training by TGR improves insulin-mediated skeletal muscle glucose transport (Kinnick TR, Youngblood EB, O'Keefe MP, Saengsirisuwan V, Teachey MK, and Henriksen EJ. J Appl Physiol 93: 805-812, 2002). The present study evaluated whether this training-induced enhancement of muscle glucose transport is associated with upregulation of critical insulin signaling elements, including insulin receptor substrate-1 (IRS-1), phosphatidylinositol 3-kinase, Akt, and glycogen synthase kinase-3. TGR remained sedentary or ran spontaneously in activity wheels for 6 wk, averaging 7.1 +/- 0.8 km/day by the end of week 3 and 4.3 +/- 0.5 km/day over the final week of training. Exercise training reduced total abdominal fat by 20% (P < 0.05) in TGR runners (2.64 +/- 0.01% of body weight) compared with sedentary TGR controls (3.28 +/- 0.01%). Insulin-stimulated (2 mU/ml) glucose transport activity in soleus muscle was 36% greater in TGR runners compared with sedentary TGR controls. However, the protein expression and functionality of tyrosine phosphorylation of insulin receptor and IRS-1, IRS-1 associated with the p85 regulatory subunit of phosphatidylinositol 3-kinase, and Ser473 phosphorylation of Akt were not altered by exercise training. Only insulin-stimulated glycogen synthase kinase-3beta Ser9 phosphorylation was increased (22%) by exercise training. These results indicate that voluntary exercise training in TGR can enhance insulin-mediated glucose transport in skeletal muscle, as well as reduce total abdominal fat mass. However, this adaptive response in muscle occurs independently of modifications in the proximal elements of the insulin signaling cascade.  相似文献   

10.
Evidence suggests that mitochondrial dysfunction and oxidant production, in association with an accumulation of oxidative damage, contribute to the aging process. Regular physical activity can delay the onset of morbidity, increase mean lifespan, and reduce the risk of developing several pathological states. No studies have examined age-related changes in oxidant production and oxidative stress in both subsarcolemmal (SSM) and interfibrillar (IFM) mitochondria in combination with lifelong exercise. Therefore, we investigated whether long-term voluntary wheel running in Fischer 344 rats altered hydrogen peroxide (H2O2) production, antioxidant defenses, and oxidative damage in cardiac SSM and IFM. At 10-11 wk of age, rats were randomly assigned to one of two groups: sedentary and 8% food restriction (sedentary; n = 20) or wheel running and 8% food restriction (runners; n = 20); rats were killed at 24 mo of age. After the age of 6 mo, running activity was maintained at an average of 1,145 +/- 248 m/day. Daily energy expenditure determined by doubly labeled water technique showed that runners expended on average approximately 70% more energy per day than the sedentary rats. Long-term voluntary wheel running significantly reduced H2O2 production from both SSM (-10.0%) and IFM (-9.6%) and increased daily energy expenditure (kJ/day) significantly in runners compared with sedentary controls. Additionally, MnSOD activity was significantly lowered in SSM and IFM from wheel runners, which may reflect a reduction in mitochondrial superoxide production. Activities of the other major antioxidant enzymes (glutathione peroxidase and catalase) and glutathione levels were not altered by wheel running. Despite the reduction in mitochondrial oxidant production, no significant differences in oxidative stress levels (4-hydroxy-2-nonenal-modified proteins, protein carbonyls, and malondialdehyde) were detected between the two groups. The health benefits of chronic exercise may be, at least partially, due to a reduction in mitochondrial oxidant production; however, we could not detect a significant reduction in several selected parameters of oxidative stress.  相似文献   

11.
There are currently no models of exercise that recruit and train muscles, such as the rat spinotrapezius, that are suitable for transmission intravital microscopic investigation of the microcirculation. Recent experimental evidence supports the concept that running downhill on a motorized treadmill recruits the spinotrapezius muscle of the rat. Based on these results, we tested the hypothesis that 6 wk of downhill running (-14 degrees grade) for 1 h/day, 5 days/wk, at a speed of up to 35 m/min, would 1) increase whole body peak oxygen uptake (Vo(2 peak)), 2) increase spinotrapezius citrate synthase activity, and 3) reduce the fatigability of the spinotrapezius during electrically induced 1-Hz submaximal tetanic contractions. Trained rats (n = 6) elicited a 24% higher Vo(2 peak) (in ml.min(-1).kg(-1): sedentary 58.5 +/- 2.0, trained 72.7 +/- 2.0; P < 0.001) and a 41% greater spinotrapezius citrate synthase activity (in mumol.min(-1).g(-1): sedentary 14.1 +/- 0.7, trained 19.9 +/- 0.9; P < 0.001) compared with sedentary controls (n = 6). In addition, at the end of 15 min of electrical stimulation, trained rats sustained a greater percentage of the initial tension than their sedentary counterparts (control 34.3 +/- 3.1%, trained 59.0 +/- 7.2%; P < 0.05). These results demonstrate that downhill running is successful in promoting training adaptations in the spinotrapezius muscle, including increased oxidative capacity and resistance to fatigue. Since the spinotrapezius muscle is commonly used in studies using intravital microscopy to examine microcirculatory function at rest and during contractions, our results suggest that downhill running is an effective training paradigm that can be used to investigate the mechanisms for improved microcirculatory function following exercise training in health and disease.  相似文献   

