首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Coenzyme A (CoA) and its thioester derivatives are important precursor molecules for many industrially useful compounds such as esters, PHBs, lycopene and polyketides. Previously, in our lab we could increase the intracellular levels of CoA and acetyl-Coenzyme A (acetyl-CoA) by overexpressing one of the upstream rate-controlling enzymes pantothenate kinase with a concomitant supplementation of the precursor pantothenic acid to the cell culture medium. In this study, we showed that the CoA/acetyl-CoA manipulation system could be used to increase the productivity of industrially useful compounds derived from acetyl-CoA. We chose the production of isoamyl acetate as a model system. Isoamyl acetate is an important flavor component of sake yeast and holds a great commercial value. Alcohol acetyl transferase (AAT) condenses isoamyl alcohol and acetyl-CoA to produce isoamyl acetate. The gene ATF2, coding for this AAT was cloned and expressed in Escherichia coli. This genetic engineered E. coli produces isoamyl acetate, an ester, from intracellular acetyl-CoA when isoamyl alcohol is added externally to the cell culture medium. In the current study, we showed that in a strain bearing ATF2 gene, an increase in intracellular CoA/acetyl-CoA by overexpressing panK leads to an increase in isoamyl acetate production. Additionally, the cofactor manipulation technique was combined with more traditional approach of competing pathway deletions to further increase isoamyl acetate production. The acetate production pathway competes with isoamyl acetate production for the common intracellular metabolite acetyl-CoA. Earlier we have shown that acetate pathway deletion (ackA-pta) increases isoamyl acetate production. The acetate production pathway was inactivated under elevated CoA/acetyl-CoA conditions, which lead to a further increase in isoamyl acetate production.  相似文献   

2.
Aromatic compounds are an important element in the flavor of yeast-fermented alcohol. We isolated mutants of Saccharomyces cerevisiae capable of growth at high levels of hydrostatic pressure. Among them, the HPG1 mutants, with a defect in their Rsp5 ubiquitin ligase, were found to produce high amounts of aromatics due to enhanced leucine uptake, with isoamyl alcohol production 2- to 3-fold and isoamyl acetate production 4- to 8-fold that of the wild-type strain. The result suggests that the HPG1/RSP5 mutant alleles could be new resources for producing these flavoring compounds for yeast-fermented alcoholic beverages.  相似文献   

3.

Background  

Acetate metabolism in Escherichia coli plays an important role in the control of the central metabolism and in bioprocess performance. The main problems related to the use of E. coli as cellular factory are i) the deficient utilization of carbon source due to the excretion of acetate during aerobic growth, ii) the inhibition of cellular growth and protein production by acetate and iii) the need for cofactor recycling (namely redox coenzymes and free CoASH) to sustain balanced growth and cellular homeostasis.  相似文献   

4.
Cytidine is a nucleoside molecule that is widely used as a precursor for antiviral drugs. In this study, a cytidine-producing strain Cyt18 was developed from Escherichia coli K-12 through 3-step genetic manipulation strategies. Cytidine deaminase gene (cdd) was firstly deleted from the E. coli K-12 strain to develop Cyt10. Furthermore, homoserine dehydrogenase gene (thrA) was inactivated from the Cyt10 strain to develop Cyt12, in which the intracellular aspartate concentration was expected to be increased. The recombinant plasmid pMG1105 containing an pyrB-pyrA operon from Bacillus amyloliquefaciens CYTI was constructed and was introduced into Cyt12 to obtain the Cyt18 strain. Compared to the Cyt12 strain, the cytidine production by the recombinant strain Cyt18 was increased by ~3-fold (722.9 mg/l vs. 249.3 mg/l).  相似文献   

5.
An in vivo method of producing isoamyl acetate and succinate simultaneously has been developed in Escherichia coli to maximize yields of both high value compounds as well as maintain the proper redox balance between NADH and NAD+. Previous attempts at producing the ester isoamyl acetate anaerobically did not produce the compound in high concentrations because of competing pathways and the need for NAD+ regeneration. The objective of this study is to produce succinate as an example of a reduced coproduct to balance the ratio of NADH/NAD+ as a way of maximizing isoamyl acetate production. Because the volatility of the two compounds differs greatly, the two could be easily separated in an industrial setting. An ldhA, adhE double mutant strain (SBS110MG) served as the control strain to test the effect of an additional ackApta mutation as found in SBS990MG. Both strains overexpressed the two heterologous genes pyruvate carboxylase and alcohol acetyltransferase (for ester production). The triple mutant SBS990MG was found to produce higher levels of both isoamyl acetate and succinate. At the optimal condition of 25°C, the culture produced 9.4 mM isoamyl acetate and 45.5 mM succinate. SBS990MG produced 36% more ester and over 700% more succinate than SBS110MG. In addition, this study demonstrated that a significantly higher isoamyl acetate concentration can be attained by simultaneously balancing the carbon and cofactor flow; the isoamyl acetate concentration of 9.4 mM is more than seven times higher than an earlier report of about 1.2 mM. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

