首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Confronted with articular cartilage's limited capacity for self‐repair, joint resurfacing techniques offer an attractive treatment for damaged or diseased tissue. Although tissue engineered cartilage constructs can be created, a substantial number of cells are required to generate sufficient quantities of tissue for the repair of large defects. As routine cell expansion methods tend to elicit negative effects on chondrocyte function, we have developed an approach to generate phenotypically stable, large‐sized engineered constructs (≥3 cm2) directly from a small amount of donor tissue or cells (as little as 20,000 cells to generate a 3 cm2 tissue construct). Using rabbit donor tissue, the bioreactor‐cultivated constructs were hyaline‐like in appearance and possessed a biochemical composition similar to native articular cartilage. Longer bioreactor cultivation times resulted in increased matrix deposition and improved mechanical properties determined over a 4 week period. Additionally, as the anatomy of the joint will need to be taken in account to effectively resurface large affected areas, we have also explored the possibility of generating constructs matched to the shape and surface geometry of a defect site through the use of rapid‐prototyped defect tissue culture molds. Similar hyaline‐like tissue constructs were developed that also possessed a high degree of shape correlation to the original defect mold. Future studies will be aimed at determining the effectiveness of this approach to the repair of cartilage defects in an animal model and the creation of large‐sized osteochondral constructs. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

2.
The treatment of osteochondral articular defects has been challenging physicians for many years. The better understanding of interactions of articular cartilage and subchondral bone in recent years led to increased attention to restoration of the entire osteochondral unit. In comparison to chondral lesions the regeneration of osteochondral defects is much more complex and a far greater surgical and therapeutic challenge. The damaged tissue does not only include the superficial cartilage layer but also the subchondral bone. For deep, osteochondral damage, as it occurs for example with osteochondrosis dissecans, the full thickness of the defect needs to be replaced to restore the joint surface 1. Eligible therapeutic procedures have to consider these two different tissues with their different intrinsic healing potential 2. In the last decades, several surgical treatment options have emerged and have already been clinically established 3-6.Autologous or allogeneic osteochondral transplants consist of articular cartilage and subchondral bone and allow the replacement of the entire osteochondral unit. The defects are filled with cylindrical osteochondral grafts that aim to provide a congruent hyaline cartilage covered surface 3,7,8. Disadvantages are the limited amount of available grafts, donor site morbidity (for autologous transplants) and the incongruence of the surface; thereby the application of this method is especially limited for large defects.New approaches in the field of tissue engineering opened up promising possibilities for regenerative osteochondral therapy. The implantation of autologous chondrocytes marked the first cell based biological approach for the treatment of full-thickness cartilage lesions and is now worldwide established with good clinical results even 10 to 20 years after implantation 9,10. However, to date, this technique is not suitable for the treatment of all types of lesions such as deep defects involving the subchondral bone 11.The sandwich-technique combines bone grafting with current approaches in Tissue Engineering 5,6. This combination seems to be able to overcome the limitations seen in osteochondral grafts alone. After autologous bone grafting to the subchondral defect area, a membrane seeded with autologous chondrocytes is sutured above and facilitates to match the topology of the graft with the injured site. Of course, the previous bone reconstruction needs additional surgical time and often even an additional surgery. Moreover, to date, long-term data is missing 12.Tissue Engineering without additional bone grafting aims to restore the complex structure and properties of native articular cartilage by chondrogenic and osteogenic potential of the transplanted cells. However, again, it is usually only the cartilage tissue that is more or less regenerated. Additional osteochondral damage needs a specific further treatment. In order to achieve a regeneration of the multilayered structure of osteochondral defects, three-dimensional tissue engineered products seeded with autologous/allogeneic cells might provide a good regeneration capacity 11.Beside autologous chondrocytes, mesenchymal stem cells (MSC) seem to be an attractive alternative for the development of a full-thickness cartilage tissue. In numerous preclinical in vitro and in vivo studies, mesenchymal stem cells have displayed excellent tissue regeneration potential 13,14. The important advantage of mesenchymal stem cells especially for the treatment of osteochondral defects is that they have the capacity to differentiate in osteocytes as well as chondrocytes. Therefore, they potentially allow a multilayered regeneration of the defect.In recent years, several scaffolds with osteochondral regenerative potential have therefore been developed and evaluated with promising preliminary results 1,15-18. Furthermore, fibrin glue as a cell carrier became one of the preferred techniques in experimental cartilage repair and has already successfully been used in several animal studies 19-21 and even first human trials 22.The following protocol will demonstrate an experimental technique for isolating mesenchymal stem cells from a rabbit''s bone marrow, for subsequent proliferation in cell culture and for preparing a standardized in vitro-model for fibrin-cell-clots. Finally, a technique for the implantation of pre-established fibrin-cell-clots into artificial osteochondral defects of the rabbit''s knee joint will be described.  相似文献   

