首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacillus anthracis, the causative agent of anthrax, requires surface (S)-layer proteins for the pathogenesis of infection. Previous work characterized S-layer protein binding via the surface layer homology domain to a pyruvylated carbohydrate in the envelope of vegetative forms. The molecular identity of this carbohydrate and the mechanism of its display in the bacterial envelope are still unknown. Analyzing acid-solubilized, purified carbohydrates by mass spectrometry and NMR spectroscopy, we identify secondary cell wall polysaccharide (SCWP) as the ligand of S-layer proteins. In agreement with the model that surface layer homology domains bind to pyruvylated carbohydrate, SCWP was observed to be linked to pyruvate in a manner requiring csaB, the only structural gene known to be required for S-layer assembly. B. anthracis does not elaborate wall teichoic acids; however, its genome harbors tagO and tagA, genes responsible for the synthesis of the linkage unit that tethers teichoic acids to the peptidoglycan layer. The tagO gene appears essential for B. anthracis growth and complements the tagO mutant phenotypes of staphylococci. Tunicamycin-mediated inhibition of TagO resulted in deformed, S-layer-deficient bacilli. Together, these results suggest that tagO-mediated assembly of linkage units tethers pyruvylated SCWP to the B. anthracis envelope, thereby enabling S-layer assembly and providing for the pathogenesis of anthrax infections.  相似文献   

2.
Self-assembling (glyco)protein surface layers (S-layers) are ubiquitous prokaryotic cell-surface structures involved in structural maintenance, nutrient diffusion, host adhesion, virulence, and other processes, which makes them appealing targets for therapeutics and biotechnological applications as biosensors or drug delivery systems. However, unlocking this potential requires expanding our understanding of S-layer properties, especially the details of surface-attachment. S-layers of Gram-positive bacteria often are attached through the interaction of S-layer homology (SLH) domain trimers with peptidoglycan-linked secondary cell wall polymers (SCWPs). Cocrystal structures of the SLH domain trimer from the Paenibacillus alvei S-layer protein SpaA (SpaASLH) with synthetic, terminal SCWP disaccharide and trisaccharide analogs, together with isothermal titration calorimetry binding analyses, reveal that while SpaASLH accommodates longer biologically relevant SCWP ligands within both its primary (G2) and secondary (G1) binding sites, the terminal pyruvylated ManNAc moiety serves as the nearly exclusive SCWP anchoring point. Binding is accompanied by displacement of a flexible loop adjacent to the receptor site that enhances the complementarity between protein and ligand, including electrostatic complementarity with the terminal pyruvate moiety. Remarkably, binding of the pyruvylated monosaccharide SCWP fragment alone is sufficient to cause rearrangement of the receptor-binding sites in a manner necessary to accommodate longer SCWP fragments. The observation of multiple conformations in longer oligosaccharides bound to the protein, together with the demonstrated functionality of two of the three SCWP receptor-binding sites, reveals how the SpaASLH-SCWP interaction has evolved to accommodate longer SCWP ligands and alleviate the strain inherent to bacterial S-layer adhesion during growth and division.  相似文献   