6.
Reduction of aerobic acetate production by Escherichia coli.   总被引:4,自引:0,他引:4       下载免费PDF全文
Acetate excretion by Escherichia coli during aerobic growth on glucose is a major obstacle to enhanced recombinant protein production. We report here that the fraction of carbon flux through the anaplerotic pathways is one of the factors influencing acetate excretion. Flux analysis of E. coli central metabolic pathways predicts that increasing the fraction of carbon flux through the phosphoenolpyruvate carboxylase (PPC) pathway and the glyoxylate bypass reduces acetate production. We tested this prediction by overexpressing PPC and deregulating the glyoxylate bypass by using a fadR strain. Results show that the acetate yield by the fadR strain with PPC overexpression is decreased more than fourfold compared to the control, while the biomass yield is relatively unaffected. Apparently, the fraction of carbon flux through the anaplerotic pathways is one of the factors that influence acetate excretion. These results confirm the prediction of our flux analysis and further suggest that E. coli is not fully optimized for efficient utilization of glucose.  相似文献   

7.
Isoamyl acetate, produced via fermentation, is a natural flavor chemical with applications in the food industry. Two alcohol acetyltransferases from Saccharomyces cerevisiae (ATF1 and ATF2) can catalyze the esterification of isoamyl alcohol with acetyl coenzyme A. The respective genes were cloned and expressed in an appropriate ack-pta(-) strain of Escherichia coli. The engineered strains produce isoamyl acetate when isoamyl alcohol is added to the culture medium. Aerobic shake flask experiments examined isoamyl acetate production over various growth times, temperatures, and initial optical densities. The strain carrying the pBAD-ATF1 plasmid exhibited a high molar ester yield from glucose (1.13) after 48 h of aerobic growth at 25 degrees C. Low-cost media components, such as fusel oil, sorghum glucose and corn steep liquor, were found to give a high yield of isoamyl acetate. High-cell-density gave an increased isoamyl acetate yield of 0.18 g/g of glucose consumed.  相似文献   

8.
The amplification of gltA gene encoding citrate synthase of TCA cycle was required for the efficient conversion of acetyl-CoA, generated during vanillin production from ferulic acid, to CoA, which is essential for vanillin production. Vanillin of 1.98 g/L was produced from the E. coli DH5alpha (pTAHEF-gltA) with gltA amplification in 48 h of culture at 3.0 g/L of ferulic acid, which was about twofold higher than the vanillin production of 0.91 g/L obtained by the E. coli DH5alpha (pTAHEF) without gltA amplification. The icdA gene encoding isocitrate dehydrogenase of TCA cycle was deleted to make the vanillin producing E. coli utilize glyoxylate bypass which enables more efficient conversion of acetyl-CoA to CoA in comparison with TCA cycle. The production of vanillin by the icdA null mutant of E. coli BW25113 harboring pTAHEF was enhanced by 2.6 times. The gltA amplification of the glyoxylate bypass in the icdA null mutant remarkably increased the production rate of vanillin with a little increase in the amount of vanillin production. The real synergistic effect of gltA amplification and icdA deletion was observed with use of XAD-2 resin reducing the toxicity of vanillin produced during culture. Vanillin of 5.14 g/L was produced in 24 h of the culture with molar conversion yield of 86.6%, which is the highest so far in vanillin production from ferulic acid using recombinant E. coli.  相似文献   

9.
10.
Lycopene is a useful phytochemical that holds great commercial value. In our study the lycopene production pathway in E. coli originating from the precursor isopentenyl diphosphate (IPP) of the non-mevalonate pathway was reconstructed. This engineered strain of E. coli accumulated lycopene intracellularly under aerobic conditions. As a next step, the production of lycopene was enhanced through metabolic engineering methodologies. Various competing pathways at the pyruvate and acetyl-CoA nodes were inactivated to divert more carbon flux to IPP and subsequently to lycopene. It was found that the ackA-pta, nuo mutant produced a higher amount of lycopene compared to the parent strain. To further enhance lycopene production, a novel mevalonate pathway, in addition to the already existing non-mevalonate pathway, was engineered. This pathway utilizes acetyl-CoA as precursor, condensing it to form acetoacetyl-CoA and subsequently leading to formation of IPP. Upon the introduction of this new pathway, lycopene production increased by over 2-fold compared to the ackA-pta, nuo mutant strain.  相似文献   