3.
The conventional methods of using autografts and allografts for repairing defects in bone, the osteochondral bone, and the cartilage tissue have many disadvantages, like donor site morbidity and shortage of donors. Moreover, only 30% of the implanted grafts are shown to be successful in treating the defects. Hence, exploring alternative techniques such as tissue engineering to treat bone tissue associated defects is promising as it eliminates the above-mentioned limitations. To enhance the mechanical and biological properties of the tissue engineered product, it is essential to fabricate the scaffold used in tissue engineering by the combination of various biomaterials. Three-dimensional (3D) printing, with its ability to print composite materials and with complex geometry seems to have a huge potential in scaffold fabrication technique for engineering bone associated tissues. This review summarizes the recent applications and future perspectives of 3D printing technologies in the fabrication of composite scaffolds used in bone, osteochondral, and cartilage tissue engineering. Key developments in the field of 3D printing technologies involves the incorporation of various biomaterials and cells in printing composite scaffolds mimicking physiologically relevant complex geometry and gradient porosity. Much recently, the emerging trend of printing smart scaffolds which can respond to external stimulus such as temperature, pH and magnetic field, known as 4D printing is gaining immense popularity and can be considered as the future of 3D printing applications in the field of tissue engineering.  相似文献   

4.
Osteoarthritis (OA) involves the degeneration of articular cartilage and subchondral bone. The capacity of articular cartilage to repair and regenerate is limited. A biodegradable, fibrous scaffold containing zinc oxide (ZnO) was fabricated and evaluated for osteochondral tissue engineering applications. ZnO has shown promise for a variety of biomedical applications but has had limited use in tissue engineering. Composite scaffolds consisted of ZnO nanoparticles embedded in slow degrading, polycaprolactone to allow for dissolution of zinc ions over time. Zinc has well-known insulin-mimetic properties and can be beneficial for cartilage and bone regeneration. Fibrous ZnO composite scaffolds, having varying concentrations of 1–10 wt.% ZnO, were fabricated using the electrospinning technique and evaluated for human mesenchymal stem cell (MSC) differentiation along chondrocyte and osteoblast lineages. Slow release of the zinc was observed for all ZnO composite scaffolds. MSC chondrogenic differentiation was promoted on low percentage ZnO composite scaffolds as indicated by the highest collagen type II production and expression of cartilage-specific genes, while osteogenic differentiation was promoted on high percentage ZnO composite scaffolds as indicated by the highest alkaline phosphatase activity, collagen production, and expression of bone-specific genes. This study demonstrates the feasibility of ZnO-containing composites as a potential scaffold for osteochondral tissue engineering.  相似文献   

5.
There is currently renewed interest in articular resurfacing for the treatment of damaged hip-joint cartilage. In contrast to these implants, which involve endoprosthetic replacement of both articulating surfaces, we present a new joint-preserving technique that allows treatment of local osteochondral defects of the femoral head by partial hemi-resurfacing. In this study we describe the operative and technical aspects and problems for partial hemi-resurfacing of the hip joint and critically discuss indications for this procedure in one case. To guarantee an adequate view of the situs, we recommend a surgical approach involving trochanter flip osteotomy, followed by surgical dislocation of the hip joint. Besides partial hemi-resurfacing of the osteochondral defect, this approach allows treatment of associated labral tears and cartilage defects of the hip joint at the same time. For adequate implant fixation, good bone quality is required. Furthermore, osteochondral defects of limited extent and excellent patient compliance are essential for clinical success. In particular, prominence of the implant has to be avoided, which can lead to an irregular joint surface and may induce further cartilage destruction. Long-term studies on statistical populations will show if partial articular hemi-resurfacing is a bone-preserving and useful therapeutic alternative to hemi-resurfacing caps in the treatment of osteochondral hip-joint defects, especially in young patients.  相似文献   