3.
Electron microscopy of isolated cell walls of the ancient bacterium Thermus thermophilus revealed that most of the peptidoglycan (PG) surface, apart from the septal region, was shielded against specific alphaPG antibodies. On the other hand, an antiserum raised against S-layer-attached cell wall fragments (alphaSAC) bound to most of the surface except for the septal regions. Treatments with alpha-amylase and pronase E made the entire cell wall surface uniformly accessible to alphaPG and severely decreased the binding of alphaSAC. We concluded that a layer of strongly bound secondary cell wall polymers (SCWPs) covers most of the cell wall surface in this ancient bacterium. A preliminary analysis revealed that such SCWPs constitute 14% of the cell wall and are essentially composed of sugars. Enzyme treatments of the cell walls revealed that SCWP was required in vitro for the binding of the S-layer protein through the S-layer homology (SLH) motif. The csaB gene was necessary for the attachment of the S-layer-outer membrane (OM) complex to the cell wall in growing cells of T. thermophilus. In vitro experiments confirmed that cell walls from a csaB mutant bound to the S-layer with a much lower affinity ( approximately 1/10) than that of the wild type. CsaB was found to be required for pyruvylation of components of the SCWP and for immunodetection with alpha-SAC antiserum. Therefore, the S-layer-OM complex of T. thermophilus binds to the cell wall through the SLH motif of the S-layer protein via a strong interaction with a highly immunogenic pyruvylated component of the SCWP. Immuno-cross-reactive compounds were detected with alphaSAC on cell walls of other Thermus spp. and in the phylogenetically related microorganism Deinococcus radiodurans. These results imply that the interaction between the SLH motif and pyruvylated components of the cell wall arose early during bacterial evolution as an ancestral mechanism for anchoring proteins and outer membranes to the cell walls of primitive bacteria.  相似文献   

4.
Bacillus anthracis, the causative agent of anthrax, forms an S-layer atop its peptidoglycan envelope and displays S-layer proteins and Bacillus S-layer-associated (BSL) proteins with specific functions to support cell separation of vegetative bacilli and growth in infected mammalian hosts. S-layer and BSL proteins bind via the S-layer homology (SLH) domain to the pyruvylated secondary cell wall polysaccharide (SCWP) with the repeat structure [→4)-β-ManNAc-(1→4)-β-GlcNAc-(1→6)-α-GlcNAc-(1→]n, where α-GlcNAc and β-GlcNAc are substituted with two and one galactosyl residues, respectively. B. anthracis gneY (BAS5048) and gneZ (BAS5117) encode nearly identical UDP-GlcNAc 2-epimerase enzymes that catalyze the reversible conversion of UDP-GlcNAc and UDP-ManNAc. UDP-GlcNAc 2-epimerase enzymes have been shown to be required for the attachment of the phage lysin PlyG with the bacterial envelope and for bacterial growth. Here, we asked whether gneY and gneZ are required for the synthesis of the pyruvylated SCWP and for S-layer assembly. We show that gneZ, but not gneY, is required for B. anthracis vegetative growth, rod cell shape, S-layer assembly, and synthesis of pyruvylated SCWP. Nevertheless, inducible expression of gneY alleviated all the defects associated with the gneZ mutant. In contrast to vegetative growth, neither germination of B. anthracis spores nor the formation of spores in mother cells required UDP-GlcNAc 2-epimerase activity.  相似文献   

5.
6.
Enterococcus faecalis virulence requires cell wall-associated proteins, including the sortase-assembled endocarditis and biofilm associated pilus (Ebp), important for biofilm formation in vitro and in vivo. The current paradigm for sortase-assembled pilus biogenesis in Gram-positive bacteria is that sortases attach substrates to lipid II peptidoglycan (PG) precursors, prior to their incorporation into the growing cell wall. Contrary to prevailing dogma, by following the distribution of Ebp and PG throughout the E. faecalis cell cycle, we found that cell surface Ebp do not co-localize with newly synthesized PG. Instead, surface-exposed Ebp are localized to the older cell hemisphere and excluded from sites of new PG synthesis at the septum. Moreover, Ebp deposition on the younger hemisphere of the E. faecalis diplococcus appear as foci adjacent to the nascent septum. We propose a new model whereby sortase substrate deposition can occur on older PG rather than at sites of new cell wall synthesis. Consistent with this model, we demonstrate that sequestering lipid II to block PG synthesis via ramoplanin, does not impact new Ebp deposition at the cell surface. These data support an alternative paradigm for sortase substrate deposition in E. faecalis, in which Ebp are anchored directly onto uncrosslinked cell wall, independent of new PG synthesis.  相似文献   

