首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Marine endophytes are the most untapped group of microorganisms having enormous applications in pharmaceutical and cosmetra id="spar0060">Marine endophytes are the most untapped group of microorganisms having enormous applications in pharmaceutical and cosmetic industries. In the present study, we have optimized a method for biogenic synthesis of gold nanoparticles (AuNPs) from Cladosporium cladosporioides, an endophytic fungus of the seaweed, Sargassumwightii. The identity of the fungus was established by the 18 s rRNA and ITS sequence. The AuNPs synthesized using C. cladosporioides were characterized by UV–vis spectrophotometer, Field Emission Scanning Electron Microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, Dynamic light scattering, Atomic force microscopy, and Energy dispersive X-ray spectroscopic studies. They were tested for free radical scavenging activity (DPPH and FRAP assay) and antimicrobial activity against a panel of pathogenic microorganisms. The AuNps were within 100 nm as confirmed by the above methods. An attempt was made to understand the mechanism of the gold nanoparticle synthesis using the fungal extract. The present study shows the involvement of NADPH-dependent reductase and phenolic compounds in the bioreduction of the gold metal salts to nanoparticles. The AuNPs showed significant antioxidant as well as the antimicrobial activity. Hence, this study has shown a great potential for the development of a cost effective antimicrobial treatment utilizing biogenic gold nanoparticles.  相似文献   

2.
In this research work different shapes and sizes of gold nanoparticles (AuNPs) were synthesized through an intracellular biogenic approach, exploiting the chloroauric acid reducing and Au0 stabilizing potential of Laccaria fraterna EM-1083 mycelia. The intracellularly synthesized AuNPs exhibits anti-quorum sensing inhibitory potential against Pseudomonas aeruginosa. The synthesized AuNPs were characterized using UV–visible spectroscopy; transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy. The characterization proved that the successful synthesis of highly stable crystalline AuNPs with various shapes. Here we tested inhibitory activity of AuNPs on QS-regulated biofilm development and pyocyanin production traits of P. aeruginosa. The qualitative and quantitative data demonstrated that AuNPs significantly inhibited the biofilm formation and pyocyanin production. In summary, our results signify the future use of intracellularly synthesized AuNPs in P. aeruginosa mediated diseases.  相似文献   

3.
The present study demonstrated the in vitro embryotoxicity assessment of gold nanoparticles (AuNPs) and copper nanoparticles (CuNPs) prepared from the leaves extract of Angelica keiskei (Miq.) Koidz. and addressed their mode of antibacterial mechanisms. Both AuNPs and CuNPs were rapidly synthesized and the formations were observed within 1 h and 24 h, respectively. Further the morphological images of the nanoparticles were confirmed through transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). The high-resolution X-ray diffraction (HR-XRD) analysis of the biosynthesized AuNPs and CuNPs were matched with joint committee on powder diffraction standards (JCPDS) file no of 04-0784 and 89-5899, respectively. A strong prominent Au and Cu signals were observed through energy dispersive spectroscopy (EDS) analysis. Fourier transform infrared spectroscopy (FT-IR) analysis confirmed the responsible phytochemicals for the synthesis of AuNPs and CuNPs. In order to assess the toxic effects of AuNPs and CuNPs, bactericidal activity was performed against few of the test pathogens in which the effective inhibition was observed against Gram-negative bacteria than the Gram-positive bacteria. The mode of action and interaction of nanoparticles were performed on the bacterial pathogens and the results concluded that the interaction of nanoparticles initially initiated on the surface of the cell wall adherence followed by ruptured the cells and caused the cell death. In addition to the antibacterial activity, in vitro embryotoxicity studies were performed against zebrafish embryos and the results confirmed that 200 µg/ml concentration of AuNPs showed the embryotoxicity, whereas 2 µg/ml of CuNPs resulted the embryotoxicity. Furthermore, the morphological anomalies of zebrafish embryos revealed the toxic nature of the synthesized nanoparticles.  相似文献   