6.
In order to pre-clinically evaluate the performance and efficacy of novel osteochondral interventions, physiological and clinically relevant whole joint simulation models, capable of reproducing the complex loading and motions experienced in the natural knee environment are required. The aim of this study was to develop a method for the assessment of tribological performance of osteochondral grafts within an in vitro whole natural joint simulation model.The study assessed the effects of osteochondral allograft implantation (existing surgical intervention for the repair of osteochondral defects) on the wear, deformation and damage of the opposing articular surfaces. Tribological performance of osteochondral grafts was compared to the natural joint (negative control), an injury model (focal cartilage defects) and stainless steel pins (positive controls). A recently developed method using an optical profiler (Alicona Infinite Focus G5, Alicona Imaging GmbH, Austria) was used to quantify and characterise the wear, deformation and damage occurring on the opposing articular surfaces. Allografts inserted flush with the cartilage surface had the lowest levels of wear, deformation and damage following the 2 h test; increased levels of wear, deformation and damage were observed when allografts and stainless steel pins were inserted proud of the articular surface. The method developed will be applied in future studies to assess the tribological performance of novel early stage osteochondral interventions prior to in vivo studies, investigate variation in surgical precision and aid in the development of stratified interventions for the patient population.  相似文献   

7.
Polymer scaffold systems consisting of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) have proven to be possible matrices for the three-dimensional growth of chondrocyte cultures. However, the engineered cartilage grown on these PHBV scaffolds is currently unsatisfactory for clinical applications due to PHBV’s poor hydrophilicity, resulting in inadequate thickness and poor biomechanical properties of the engineered cartilage. It has been reported that the incorporation of Bioglass (BG) into PHBV can improve the hydrophilicity of the composites. In this study, we compared the effects of PHBV scaffolds and PHBV/BG composite scaffolds on the properties of engineered cartilage in vivo. Rabbit articular chondrocytes were seeded into PHBV scaffolds and PHBV/BG scaffolds. Short-term in vitro culture followed by long-term in vivo transplantation was performed to evaluate the difference in cartilage regeneration between the cartilage layers grown on PHBV and PHBV/BG scaffolds. The results show that the incorporation of BG into PHBV efficiently improved both the hydrophilicity of the composites and the percentage of adhered cells and promoted cell migration into the inner part the constructs. With prolonged incubation time in vivo, the chondrocyte-scaffold constructs in the PHBV/BG group formed thicker cartilage-like tissue with better biomechanical properties and a higher cartilage matrix content than the constructs in the PHBV/BG group. These results indicate that PHBV/BG scaffolds can be used to prepare better engineered cartilage than pure PHBV.  相似文献   

8.
Currently, there is no reliable reconstructive modality allowing anatomic resurfacing of traumatic digital osteochondral articular defects. The purpose of the present study is to demonstrate the utility of Medpor, a high-density porous polyethylene (HDPP) scaffold biomaterial that can (1) be readily contoured to fit any joint defect, (2) permit stable internal fixation, and (3) permit osteocyte and chondrocyte ingrowth and subsequent articular cartilage resurfacing necessary to restore joint congruity. HDPP has gained wide acceptance for use in craniofacial and skeletal reconstruction and augmentation. An avian non-weight-bearing joint model was designed to study the role of the HDPP implant in small joint reconstruction. An osteochondral defect was created with a 5-mm circular punch in the humeral articular surface of both glenohumeral joints of 32 adult White Leghorn chickens. In each animal, one defect was press-fitted with a correspondingly sized HDPP implant (HDPP implant group); the contralateral defect was filled with the original osteochondral plug (isograft group) or left unrepaired (control group). At 2 weeks, and 1, 3, and 6 months,joints from each group were harvested and evaluated. Over the 6-month study period, joints in the control group demonstrated healing with dense collagenous scar tissue leaving residual defects at the articular surfaces and significant degenerative disease of the glenohumeral joints radiographically. Joints in the isograft group demonstrated near-complete resorption with some preservation of the cartilaginous cap but overall depression of the articular surface and significant degenerative joint disease. Joints in the HDPP implant group demonstrated stable fixation by highly mineralized bony trabecular ingrowth, preservation of the articular contour of the humeral head, and no evidence of significant degenerative joint disease. These findings indicate a potential role for this high-density porous polyethylene implant in the reconstruction of small joint articular and osseous defects.  相似文献   