11.
In this work, the transesterification reaction of isoamyl alcohol obtained from fusel oil and leading to the synthesis of isoamyl acetate was conducted simultaneously with in situ ethanol removal, which allows to shift the reaction equilibrium toward ester synthesis. The extracellular Aspergillus oryzae lipase was immobilized into calcium alginate. Effects of immobilization conditions on the loading efficiency and on the specific activity of entrapped lipase were investigated. The kinetic transfer of volatile reactants from the reactor was investigated using an experimentally first order kinetic model, in order to approve the feasibility of the liquid-gas system with continuous ethanol removal in the ester synthesis. The effects of the most influent parameters affecting the reaction have been also investigated using a Doehlert matrix design. The better operating conditions for isoamyl acetate synthesis were: a temperature of 68.5°C and a respective isoamyl alcohol and A. oryzae lipase concentration of 0.72 M and 2.39 g/L. At these conditions, the resulting reaction conversion and ethanol extraction yields were of 89.55 and 69.60%, respectively. The use of the fluidized bed reactor with continuous ethanol removal has allowed to improve the reaction conversion which was two times than the conversion higher obtained in batch reactor. Furthermore, under the optimized conditions in the fluidized bed reactor, the reaction conversion and the ethanol extraction yields were increased by 44.8 and 36.2%, respectively.  相似文献   

12.
During growth of high-cell-density cultures of Escherichia coli, overproduction of recombinant proteins often results in increased stress response, cell filamentation, and growth cessation. Filamentation of cells consequently lowers final achievable cell concentration and productivity of the target protein. Reported here is a methodology that should prove useful for the enhancement of cell growth and protein productivity by the suppression of cell filamentation. By the coexpression of the E. coli ftsA and ftsZ genes, which encode key proteins in cell division, growth of recombinant strains as well as production of human leptin and human insulin-like growth factor I was improved. Observation of cell morphology revealed that the coexpression of the ftsA and ftsZ genes successfully suppressed filamentation caused by the accumulation of recombinant proteins.  相似文献   

13.
Insect stage trypanosomes use an "acetate shuttle" to transfer mitochondrial acetyl-CoA to the cytosol for the essential fatty acid biosynthesis. The mitochondrial acetate sources are acetate:succinate CoA-transferase (ASCT) and an unknown enzymatic activity. We have identified a gene encoding acetyl-CoA thioesterase (ACH) activity, which is shown to be the second acetate source. First, RNAi-mediated repression of ASCT in the ACH null background abolishes acetate production from glucose, as opposed to both single ASCT and ACH mutants. Second, incorporation of radiolabeled glucose into fatty acids is also abolished in this ACH/ASCT double mutant. ASCT is involved in ATP production, whereas ACH is not, because the ASCT null mutant is ~1000 times more sensitive to oligomycin, a specific inhibitor of the mitochondrial F(0)/F(1)-ATP synthase, than wild-type cells or the ACH null mutant. This was confirmed by RNAi repression of the F(0)/F(1)-ATP synthase F(1)β subunit, which is lethal when performed in the ASCT null background but not in the wild-type cells or the ACH null background. We concluded that acetate is produced from both ASCT and ACH; however, only ASCT is responsible, together with the F(0)/F(1)-ATP synthase, for ATP production in the mitochondrion.  相似文献   

14.
Escherichia coli strains VH33 (PTS? GalP? strain displaying a strongly reduced overflow metabolism) and VH34 (additionally lacking the pyruvate kinase A) were evaluated for the production of a plasmid DNA (pDNA) vaccine. The parent (W3110) and mutant strains were cultured using 10 g of glucose/L. While the specific growth rates of the three strains were similar, they presented differences in the accumulation of acetate. W3110 accumulated up to 4 g/L of acetate, VH33 produced 1.4 g/L, and VH34 only 0.78 g/L. VH33 and VH34 produced 76% and 300% more pDNA than W3110. Moreover, VH34 demanded 33% less oxygen than VH33 and W3110, which can be advantageous for large-scale applications.  相似文献   