4.
Au nanoparticles (AuNPs) have shown the potential for a variety of applications due to their unique physical and chemical properties. In this study, a facile and affordable method for the synthesis of AuNPs via the liquefied mash of cassava starch has been described and the functionalized AuNPs by l-cysteine improved activity of recombinant xylanase was demonstrated. UV–Vis absorption spectroscopy, transmission electron microscopy, and zeta potential measurements were performed to characterize the AuNPs and monitor their synthesis. The presence of Au was confirmed by energy-dispersive X-ray spectroscopy (EDX) and the X-ray diffraction patterns showed that Au nanocrystals were face-centered cubic. The C=O stretching vibration in the Fourier transform infrared spectrum of AuNPs suggested that the hemiacetal C–OH of sugar molecules performed the reduction of Au3+ to Au0. The presence of C and O in the EDX spectrum and the negative zeta potential of AuNPs suggested that the biomolecules present in liquefied cassava mash were responsible for the stabilization of AuNPs. The surface of AuNPs was easily functionalized by l-cysteine, which improved the stability of AuNPs. Moreover, cysteine-functionalized AuNPs could significantly improve recombinant xylanase efficiency and stability.  相似文献   

5.
Microorganisms, their cell filtrates, and live biomass have been utilized for synthesizing various gold nanoparticles. The shape, size, stability as well as the purity of the bio synthesized nanoparticles become very essential for application purpose. In the present study, gold nanoparticles have been synthesized from the supernatant, live cell filtrate, and biomass of the fungus Penicillium brevicompactum. The fungus has been grown in potato dextrose broth which is also found to synthesize gold nanoparticles. The size of the particles has been investigated by Bio-TEM before purification, following purification and after storing the particles for 3 months under refrigerated condition. Different characterization techniques like X-ray diffraction, Fourier transform infrared spectroscopy, and UV–visible spectroscopy have been used for analysis of the particles. The effect of reaction parameters such as pH and concentration of gold salt have also been monitored to optimize the morphology and dispersity of the synthesized gold nanoparticles. A pH range of 5 to 8 has favored the synthesis process whereas increasing concentration of gold salt (beyond 2 mM) has resulted in the formation of bigger sized and aggregated nanoparticles. Additionally, the cytotoxic nature of prepared nanoparticles has been analyzed using mouse mayo blast cancer C2C12 cells at different time intervals (24, 48, and 72 h) of incubation period. The cells are cultivated in Dulbecco’s modified Eagle’s medium supplemented with fetal bovine serum with antibiotics (streptopenicillin) at 37°C in a 5% humidified environment of CO2. The medium has been replenished every other day, and the cells are subcultured after reaching the confluence. The viability of the cells is analyzed with 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide method.  相似文献   

6.
This study described the utility of green analytical chemistry in the synthesis of gelatin‐capped silver, gold and bimetallic gold–silver nanoparticles (NPs). The preparation of nanoparticles was based on the reaction of silver nitrate or chlorauric acid with a 1.0 wt% aqueous gelatin solution at 50°C. The gelatin‐capped silver, gold and bimetallic NPs were characterized using transmission electron microscopy, UV–vis, X‐ray diffraction and Fourier transform infrared spectroscopy, and were used to enhance a sensitive sequential injection chemiluminescence luminol–potassium ferricyanide system for determination of the anticancer drug raloxifene hydrochloride. The developed method is eco‐friendly and sensitive for chemiluminescence detection of the selected drug in its bulk powder, pharmaceutical injections and biosamples. After optimizing the conditions, a linear relationship in the range of 1.0 × 10–9 to 1.0 × 10–1 mol/L was obtained with a limit of detection of 5.0 × 10–10 mol/L and a limit of quantification of 1.0 × 10‐9 mol/L. Statistical treatment and method validation were performed based on ICH guidelines. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
We here in report the synthesis of gold nanoparticles (AuNPs) using a Crinum macowanii bulb water extract. The as‐synthesized AuNPs were characterized using ultraviolet–visible spectroscopy, Fourier transform infrared spectroscopy, X‐ray diffraction, transmission electron microscopy, and a zeta potential‐sizer. The results showed that the as‐synthesized AuNPs were crystalline and mostly spherical in shape with a small mixture of triangular, tetrahedral, hexagonal, octagonal, and diamond shapes. The as‐synthesized AuNPs together with those synthesized by conventional methods were subsequently used as enhancers for the luminol signal in blood detection. It was noted that the AuNPs synthesized from the Crinum macowanii bulb water extract could enhance the chemiluminescence signal for blood detection by luminol to the same extent as AuNPs prepared by conventional methods. Furthermore, both types of AuNPs served as fluorescence enhancers for blood detection when luminol was replaced with the bulb water extract.  相似文献   