12.
Myocardial function is enhanced by endurance exercise training, but the cellular mechanisms underlying this improved function remain unclear. Exercise training increases the sensitivity of rat cardiac myocytes to activation by Ca(2+), and this Ca(2+) sensitivity has been shown to be highly dependent on sarcomere length. We tested the hypothesis that exercise training increases this length dependence in cardiac myocytes. Female Sprague-Dawley rats were divided into sedentary control (C) and exercise-trained (T) groups. The T rats underwent 11 wk of progressive treadmill exercise. Heart weight increased by 14% in T compared with C rats, and plantaris muscle citrate synthase activity showed a 39% increase with training. Steady-state tension was determined in permeabilized myocytes by using solutions of various Ca(2+) concentration (pCa), and tension-pCa curves were generated at two different sarcomere lengths for each myocyte (1.9 and 2.3 microm). We found an increased sarcomere length dependence of both maximal tension and pCa(50) (the Ca(2+) concentration giving 50% of maximal tension) in T compared with C myocytes. The DeltapCa(50) between the long and short sarcomere length was 0.084 +/- 0.023 (mean +/- SD) in myocytes from C hearts compared with 0.132 +/- 0.014 in myocytes from T hearts (n = 50 myocytes per group). The Deltamaximal tension was 5.11 +/- 1.42 kN/m(2) in C myocytes and 9.01 +/- 1.28 in T myocytes. We conclude that exercise training increases the length dependence of maximal and submaximal tension in cardiac myocytes, and this change may underlie, at least in part, training-induced enhancement of myocardial function.  相似文献   

13.
The purpose of this study was to examine the effect of endurance training on oxygen uptake (VO(2)) kinetics during moderate [below the lactate threshold (LT)] and heavy (above LT) treadmill running. Twenty-three healthy physical education students undertook 6 wk of endurance training that involved continuous and interval running training 3-5 days per week for 20-30 min per session. Before and after the training program, the subjects performed an incremental treadmill test to exhaustion for determination of the LT and the VO(2 max) and a series of 6-min square-wave transitions from rest to running speeds calculated to require 80% of the LT and 50% of the difference between LT and maximal VO(2). The training program caused small (3-4%) but significant increases in LT and maximal VO(2) (P<0.05). The VO(2) kinetics for moderate exercise were not significantly affected by training. For heavy exercise, the time constant and amplitude of the fast component were not significantly affected by training, but the amplitude of the VO(2) slow component was significantly reduced from 321+/-32 to 217+/-23 ml/min (P<0.05). The reduction in the slow component was not significantly correlated to the reduction in blood lactate concentration (r = 0. 39). Although the reduction in the slow component was significantly related to the reduction in minute ventilation (r = 0.46; P<0.05), it was calculated that only 9-14% of the slow component could be attributed to the change in minute ventilation. We conclude that the VO(2) slow component during treadmill running can be attenuated with a short-term program of endurance running training.  相似文献   

14.
Effect of voluntary exercise on longevity of rats   总被引:5,自引:0,他引:5  
The purpose of this study was to obtain information regarding the effects of exercise on longevity in rats. The exercise used was voluntary activity wheel running. The runners gradually decreased their running from approximately 4 to approximately 1 mile/day as they aged from 9 to 30 mo. The runners lived slightly but significantly longer than sedentary freely eating controls and sedentary pair-fed controls (1,012 +/- 138 vs. 923 +/- 160 and 928 +/- 186 days) but significantly less long than food-restricted paired-weight sedentary controls (1,113 +/- 150 days). Although the exercise improved survival, it did not result in an extension of life-span. In contrast, the food-restricted paired-weight sedentary rats showed a true increase in life-span. The paired-weight rats also had a significantly reduced incidence of malignancies compared with the other three groups. However, there was no significant difference between the runners and the freely eating or pair-fed sedentary controls in the cause of death. These results provide evidence that exercise improves survival but does not result in an extension of life-span in rats.  相似文献   