7.
Streptococcus thermophilus strain ST64987 was exposed to a member of a recently discovered group of S. thermophilus phages (the 987 phage group), generating phage-insensitive mutants, which were then characterized phenotypically and genomically. Decreased phage adsorption was observed in selected bacteriophage-insensitive mutants, and was partnered with a sedimenting phenotype and increased cell chain length or aggregation. Whole genome sequencing of several bacteriophage-insensitive mutants identified mutations located in a gene cluster presumed to be responsible for cell wall polysaccharide production in this strain. Analysis of cell surface-associated glycans by methylation and NMR spectroscopy revealed a complex branched rhamno-polysaccharide in both ST64987 and phage-insensitive mutant BIM3. In addition, a second cell wall-associated polysaccharide of ST64987, composed of hexasaccharide branched repeating units containing galactose and glucose, was absent in the cell wall of mutant BIM3. Genetic complementation of three phage-resistant mutants was shown to restore the carbohydrate and phage resistance profiles of the wild-type strain, establishing the role of this gene cluster in cell wall polysaccharide production and phage adsorption and, thus, infection.  相似文献   

8.
A number of temperature-sensitive cdc- mutants ofSchizosaccharomyces pombe that are affected in septum formation were analyzed with respect to their ultrastructure and the composition of their cell wall polymers. One mutant strain, cdc 16–116, has a cell wall composition similar to the wild type (strain 972 h-). However two other mutants, cdc 4 and cdc 7, show a higher galactomannan content and a lower -glucan content. In all the mutants tested, total glucose incorporation, protein, RNA and DNA synthesis increased similarly to wild type over 3 1/2 h. After 2–3 h of incubation at the non permissive temperature-35°C-, cell numbers remained constant although, increases in optical densities at 600 nm were observed. According to scanning electron microscopy, the mutants had aberrant shapes after 5h of incubation at 35°C. Transmission electron microscopy showed that cdc 3 is unable to complete septum formation. cdc 4 showed the most varied morphological shapes and aberrant depositions of cell wall material. cdc 8 exhibited a deranged plasma membrane and cell wall regions near of cell poles; an abnormal septum and several nuclei. cdc 7 showed elongated cells with several nuclei and with an apparently normal cell wall completely lacking in septum and septal material. cdc 16 showed more than one septum per cell.  相似文献   

9.
The effect of brefeldin A (BFA) on the synthesis and incorporation of polysaccharides, proteins and glycoproteins into the cell wall of subapical coleoptile segments isolated from etiolated oat seedlings (Avena sativa L. cv. Angelica) has been investigated. In the presence of D-[U-14C]-glucose, the incorporation of radioactive glycosyl residues into buffer-soluble, membrane (matrix polysaccharides) and cell wall polysaccharides was drastically inhibited by increasing concentrations of BFA up to 10 μ·mL−1. BFA also altered the pattern of these polysaccharides suggesting a different sensitivity of glycosyltransferases toward the action of the drug. The incorporation of [U-14C]-glycine or L-[U-14C]-leucine into non-covalently- and covalently-bound cell wall proteins as well as the incorporation of radioactive N-acetylglucosamine residues into the newly synthesised oligosaccharidic chains of cytosolic, membrane and cell wall glycoproteins remained unchanged in the presence of 10 μg·mL−1 BFA. The data demonstrate that, in oat coleoptile segments, BFA specifically inhibits the synthesis of cellulose and matrix polysaccharides without altering the synthesis and incorporation of proteins and glycoproteins into the cell wall. In addition, it is demonstrated that BFA does not affect the in vivo activity of glycosyltransferases involved in the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to the oligosaccharidic chains of glycoproteins.  相似文献   