9.
Articular cartilage repair is still a challenge in orthopaedic surgery. Although many treatment options have been developed in the last decade, true regeneration of hyaline articular cartilage is yet to be accomplished. In vitro experiments are useful for evaluating cell-matrix interactions under controlled parameters. When introducing new treatment options into clinical routine, adequate animal models are capable of closing the gap between in vitro experiments and the clinical use in human beings. We developed an animal model in the G?ttingen minipig (GMP) to evaluate the healing of osteochondral or full-thickness cartilage defects. The defects were located in the middle third of the medial portion of the patellofemoral joint at both distal femurs. Chondral defects were 6.3 mm, osteochondral defects either 5.4 or 6.3 mm in diameter and 8 or 10 mm deep. In both defects the endogenous repair response showed incomplete repair tissue formation up to 12 months postoperatively. Based on its limited capability for endogenous repair of chondral and osteochondral defects, the GMP is a useful model for critical assessment of new treatment strategies in articular cartilage tissue engineering.  相似文献   

10.
软骨的修复是当前医学界十分棘手的难题,人们采取若干手段均收效甚微。由于软骨缺损时,其下的软骨下骨常出现硬化、退变,而新生软骨是无法与病变的软骨下骨进行整合的,所以在修复软骨的同时,必须重视软骨下骨的修复。近十几年来,人们开始发明和利用各种骨软骨复合支架,进行同时修复软骨与软骨下骨的动物实验研究。在正常骨软骨组织中,软骨与软骨下骨被钙化层所相连,此外钙化层也将软骨与软骨下骨分隔在不同的生存环境中。根据仿生学原理,人们又设计出一种带有隔离层的新型骨软骨复合支架,并取得了较为理想的实验结果。本文就国内外骨软骨复合支架的研完进展作一综述。  相似文献   

11.
Articular cartilage defects are considered a major health problem because articular cartilage has a limited capacity for self-regeneration 1. Untreated cartilage lesions lead to ongoing pain, negatively affect the quality of life and predispose for osteoarthritis. During the last decades, several surgical techniques have been developed to treat such lesions. However, until now it was not possible to achieve a full repair in terms of covering the defect with hyaline articular cartilage or of providing satisfactory long-term recovery 2-4. Therefore, articular cartilage injuries remain a prime target for regenerative techniques such as Tissue Engineering. In contrast to other surgical techniques, which often lead to the formation of fibrous or fibrocartilaginous tissue, Tissue Engineering aims at fully restoring the complex structure and properties of the original articular cartilage by using the chondrogenic potential of transplanted cells. Recent developments opened up promising possibilities for regenerative cartilage therapies.The first cell based approach for the treatment of full-thickness cartilage or osteochondral lesions was performed in 1994 by Lars Peterson and Mats Brittberg who pioneered clinical autologous chondrocyte implantation (ACI) 5. Today, the technique is clinically well-established for the treatment of large hyaline cartilage defects of the knee, maintaining good clinical results even 10 to 20 years after implantation 6. In recent years, the implantation of autologous chondrocytes underwent a rapid progression. The use of an artificial three-dimensional collagen-matrix on which cells are subsequently replanted became more and more popular 7-9.MACT comprises of two surgical procedures: First, in order to collect chondrocytes, a cartilage biopsy needs to be performed from a non weight-bearing cartilage area of the knee joint. Then, chondrocytes are being extracted, purified and expanded to a sufficient cell number in vitro. Chondrocytes are then seeded onto a three-dimensional matrix and can subsequently be re-implanted. When preparing a tissue-engineered implant, proliferation rate and differentiation capacity are crucial for a successful tissue regeneration 10. The use of a three-dimensional matrix as a cell carrier is thought to support these cellular characteristics 11.The following protocol will summarize and demonstrate a technique for the isolation of chondrocytes from cartilage biopsies, their proliferation in vitro and their seeding onto a 3D-matrix (Chondro-Gide, Geistlich Biomaterials, Wollhusen, Switzerland). Finally, the implantation of the cell-matrix-constructs into artificially created chondral defects of a rabbit''s knee joint will be described. This technique can be used as an experimental setting for further experiments of cartilage repair.  相似文献   