8.
Leaf extracts of two plants, Magnolia kobus and Diopyros kaki, were used for ecofriendly extracellular synthesis of metallic gold nanoparticles. Stable gold nanoparticles were formed by treating an aqueous HAuCl4 solution using the plant leaf extracts as reducing agents. UV–visible spectroscopy was used for quantification of gold nanoparticle synthesis. Only a few minutes were required for >90% conversion to gold nanoparticles at a reaction temperature of 95 °C, suggesting reaction rates higher or comparable to those of nanoparticle synthesis by chemical methods. The synthesized gold nanoparticles were characterized with inductively coupled plasma spectrometry (ICP), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), and particle analysis using a particle analyzer. SEM and TEM images showed that a mixture of plate (triangles, pentagons, and hexagons) and spherical structures (size, 5–300 nm) were formed at lower temperatures and leaf broth concentrations, while smaller spherical shapes were obtained at higher temperatures and leaf broth concentrations.  相似文献   

9.
In this study, the rapid biosynthesis of gold nanoparticles (AuNPs) by Aspergillus flavus culture supernatant was achieved by reducing 1 mM of chloroauric acid (HAuCl4) within 2 min at pH 7 and 30 °C. The biosynthesized nanoparticles exhibited maximum absorbance at 545 nm in UVvis spectroscopy. Transmission electron microscopy exhibited that AuNPs tend to take nearly spherical shapes with an average size of 12 nm. Fourier transform infrared analysis indicated that carboxyl, amine, and hydroxyl groups may participate in the biosynthesis and stabilization of AuNPs. Its zeta potential was found to be -33.01 mV. Energy dispersive X-rays showed a strong and typical beak of gold nanocrystallites with 80.84 % of analyzed sample. X-Ray diffraction spectrum displayed Bragg reflections identical to the gold nanocrystals. The results confirmed that biosynthesized AuNPs are a potent anticancer agent against A549, HepG2 and MCF7 cell lines with IC50 value 53.5, 60.7 and 100 μg/mL, respectively. Crystal violet assay confirmed the cytopathic effects of AuNPs on HepG2 and A549 cell lines. Annexin-V FITC assay and cell cycle confirmed the apoptotic effect and cell cycle arrest in G2/M phase, respectively for A549 cell line. Moreover, the results showed a degradation efficiency of AuNPs to 4-nitrophenol within 16 min.  相似文献   

10.
Advancement of biological process for the synthesis of bionanoparticles is evolving into a key area of research in nanotechnology. The present study deals with the biosynthesis, characterization of gold bionanoparticles by Nocardiopsis sp. MBRC-48 and evaluation of their antimicrobial, antioxidant and cytotoxic activities. The gold bionanoparticles obtained were characterized by UV–visible spectroscopy, X-ray diffraction analysis, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy dispersive X-ray analysis and transmission electron microscopy (TEM). The synthesized gold bionanoparticles were spherical in shape with an average of 11.57 ± 1.24 nm as determined by TEM and dynamic light scattering (DLS) particle size analyzer, respectively. The biosynthesized gold nanoparticles exhibited good antimicrobial activity against pathogenic microorganisms. It showed strong antioxidant activity as well as cytotoxicity against HeLa cervical cancer cell line. The present study demonstrated the potential use of the marine actinobacterial strain of Nocardiopsis sp. MBRC-48 as an important source for gold nanoparticles with improved biomedical applications including antimicrobial, antioxidant as well as cytotoxic agent.  相似文献   