10.
The polysaccharide β‐1,6‐glucan is a major component of the cell wall of Cryptococcus neoformans, but its function has not been investigated in this fungal pathogen. We have identified and characterized seven genes, belonging to the KRE family, which are putatively involved in β‐1,6‐glucan synthesis. The H99 deletion mutants kre5Δ and kre6Δskn1Δ contained less cell wall β‐1,6‐glucan, grew slowly with an aberrant morphology, were highly sensitive to environmental and chemical stress and were avirulent in a mouse inhalation model of infection. These two mutants displayed alterations in cell wall chitosan and the exopolysaccharide capsule, a primary cryptococcal virulence determinant. The cell wall content of the GPI‐anchored phospholipase B1 (Plb1) enzyme, which is required for cryptococcal cell wall integrity and virulence, was reduced in kre5Δ and kre6Δskn1Δ. Our results indicate that KRE5, KRE6 and SKN1 are involved in β‐1,6‐glucan synthesis, maintenance of cell wall integrity and retention of mannoproteins and known cryptococcal virulence factors in the cell wall of C. neoformans. This study sets the stage for future investigations into the function of this abundant cell wall polymer.  相似文献   

11.
The S-layer protein SbpA of Bacillus sphaericus CCM 2177 recognizes a pyruvylated secondary cell wall polymer (SCWP) as anchoring structure to the peptidoglycan-containing layer. Data analysis from surface plasmon resonance (SPR) spectroscopy revealed the existence of three different binding sites with high, medium and low affinity for rSbpA on SCWP immobilized to the sensor chip. The shortest C-terminal truncation with specific affinity to SCWP was rSbpA(31-318). Surprisingly, rSbpA(31-202) comprising the three S-layer-like homology (SLH) motifs did not bind at all. Analysis of the SbpA sequence revealed a 58-amino-acid-long SLH-like motif starting 11 amino acids after the third SLH motif. The importance of this motif for reconstituting the functional SCWP-binding domain was further demonstrated by construction of a chimaeric protein consisting of the SLH domain of SbsB, the S-layer protein of Geobacillus stearothermophilus PV72/p2 and the C-terminal part of SbpA. In contrast to SbsB or its SLH domain which did not recognize SCWP of B. sphaericus CCM 2177 as binding site, the chimaeric protein showed specific affinity. Deletion of 213 C-terminal amino acids of SbpA had no impact on the square (p4) lattice structure, whereas deletion of 350 amino acids was linked to a change in lattice type from square to oblique (p1).  相似文献   

12.
Recently, two Bacillus thuringiensis strains were reported to synthesize parasporal inclusion bodies made not of the expected crystal (Cry) proteins but rather of the surface layer proteins (SLP) Sap (encoded by sap) and EA1 (encoded by eag), respectively. Whether the presence of the sap and eag genes is restricted to these two B. thuringiensis strains or ubiquitous in B. thuringiensis is unknown. We report here the distribution of the sap and eag genes in B. thuringiensis. Strains in the Bacillus cereus group were added for comparison purposes. We show that sap and eag are either present in tandem in 35% of the B. thuringiensis strains analysed and absent in 65% of the strains. When absent, a different tandem, the lytB/lytA cell wall hydrolase genes, is present. The distribution of the sap and eag S-layer and the lytB/lytA cell wall hydrolase genes is not species-specific in B. thuringiensis, B. cereus and Bacillus weihenstephanensis. Bacillus anthracis and Bacillus mycoides harbor sap and eag but not lytB/lytA. The sap, eag and lytB/lytA genes were absent in Bacillus pseudomycoides. Clearly, the distribution of the sap and eag S-layer and the lytB/lytA cell wall hydrolase genes in B. thuringiensis and in the Bacillus cereus group is mutually exclusive. We also showed that two genes involved in cell wall metabolism, csaA and csaB, are present not only upstream of the sap and eag S-layer genes, but also upstream of the lytB/lytA tandem in strains where sap and eag are absent. Bootstrapped neighbor-joining trees were inferred from the translated amino acid sequences of sap, eag and the tandem lytB/lytA, respectively.  相似文献   