15.
Submandibular lymph nodes (SLN) are crucial for immune surveillance of the anterior ocular chamber and upper respiratory tract; little is known about how training and exercise affect SLN lymphocytes. The intent of this study was to describe the impact of long term freewheel running followed by acute strenuous exercise on SLN lymphocytes in mice. Female C57BL/6 mice were assigned to running wheels or remained sedentary for 8 months, and further randomized to treadmill exercise and sacrifice immediately, treadmill exercise and sacrifice 24 h after exercise cessation, or no treadmill exposure. SLN lymphocytes were isolated and analyzed for CD3, CD4, CD8, and CD19 cell surface markers, phosphatidylserine externalization as a marker of apoptosis, and intracellular glutathione as a marker of oxidative stress. Compared with running wheel mice, older sedentary mice had a lower percent of T cells and higher percent of B cells (p < 0.05). Although intracellular glutathione did not differ between groups, running mice had a lower percent of Annexin V(+) SLN lymphocytes 24 h after treadmill exercise. Further research will be needed to determine if voluntary exercise translates into improved anterior ocular and upper respiratory tract health.  相似文献   

16.
Congestive heart failure (CHF) induces a state of immune activation, and peritoneal macrophages (M phi s) may play an important role in the development and progression of one such condition. Moderate endurance training modulates peritoneal M phi function. We evaluated the effect of endurance training on different stages of the phagocytic process and in the production of interleukin-6 (IL-6), interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) after LPS stimulation. Either ligation of the left coronary artery or Sham operations were performed in adult Wistar rats. After 4 wk, control (Sham operated) and MI (ligation of the left coronary artery) animals were randomly assigned to either a sedentary (Sham-operated sedentary, n = 7 and MI sedentary, n = 10) or a trained group (Sham-operated trained, n = 8 and MI trained, n = 8). Trained rats ran on a treadmill (0% grade at 13-20 m/min) for 60 min/day, 5 days/wk, for 8-10 wk, whereas sedentary rats had only limited activity. Training increased maximal oxygen uptake normalized for body weight (ml.kg(-1).min(-1)), as well as skeletal muscle citrate synthase maximal activity, when compared with sedentary groups. The resident and total cell number, the chemotaxis index, and the production of TNF-alpha stimulated by LPS were significantly higher in the MI sedentary group when compared with the Sham sedentary group. Moderate endurance training reversed these alterations promoted by post-MI. These results demonstrate that moderate intensity exercise training modulates peritoneal M phi function and induces beneficial metabolic effects in rats with post-MI CHF.  相似文献   

17.
Enhanced cardiac beta(2)-adrenoceptor (beta(2)-AR) responsiveness can increase susceptibility to ventricular fibrillation (VF). Exercise training can decrease cardiac sympathetic activity and could, thereby, reduce beta(2)-AR responsiveness and decrease the risk for VF. Therefore, dogs with healed myocardial infarctions were subjected to 2 min of coronary occlusion during the last minute of a submaximal exercise test; VF was observed in 20 susceptible, but not in 13 resistant, dogs. The dogs were then subjected to a 10-wk exercise-training program (n = 9 susceptible and 8 resistant) or an equivalent sedentary period (n = 11 susceptible and 5 resistant). Before training, the beta(2)-AR antagonist ICI-118551 (0.2 mg/kg) significantly reduced the peak contractile (by echocardiography) response to isoproterenol more in the susceptible than in the resistant dogs: -45.5 +/- 6.5 vs. -19.2 +/- 6.3%. After training, the susceptible and resistant dogs exhibited similar responses to the beta(2)-AR antagonist: -12.1 +/- 5.7 and -16.2 +/- 6.4%, respectively. In contrast, ICI-118551 provoked even greater reductions in the isoproterenol response in the sedentary susceptible dogs: -62.3 +/- 4.6%. The beta(2)-AR agonist zinterol (1 microM) elicited significantly smaller increases in isotonic shortening in ventricular myocytes from susceptible dogs after training (n = 8, +7.2 +/- 4.8%) than in those from sedentary dogs (n = 7, +42.8 +/- 5.8%), a response similar to that of the resistant dogs: +3.0 +/- 1.4% (n = 6) and +3.2 +/- 1.8% (n = 5) for trained and sedentary, respectively. After training, VF could no longer be induced in the susceptible dogs, whereas four sedentary susceptible dogs died during the 10-wk control period and VF could still be induced in the remaining seven animals. Thus exercise training can restore cardiac beta-AR balance (by reducing beta(2)-AR responsiveness) and could, thereby, prevent VF.  相似文献   