11.
He  Yi  Liang  Yun  Song  Hu 《Plasmonics (Norwell, Mass.)》2016,11(2):587-591

Creatinine-functionalized AuNPs (CreAuNPs) were prepared via a facile one-pot reaction of sodium borohydride and the mixture solution of gold(III) chloride trihydrate and creatinine. The morphology and surface state of as-prepared CreAuNPs were characterized by transmission electron microscopy and Fourier transform infrared spectroscopy. All the results demonstrated that CreAuNPs were spherical with an average diameter of about 4.2 nm, and creatinine existed on the surface of AuNPs via Au-N interaction. The as-prepared CreAuNPs exhibited a weak surface plasmon resonance (SPR) absorption owing to their small size, while the addition of Ag+ could induce the aggregation of spherical CreAuNPs, producing a strong SPR absorption and apparent color change from colorless to purple owing to the surface plasmon coupling. On this basis, a colorimetric assay for Ag+ was established. The assay could selectively detect Ag+ as low as 1 μM with a good linearity in the range of 5–40 μM. Additionally, the assay was successfully applied to the determination of Ag+ in tap water, lake water, and river water samples.

  相似文献   

12.
The bacterial strain Pseudomonas sp. SSA has capacity to produce extracellular melanin that sequesters heavy metals. The brown-black melanin pigment was observed in the culture liquid and mediated synthesis of silver nanoparticles (AgNPs). The AgNPs were characterized using UV–visible, dynamic light scattering, energy dispersive X-ray, Fourier transform infrared and surface plasmon resonance spectroscopy, scanning electron and transmission electron microscopy and selected area electron diffraction analysis. The synthesized nanoparticles were found to be spherical in shape with size in the range of 14–30 nm and showed high antimicrobial activity against pathogenic bacteria and fungi. These nanoparticles revealed binding affinity towards fungal and human tyrosinases with KD 4.601 × 10–10 and 2.816 × 10–5 M, respectively. In addition, produced nanoparticles did not show any toxic effect towards HeLa cells up to 20 μg/mL. These nanoparticles could find application in medicine and cosmetics due to their enzyme inhibition and antimicrobial activities.  相似文献   

13.
Using natural processes as inspiration, the present study demonstrates a positive correlation between zinc metal tolerance ability of a soil fungus and its potential for the synthesis of zinc oxide (ZnO) nanoparticles. A total of 19 fungal cultures were isolated from the rhizospheric soils of plants naturally growing at a zinc mine area in India and identified on the genus, respectively the species level. Aspergillus aeneus isolate NJP12 has been shown to have a high zinc metal tolerance ability and a potential for extracellular synthesis of ZnO nanoparticles under ambient conditions. UV–visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction analysis, transmission electron microscopy, and energy dispersive spectroscopy studies further confirmed the crystallinity, morphology, and composition of synthesized ZnO nanoparticles. The results revealed the synthesis of spherical nanoparticles coated with protein molecules which served as stabilizing agents. Investigations on the role of fungal extracellular proteins in the synthesis of nanoparticles indicated that the process is nonenzymatic but involves amino acids present in the protein chains.  相似文献   