13.
Rhamnose is required in Arabidopsis thaliana for synthesizing pectic polysaccharides and glycosylating flavonols. RHAMNOSE BIOSYNTHESIS1 (RHM1) encodes a UDP‐l ‐rhamnose synthase, and rhm1 mutants exhibit many developmental defects, including short root hairs, hyponastic cotyledons, and left‐handed helically twisted petals and roots. It has been proposed that the hyponastic cotyledons observed in rhm1 mutants are a consequence of abnormal flavonol glycosylation, while the root hair defect is flavonol‐independent. We have recently shown that the helical twisting of rhm1 petals results from decreased levels of rhamnose‐containing cell wall polymers. In this study, we found that flavonols indirectly modify the rhm1 helical petal phenotype by altering rhamnose flux to the cell wall. Given this finding, we further investigated the relationship between flavonols and the cell wall in rhm1 cotyledons. We show that decreased flavonol rhamnosylation is not responsible for the cotyledon phenotype of rhm1 mutants. Instead, blocking flavonol synthesis or rhamnosylation can suppress rhm1 defects by diverting UDP‐l ‐rhamnose to the synthesis of cell wall polysaccharides. Therefore, rhamnose is required in the cell wall for normal expansion of cotyledon epidermal cells. Our findings suggest a broad role for rhamnose‐containing cell wall polysaccharides in the morphogenesis of epidermal cells.  相似文献   

14.
S-layer homology (SLH) module polypeptides were derived from Clostridium josui xylanase Xyn10A, Clostridium stercorarium xylanase Xyn10B, and Clostridium thermocellum scafoldin dockerin binding protein SdbA as rXyn10A-SLH, rXyn10B-SLH, and rSdbA-SLH, respectively. Their binding specificities were investigated using various cell wall preparations. rXyn10A-SLH and rXyn10B-SLH bound to native peptidoglycan-containing sacculi consisting of peptidoglycan and secondary cell wall polymers (SCWP) prepared from these bacteria but not to hydrofluoric acid-extracted peptidoglycan-containing sacculi (HF-EPCS) lacking SCWP, suggesting that SCWP are responsible for binding with SLH modules. In contrast, rSdbA-SLH interacted with HF-EPCS, suggesting that this polypeptide had an affinity for peptidoglycans but not for SCWP. The affinity of rSdbA-SLH for peptidoglycans was confirmed by a binding assay using a peptidoglycan fraction prepared from Escherichia coli cells. The SLH modules of SdbA must be useful for cell surface engineering in bacteria that do not contain SCWP.  相似文献   

15.
Summary Schizosaccharomyces pombe has been grown in parasynchronous culture to study the synthesis of cell wall material. After a lag period of 2.5h following inoculation the cells began to grow, as measured by optical density, dry weight and cell size. The cell number remained constant until 4.5h after inoculation when approximately 70% of the population divided synchronously. Immunofluorescence studies of the growing cells have shown that new wall material is inserted at the cell apices from 2.5 h after inoculation; this result is supported by radio-isotope labelling data which indicated that synthesis of new cell wall material also commenced 2.5 h after inoculation. The incorporation experiments also demonstrated an interruption in cell wall synthesis during the cell separation stage. The composition of the cell wall material varied during the growth cycle, with maximum nitrogen levels at inoculation and following cell division. No serological differences could be detected in the cell walls during the growth cycle.  相似文献   

16.
Secondary cell wall polysaccharides (SCWPs) are important structural components of the Bacillus cell wall and contribute to the array of antigens presented by these organisms in both spore and vegetative forms. We previously found that antisera raised to Bacillus anthracis spore preparations cross-reacted with SCWPs isolated from several strains of pathogenic B. cereus, but did not react with other phylogenetically related but nonpathogenic Bacilli, suggesting that the SCWP from B. anthracis and pathogenic B. cereus strains share specific structural features. In this study, SCWPs from three strains of B. cereus causing severe or fatal pneumonia (G9241, 03BB87 and 03BB102) were isolated and subjected to structural analysis and their structures were compared to SCWPs from B. anthracis. Complete structural analysis was performed for the B. cereus G9241 SCWP using NMR spectroscopy, mass spectrometry and derivatization methods. The analyses show that SCWPs from B. cereus G9241 has a glycosyl backbone identical to that of B. anthracis SCWP, consisting of multiple trisaccharide repeats of: →6)-α-d-GlcpNAc-(1?→?4)-β-d-ManpNAc-(1?→?4)-β-d-GlcpNAc-(1→. Both the B. anthracis and pathogenic B. cereus SCWPs are highly substituted at all GlcNAc residues with α- and β-Gal residues, however, only the SCWPs from B. cereus G9241 and 03BB87 carry an additional α-Gal substitution at O-3 of ManNAc residues, a feature lacking in the B. anthracis SCWPs. Both the B. anthracis and B. cereus SCWPs are pyruvylated, with an approximate molecular mass of ≈12,000?Da. The implications of these findings regarding pathogenicity and cell wall structure are discussed.  相似文献   