12.
Functional tissue engineering of chondral and osteochondral constructs   总被引:5,自引:0,他引:5  
Lima EG  Mauck RL  Han SH  Park S  Ng KW  Ateshian GA  Hung CT 《Biorheology》2004,41(3-4):577-590
Due to the prevalence of osteoarthritis (OA) and damage to articular cartilage, coupled with the poor intrinsic healing capacity of this avascular connective tissue, there is a great demand for an articular cartilage substitute. As the bearing material of diarthrodial joints, articular cartilage has remarkable functional properties that have been difficult to reproduce in tissue-engineered constructs. We have previously demonstrated that by using a functional tissue engineering approach that incorporates mechanical loading into the long-term culture environment, one can enhance the development of mechanical properties in chondrocyte-seeded agarose constructs. As these gel constructs begin to achieve material properties similar to that of the native tissue, however, new challenges arise, including integration of the construct with the underlying native bone. To address this issue, we have developed a technique for producing gel constructs integrated into an underlying bony substrate. These osteochondral constructs develop cartilage-like extracellular matrix and material properties over time in free swelling culture. In this study, as a preliminary to loading such osteochondral constructs, finite element modeling (FEM) was used to predict the spatial and temporal stress, strain, and fluid flow fields within constructs subjected to dynamic deformational loading. The results of these models suggest that while chondral ("gel alone") constructs see a largely homogenous field of mechanical signals, osteochondral ("gel bone") constructs see a largely inhomogeneous distribution of mechanical signals. Such inhomogeneity in the mechanical environment may aid in the development of inhomogeneity in the engineered osteochondral constructs. Together with experimental observations, we anticipate that such modeling efforts will provide direction for our efforts aimed at the optimization of applied physical forces for the functional tissue engineering of an osteochondral articular cartilage substitute.  相似文献   

13.
Osteochondral defects can degenerate into osteoarthritis and currently there are no good treatment alternatives available to most Orthopaedic surgeons. Osteochondral allografting can restore damaged joint surfaces but its clinical use is limited by poor access to high quality tissue. Vitrification of osteochondral tissue would allow the banking of this tissue but requires high concentrations of cryoprotective agents. This study was designed to ascertain dimethyl sulfoxide (DMSO) toxicity kinetics to chondrocytes in situ after exposure to DMSO at different temperatures recorded as a function of time. Porcine osteochondral dowels were exposed to 1, 3, 5, and 6M DMSO at 4, 22, and 37°C for 0.5 min to 120 min. Chondrocyte recovery was determined by membrane integrity (Syto 13 and ethidium bromide) and mitochondrial (WST-1) assays. Results demonstrated that cell recovery was concentration, temperature and time dependent. At higher concentrations and temperatures, significant cell loss occurred within minutes. A rate constant calculated for chondrocyte death was dependent on temperature. 1 M DMSO appeared relatively non-toxic. This experiment established a method to examine systematically toxicity parameters for chondrocytes in situ and this data can be used to tailor vitrification protocols by limiting exposure temperature and time or lowering DMSO concentrations below toxic levels recorded.  相似文献   

14.
First generation, photocrosslinkable dendrimers consisting of natural metabolites (i.e., succinic acid, glycerol, and beta-alanine) and nonimmunogenic poly(ethylene glycol) (PEG) were synthesized divergently in high yields using ester and carbamate forming reactions. Aqueous solutions of these dendrimers were photocrosslinked with an eosin-based photoinitiator to afford hydrogels. The hydrogels displayed a range of mechanical properties based on their structure, generation size, and concentration in solution. All of the hydrogels showed minimal swelling characteristics. The dendrimer solutions were then photocrosslinked in situ in an ex vivo rabbit osteochondral defect (3 mm diameter and 10 mm depth), and the resulting hydrogels were subjected to physiologically relevant dynamic loads. Magnetic resonance imaging (MRI) showed the hydrogels to be fixated in the defect site after the repetitive loading regimen. The ([G1]-PGLBA-MA) 2-PEG hydrogel was chosen for the 6 month pilot in vivo rabbit study because this hydrogel scaffold could be prepared at low polymer weight (10 wt %) and possessed the largest compressive modulus of the 10% formulations, a low swelling ratio, and contained carbamate linkages, which are more hydrolytically stable than the ester linkages. The hydrogel-treated osteochondral defects showed good attachment in the defect site and histological analysis showed the presence of collagen II and glycosaminoglycans (GAGs) in the treated defects. By contrast, the contralateral unfilled defects showed poor healing and negligible GAG or collagen II production. Good mechanical properties, low swelling, good attachment to the defect site, and positive in vivo results illustrate the potential of these dendrimer-based hydrogels as scaffolds for osteochondral defect repair.  相似文献   