14.
Chitosan-N-2-methylhydroxypyridine-6-methylcorboxylate (Ch-PDC) and chitosan-N-2-methylhydroxypyridine-6-methylhydroxy thiocarbohydrazide (Ch-PDC-Th) were synthesized for the first time using chitosan as precursor. Chitosan, Ch-PDC, Ch-PDC-Th were used in the synthesis of gold nanoparticles (AuNP) in aqueous medium. Chitosan and Ch-PDC-Th possess reducing properties which enabled the 'green' synthesis of AuNPs. The stabilization of the AuNPs was as a result of the thiocarbide (SC) and amine (NH(2)) groups in the chitosan matrix. The modified chitosan, its derivatives and the resulting AuNPs were characterized by Fourier transform infrared (FTIR) spectroscopy, Ultraviolet-visible (UV-vis) spectroscopy, Raman scattering measurements, powder X-ray diffraction (PXRD) and thermo gravimetric analysis (TGA). Particle size, morphology, segregation and individuality of the AuNPs were examined by transmission electron microscope (TEM) and energy dispersion spectroscopy (EDS). An average AuNPs size of 20 nm was observed for chitosan and Ch-PDC-Th while Ch-PDC was 50 nm. In comparison, AuNPs resulting from Ch-PDC-Th precursor has the most enhanced Raman and fluorescent intensities and was stable for over 2 months.  相似文献   

15.
This study reveals a green process for the production of multi-morphological silver (Ag NPs) and gold (Au NPs) nanoparticles, synthesized using an agro-industrial residue cashew nut shell liquid. Aqueous solutions of Ag+ ions for silver and chloroaurate ions for gold were treated with cashew nut shell extract for the formation of Ag and Au NPs. The nano metallic dispersions were characterized by measuring the surface plasmon absorbance at 440 and 546 nm for Ag and Au NPs. Transmission electron microscopy showed the formation of nanoparticles in the range of 5–20 nm for silver and gold with assorted morphologies such as round, triangular, spherical and irregular. Scanning electron microscopy with energy dispersive spectroscopy and X-ray diffraction analyses of the freeze-dried powder confirmed the formation of metallic Ag and Au NPs in crystalline form. Further analysis by Fourier transform infrared spectroscopy provided evidence for the presence of various biomolecules, which might be responsible for the reduction of silver and gold ions. The obtained Ag and Au NPs had significant antibacterial activity, minimum inhibitory concentration and minimum bactericidal concentration on bacteria associated with fish diseases.  相似文献   

16.
The present study explores the reducing and capping potentials of ethanolic flower extract of the plant Nyctanthes arbortristis for the synthesis of gold nanoparticles. The extract at different volume fractions were stirred with HAuCl4 aqueous solution at 80 °C for 30 min. The UV–Vis spectroscopic analysis of the reaction products confirmed successful reduction of Au3+ ions to gold nanoparticles. Transmission electron microscope (TEM) revealed dominant spherical morphology of the gold nanoparticles with an average diameter of 19.8 ± 5.0 nm. X-ray diffraction (XRD) study confirmed crystalline nature of the synthesized particles. Fourier transform infra-red (FTIR) and nuclear magnetic resonance (NMR) analysis of the purified and lyophilized gold nanoparticles confirmed the surface adsorption of biomolecules during preparation and caused long-term (6 months) stability. Low reaction temperature (25 °C) favored anisotropy. The strong reducing power of the flower extract can also be tested in the green synthesis of other metallic nanoparticles.  相似文献   

17.
Bio-directed synthesis of metal nanoparticles is gaining importance due to their biocompatibility, low toxicity and eco-friendly nature. We used sweet sorghum syrup for a facile and cost-effective green synthesis of silver glyconanoparticles. Silver nanoparticles were formed due to reduction of silver ions when silver nitrate solution was treated with sorghum syrup solutions of different pH values. The nanoparticles were characterized by UV–vis, TEM (transmission electron microscopy), DLS (dynamic light scattering), EDAX (energy dispersive X-ray spectroscopy), FT-IR (fourier transform infrared spectroscopy) and XRD (X-ray diffraction spectroscopy). The silver glyconanoparticles exhibited a characteristic surface plasmon resonance around 385 nm. At pH 8.5, the nanoparticles were mono-dispersed and spherical in shape with average particle size of 11.2 nm. The XRD and SAED studies suggested that the nanoparticles were crystalline in nature. EDAX analysis showed the presence of elemental silver signal in the synthesized glyconanoparticles. FT-IR analysis revealed that glucose, fructose and sucrose present in sorghum syrup acted as capping ligands. Silver glyconanoparticles prepared at pH 8.5 had a zeta potential of ?28.9 mV and were anionic charged. They exhibited strong antimicrobial activity against Gram-positive, Gram-negative and different Candida species at MIC values ranging between 2 and 32 μg ml?1. This is first report on sweet sorghum syrup sugars-derived silver glyconanoparticles with antimicrobial property.  相似文献   