17.
Lincomycin (LIN)‐mediated inhibition of protein synthesis in chloroplasts prevents the greening of seedlings, represses the activity of photosynthesis‐related genes in the nucleus, including LHCB1.2, and induces the phenylpropanoid pathway, resulting in the production of anthocyanins. In genomes uncoupled (gun) mutants, LHCB1.2 expression is maintained in the presence of LIN or other inhibitors of early chloroplast development. In a screen using concentrations of LIN lower than those employed to isolate gun mutants, we have identified happy on lincomycin (holi) mutants. Several holi mutants show an increased tolerance to LIN, exhibiting de‐repressed LHCB1.2 expression and chlorophyll synthesis in seedlings. The mutations responsible were identified by whole‐genome single‐nucleotide polymorphism (SNP) mapping, and most were found to affect the phenylpropanoid pathway; however, LHCB1.2 expression does not appear to be directly regulated by phenylpropanoids, as indicated by the metabolic profiling of mutants. The most potent holi mutant is defective in a subunit of cellulose synthase encoded by IRREGULAR XYLEM 3, and comparative analysis of this and other cell‐wall mutants establishes a link between secondary cell‐wall integrity and early chloroplast development, possibly involving altered ABA metabolism or sensing.  相似文献   

18.
19.
Summary Incorporation of tritiated glucose into cell walls of growingSaccharomyces cerevisiac andSchizosaccharomyces pombe was studied using electron microscopic autoradiography. The pattern and the extent of labelling ofS. cerevisiae cell walls depended on the cell stage in the cell cycle. Quantitative evaluation of autoradiographs showed that the highest rate of wall synthesis took place during bud growth. The incorporation of new material into the wall of growing bud showed an increasing rate with the magnitude of the bud. The incorporation into the mother cell wall was almost negligible during bud growth. The rate of wall synthesis in double cells decreased during cell division. This period and that before new bud initiation was found to be the time of substantially reduced rate of wall replication inS. cerevisiae. A significant random incorporation was observed into the walls of post-division adult cells, both parental and daughter. The cell walls ofS. pombe were labelled almost exclusively at growing tips. The incorporation of tritiated carbohydrates into non-extensile regions ofS. pombe cell walls was found to be only about 5% of the total wall labelling.  相似文献   

20.
Cell walls play key roles during plant development. Following their deposition into the cell wall, polysaccharides are continually remodeled according to the growth stage and stress environment to accommodate cell growth and differentiation. To date, little is known concerning the enzymes involved in cell wall remodeling, especially in gramineous and particularly in the grain during development. Here, we investigated the cell wall proteome of the grain of Brachypodium distachyon. This plant is a suitable model for temperate cereal crops. Among the 601 proteins identified, 299 were predicted to be secreted. These proteins were distributed into eight functional classes; the class of proteins that act on carbohydrates was the most highly represented. Among these proteins, numerous glycoside hydrolases were found. Expansins and peroxidases, which are assumed to be involved in cell wall polysaccharide remodeling, were also identified. Approximately half of the proteins identified in this study were newly discovered in grain and were not identified in the previous proteome analysis conducted using the culms and leaves of B. distachyon. Therefore, the data obtained from all organs of B. distachyon infer a global cell wall proteome consisting of 460 proteins. At present, this is the most extensive cell wall proteome of a monocot species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号