15.
Genetic manipulation of the host strain, by which cell physiology could be modulated, was exploited to enhance recombinant protein production in Escherichia coli. The effects of an inactivated stationary-phase gene (rmf or katF) on recombinant protein production in strains with two different expression systems (the pH-inducible and the lac promoters) were investigated. An improvement of recombinant protein production in the katF mutant at low growth rates was observed for both expression systems. A fourfold and a 30% increase in the volumetric recombinant protein activity were observed for the pH-inducible and the lac promoter system, respectively. The effect of the rmf mutation, on the other hand, depends on the expression system. A twofold increase in the volumetric recombinant protein activity was found for the pH-inducible promoter system, but there was no improvement for the lac promoter system. Improvement in culture performance for slow-growing cultures may have an impact on the design strategy of the host/vector system used in fed-batch cultures, where the specific growth rate is usually slow. The information may also be useful for developing optimal host/vector gene expression systems for recombinant protein production. (c) 1996 John Wiley & Sons, Inc.  相似文献   

16.
17.
The possibility of using in situ addition of anion-exchange resin for the removal of acetate in the culture aimed at improving growth of E. coli and expression of periplasmic human interferon-α2b (PrIFN-α2b) was studied in shake flask culture and stirred tank bioreactor. Different types of anion-exchange resin were evaluated and the concentration of anion-exchange resin was optimized using response surface methodology. The addition of anion-exchange resins reduced acetate accumulation in the culture, which in turn, improved growth of E. coli and enhanced PrIFN-α2b expression. The presence of anion-exchange resins did not influence the physiology of the cells. The weak base anion-exchange resins, which have higher affinity towards acetate, yielded higher PrIFN-α2b expression as compared to strong anion-exchange resins. High concentrations of anion-exchange resin showed inhibitory effect towards growth of E. coli as well as the expression of PrIFN-α2b. The maximum yield of PrIFN-α2b in shake flask culture (501.8 μg/L) and stirred tank bioreactor (578.8 μg/L) was obtained at ion exchange resin (WA 30) concentration of 12.2 g/L. The production of PrIFN-α2b in stirred tank bioreactor with the addition of ion exchange resin was about 1.8-fold higher than that obtained in fermentation without ion exchange resin (318.4 μg/L).  相似文献   

18.
Recently, butanols (1-butanol, 2-butanol and iso-butanol) have generated attention as alternative gasoline additives. Butanols have several properties favorable in comparison to ethanol, and strong interest therefore exists in the reconstruction of the 1-butanol pathway in commonly used industrial microorganisms. In the present study, the biosynthetic pathway for 1-butanol production was reconstructed in the yeast Saccharomyces cerevisiae. In addition to introducing heterologous enzymes for butanol production, we engineered yeast to have increased flux toward cytosolic acetyl-CoA, the precursor metabolite for 1-butanol biosynthesis. This was done through introduction of a plasmid-containing genes for alcohol dehydrogenase (ADH2), acetaldehyde dehydrogenase (ALD6), acetyl-CoA synthetase (ACS), and acetyl-CoA acetyltransferase (ERG10), as well as the use of strains containing deletions in the malate synthase (MLS1) or citrate synthase (CIT2) genes. Our results show a trend to increased butanol production in strains engineered for increased cytosolic acetyl-CoA levels, with the best-producing strains having maximal butanol titers of 16.3 mg/l. This represents a 6.5-fold improvement in butanol titers compared to previous values reported for yeast and demonstrates the importance of an improved cytosolic acetyl-CoA supply for heterologous butanol production by this organism.  相似文献   

19.
In Escherichi coli, Sec-dependent pathway is the major pathway for protein secretion into periplasm, and it has been widely used for the production of antibody fragment. However, in many cases, the production yields of antibody fragments were not satisfactory due to inefficient secretion and low solubility. Here, we have developed the host-vector system for the secretory production of single chain Fv (scFv) via signal recognition particle (SRP)-dependent pathway instead of Sec-dependent pathway. Use of DsbA signal peptide for SRP-dependent pathway allowed more efficient production of scFv compared with Secdependent pathway. To further improve the production yield and solubility of scFv via SRP pathway, the effect of several factors which are closely related to SRP pathway were examined. Among those factors, the co-expression of YidC could significantly improve the solubility of scFv with high expression level. For the large-scale production, fed-batch cultivations with engineered host-vector system were performed and, two different nutrient feeding solutions (complex vs. defined) were examined. When defined feeding solution was supplied, higher production yield (90 mg/L of scFv) could be obtained than complex feeding solution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号