18.
We present a simple, eco-friendly synthesis of silver and gold nanoparticles using a natural polymer pine gum solution as the reducing and capping agent. The pine gum solution was combined with silver nitrate (AgNO3) or a chloroauric acid (HAuCl4) solution to produce silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs), respectively. The reaction process was simple; formation of the nanoparticles was achieved by autoclaving the silver and gold ions with the pine gum. UV–Vis spectra showed surface plasmon resonance (SPR) for silver and gold nanoparticles at 432 and 539 nm, respectively. The elemental forms of AgNPs and AuNPs were confirmed by energy-dispersive X-ray spectroscopy (EDX). Fourier transform infrared spectroscopy (FTIR) showed the biomolecules present in the pine gum, AgNPs, and AuNPs. Transmission electron microscopy (TEM) images showed the shape and size of AgNPs and AuNPs. The crystalline nature of synthesized AgNPs and AuNPs was confirmed by X-ray crystallography [X-ray diffraction (XRD)]. Application of synthesized AgNPs onto cotton fabrics and leather, in order to evaluate their antibacterial properties against odor- or skin infection-causing bacteria, is also discussed. Among the four tested bacteria, AgNP-coated cotton fabric and leather samples displayed excellent antibacterial activity against Brevibacterium linens.  相似文献   

19.
A simple and ecofriendly biosynthetic process has been developed for silver nanoparticles using the aqueous extract of gum olibanum (Boswellia serrata), a renewable natural plant biopolymer. The water soluble compounds in the gum serve as dual functional reducing and stabilizing agents. The effect of concentration of gum and silver nitrate; and reaction time on nanoparticle synthesis was studied. The UV–visible spectroscopy, transmission electron microscopy and X-ray diffraction techniques were used to characterize the synthesized nanoparticles. By tuning the reaction conditions, size controlled spherical nanoparticles of around 7.5 ± 3.8 nm was achieved. Using Fourier transform infrared spectroscopy and Raman spectroscopy, a probable mechanism involved in reduction and stabilization of nanoparticles has been explained. The produced silver nanoparticles exhibited substantial antibacterial activity on both the Gram classes of bacteria. By virtue of being biogenic and encapsulated with proteins, these surface functionalized nanoparticles can be easily integrated for various biological applications.  相似文献   

20.
A commercial lysine oxidase (LyOx) from Trichoderma viride was immobilized covalently onto gold nanoparticles (AuNPs) and platinum nanoparticles (PtNPs) electrodeposited onto Au electrode using 3-aminopropyltriethoxy silane (3-APTES) and glutaraldehyde cross linking chemistry. A lysine biosensor was fabricated using LyOx/3-APTES/AuNPs-PtNPs/Au electrode as a working electrode, Ag/AgCl (3 M KCl) as standard electrode and Pt wire as auxiliary electrode connected through a potentiostat. The enzyme electrode was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The cumulative effect of AuNPs and PtNPs showed excellent electrocatalytic activity at low applied potential for detection of H2O2, a product of LyOx reaction. The sensor showed its optimum response within 4 s, when polarized at 0.2 V vs. Ag/AgCl in 0.1 M phosphate buffer, pH 7.5 at 30 °C. The linear range and detection limit of the sensor were 1.0–600 μM and 1.0 μM (S/N = 3), respectively. Biosensor measured lysine level in sera, milk and amino acid tablet, which correlated well with those by standard HPLC method. The enzyme electrode lost 50% of its initial activity after 200 uses over a period of 4 months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号