18.
In order to determine the effects of exercise on the calcium status of selected axial and appendicular bones of mature rats, female Sprague-Dawley rats (8-9 mo.) were divided into three groups including, two months (E2, n = 8) or four months (E4, n = 9) of exercise, and four month sedentary controls (S, n = 10). Exercise consisted of treadmill running for 1 hr/day, 5 days/wk at a speed of 14.1 m/min and 8 degrees elevation. After sacrifice all femurs, tibia/fibula complexes, ribs (T7), and vertebrae (T7) were excised, cleaned, weighed and measured for length and volume. After freeze-drying and bone hydrolysis in 5N HCl, total bone calcium contents and concentrations were determined spectrophotometrically. The acid soluble, appendicular bone calcium contents of the E4 group were significantly greater than S for the femur and tibia respectively: E4 = 159.78 +/- 3.44 mg (mean +/- SEM), 129.46 +/- 4.87 mg; S = 140.03 +/- 5.04 mg, 110.40 +/- 4.71 mg. Bone calcium concentration (mg/g dry bone) also was significantly greater in the tibia/fibulas, ribs and vertebrae of the E4 group than the S group. With respect to other training-induced effects, the oxygen carrying capacity of the blood, as well as the heart and lung DNA and protein concentrations did not change after four months of exercise training. Within four months, moderate exercise can increase the calcium deposition in the bones of mature, female rats.  相似文献   

19.
This study extended to treadmill exercise training our prior report (Dishman RK, Warren JM, Youngstedt SD, Yoo H, Bunnell BN, Mougey EH, Meyerhoff JL, Jaso-Friedmann L, and Evans DL. J Appl Physiol 78: 1547-1554, 1995) that activity wheel running abolished the suppression of footshock-induced natural killer (NK) cell cytolysis. Twenty-four male Fischer 344 rats were assigned to one of three groups (n = 8, all groups): 1) a home-cage control group, 2) a sedentary treatment group, or 3) a treadmill-running group (0 degrees incline, 25 m/min, 35 min/day, 6 days/wk). After 6 wk, the treadmill and sedentary groups received 2 days of footshock. Splenic NK cytotoxicity was determined by standard 4-h (51)Cr release assay. Percentages of lymphocytes were determined by flow cytometry. Plasma levels of ACTH, corticosterone, and prolactin concentration were measured by radioimmunoassay. After footshock, percentage of lysis relative to home-cage controls was 40% and 80% for sedentary and treadmill-trained animals, respectively (P < 0.05). Our results indicate that the protective effect of chronic exercise on innate cellular immunity in the Fischer 344 male rat is not restricted to activity wheel running, nor is it explained by elevations in basal NK activity, increased percentages of splenic NK and cytotoxic T cells, or increased plasma levels of ACTH, corticosterone, and prolactin.  相似文献   

20.
The purpose of this study was to determine whether isometric handgrip (IHG) training reduces arterial pressure and whether reductions in muscle sympathetic nerve activity (MSNA) mediate this drop in arterial pressure. Normotensive subjects were assigned to training (n = 9), sham training (n = 7), or control (n = 8) groups. The training protocol consisted of four 3-min bouts of IHG exercise at 30% of maximal voluntary contraction (MVC) separated by 5-min rest periods. Training was performed four times per week for 5 wk. Subjects' resting arterial pressure and heart rate were measured three times on 3 consecutive days before and after training, with resting MSNA (peroneal nerve) recorded on the third day. Additionally, subjects performed IHG exercise at 30% of MVC to fatigue followed by muscle ischemia. In the trained group, resting diastolic (67 +/- 1 to 62 +/- 1 mmHg) and mean arterial pressure (86 +/- 1 to 82 +/- 1 mmHg) significantly decreased, whereas systolic arterial pressure (116 +/- 3 to 113 +/- 2 mmHg), heart rate (67 +/- 4 to 66 +/- 4 beats/min), and MSNA (14 +/- 2 to 15 +/- 2 bursts/min) did not significantly change following training. MSNA and cardiovascular responses to exercise and postexercise muscle ischemia were unchanged by training. There were no significant changes in any variables for the sham training and control groups. The results indicate that IHG training is an effective nonpharmacological intervention in lowering arterial pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号