15.
Osteochondral tissue engineering has shown an increasing development to provide suitable strategies for the regeneration of damaged cartilage and underlying subchondral bone tissue. For reasons of the limitation in the capacity of articular cartilage to self-repair, it is essential to develop approaches based on suitable scaffolds made of appropriate engineered biomaterials. The combination of biodegradable polymers and bioactive ceramics in a variety of composite structures is promising in this area, whereby the fabrication methods, associated cells and signalling factors determine the success of the strategies. The objective of this review is to present and discuss approaches being proposed in osteochondral tissue engineering, which are focused on the application of various materials forming bilayered composite scaffolds, including polymers and ceramics, discussing the variety of scaffold designs and fabrication methods being developed. Additionally, cell sources and biological protein incorporation methods are discussed, addressing their interaction with scaffolds and highlighting the potential for creating a new generation of bilayered composite scaffolds that can mimic the native interfacial tissue properties, and are able to adapt to the biological environment.  相似文献   

16.
Wang E  Lee SH  Lee SW 《Biomacromolecules》2011,12(3):672-680
In nature, organic matrix macromolecules play a critical role in enhancing the mechanical properties of biomineralized composites such as bone and teeth. Designing artificial matrix analogues is promising but challenging because relatively little is known about how natural matrix components function. Therefore, in lieu of using natural components, we created biomimetic matrices using genetically engineered elastin-like polypeptides (ELPs) and then used them to construct mechanically robust ELP-hydroxyapatite (HAP) composites. ELPs were engineered with well-defined backbone charge distributions by periodic incorporation of negative, positive, or neutral side chains or with HAP-binding octaglutamic acid motifs at one or both protein termini. ELPs exhibited sequence-specific capacities to interact with ions, bind HAP, and disperse HAP nanoparticles. HAP-binding ELPs were incorporated into calcium phosphate cements, resulting in materials with improved mechanical strength, injectability, and antiwashout properties. The results demonstrate that rational design of genetically engineered polymers is a powerful system for determining sequence-property relationships and for improving the properties of organic-inorganic composites. Our approach may be used to further develop novel, multifunctional bone cements and expanded to the design of other advanced composites.  相似文献   

17.
Osteochondral defect management and repair remain a significant challenge in orthopedic surgery. Osteochondral defects contain damage to both the articular cartilage as well as the underlying subchondral bone. In order to repair an osteochondral defect the needs of the bone, cartilage and the bone-cartilage interface must be taken into account. Current clinical treatments for the repair of osteochondral defects have only been palliative, not curative. Tissue engineering has emerged as a potential alternative as it can be effectively used to regenerate bone, cartilage and the bone-cartilage interface. Several scaffold strategies, such as single phase, layered, and recently graded structures have been developed and evaluated for osteochondral defect repair. Also, as a potential cell source, tissue specific cells and progenitor cells are widely studied in cell culture models, as well with the osteochondral scaffolds in vitro and in vivo. Novel factor strategies being developed, including single factor, multi-factor, or controlled factor release in a graded fashion, not only assist bone and cartilage regeneration, but also establish osteochondral interface formation. The field of tissue engineering has made great strides, however further research needs to be carried out to make this strategy a clinical reality. In this review, we summarize current tissue engineering strategies, including scaffold design, bioreactor use, as well as cell and factor based approaches and recent developments for osteochondral defect repair. In addition, we discuss various challenges that need to be addressed in years to come.  相似文献   

18.
Zhang P  Wu H  Wu H  Lù Z  Deng C  Hong Z  Jing X  Chen X 《Biomacromolecules》2011,12(7):2667-2680
Various surface modification methods of RGD (Arg-Gly-Asp) peptides on biomaterials have been developed to improve cell adhesion. This study aimed to examine a RGD-conjugated copolymer RGD/MPEG-PLA-PBLG (RGD-copolymer) for its ability to promote bone regeneration by mixing it with the composite of poly(lactide-co-glycotide) (PLGA) and hydroxyapatite nanoparticles surface-grafted with poly(L-lactide) (g-HAP). The porous scaffolds were prepared using solvent casting/particulate leaching method and grafted to repair the rabbit radius defects after seeding with autologous bone marrow mesenchymal cells (MSCs) of rabbits. After incorporation of RGD-copolymer, there were no significant influences on scaffold's porosity and pore size. Nitrogen of RGD peptide, and calcium and phosphor of g-HAP could be exposed on the surface of the scaffold simultaneously. Although the cell viability of its leaching liquid was 92% that was lower than g-HAP/PLGA, its cell adhesion and growth of 3T3 and osteoblasts were promoted significantly. The greatest increment in cell adhesion ratios (131.2-157.1% higher than g-HAP/PLGA) was observed when its contents were 0.1-1 wt % but only at 0.5 h after cell seeding. All the defects repaired with the implants were bridged after 24 weeks postsurgery, but the RGD-copolymer contained composite had larger new bone formation and better fusion interface. The composites containing RGD-copolymer enhanced bone ingrowth but presented more woven bones than others. The combined application of RGD-copolymer and bone morphological protein 2 (BMP-2) exhibited the best bone healing quality and was recommended as an optimal strategy for the use of RGD peptides.  相似文献   

19.
Articular cartilage injuries are a common source of joint pain and dysfunction. We hypothesized that pulsed electromagnetic fields (PEMFs) would improve growth and healing of tissue-engineered cartilage grafts in a direction-dependent manner. PEMF stimulation of engineered cartilage constructs was first evaluated in vitro using passaged adult canine chondrocytes embedded in an agarose hydrogel scaffold. PEMF coils oriented parallel to the articular surface induced superior repair stiffness compared to both perpendicular PEMF (p = .026) and control (p = .012). This was correlated with increased glycosaminoglycan deposition in both parallel and perpendicular PEMF orientations compared to control (p = .010 and .028, respectively). Following in vitro optimization, the potential clinical translation of PEMF was evaluated in a preliminary in vivo preclinical adult canine model. Engineered osteochondral constructs (∅ 6 mm × 6 mm thick, devitalized bone base) were cultured to maturity and implanted into focal defects created in the stifle (knee) joint. To assess expedited early repair, animals were assessed after a 3-month recovery period, with microfracture repairs serving as an additional clinical control. In vivo, PEMF led to a greater likelihood of normal chondrocyte (odds ratio [OR]: 2.5, p = .051) and proteoglycan (OR: 5.0, p = .013) histological scores in engineered constructs. Interestingly, engineered constructs outperformed microfracture in clinical scoring, regardless of PEMF treatment (p < .05). Overall, the studies provided evidence that PEMF stimulation enhanced engineered cartilage growth and repair, demonstrating a potential low-cost, low-risk, noninvasive treatment modality for expediting early cartilage repair.  相似文献   

20.
Hyaline joint cartilage has only a limited potential for self-repair. Some of the published techniques for osteochondral defect therapy try to improve that potential. In this study, it was hypothesised that one of those surgical techniques, the crushed transplanted bone graft together with a collagen membrane, accelerates significantly the reconstruction of the subchondral bone plate and improves the mechanical and histological quality of repaired cartilage in osteochondral defects compared to an empty control defect. In order to test this hypothesis, defects were created in the left knee of 12 sheep and filled either with autologous crushed bone graft or left empty. The animals were sacrificed after 3 (n = 6) and 6 (n = 6) months. No differences were found either macroscopically or histomorphometrically between the bone graft and empty control defects. The biomechanical as well as the histological results of the bone graft defects were inferior to the control defects with inflammatory processes caused either by bone graft or membrane remnants. Based on the results in this sheep model, the filling of subchondral bone defects with compacted cancellous bone should be carefully reconsidered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号